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ABSTRACT In this paper, a sampled-data parallel distributed compensator (PDC) is proposed to guarantee
mixed H2/H∞ performance of uncertain T-S fuzzy systems with interval time-varying delay and linear
fractional perturbations. A full matrix formulation approach is developed to present our main results in
LMI conditions. To achieve better results, new inequality and Lyapunov-Krasovskii functional are developed
to improve the conservativeness of the proposed results. Finally, some numerical examples are illustrated
to show the use of our main results. In this paper, interval time-varying delay and interval sampling are
considered instead of constant delay and periodic sampling in published literatures.

INDEX TERMS H2/H∞ performance, interval sampling period, interval time-varying delay, T-S fuzzy
system, sampled-data control.

I. INTRODUCTION
Time-delay phenomena are often encountered in various
practical systems; such as aircraft stabilization, biology and
medicine engineering, chemical engineering systems, control
of epidemics, distributed networks, inferred grinding model,
manual control, mechanical operation; microwave oscilla-
tors, models of lasers, neural networks, nuclear reactors,
population dynamic models, rolling mills, ship stabilization,
and systems with lossless transmission lines. On the other
hand, time delay is often the source of instability and
generation of oscillation in many physical systems. Hence,
the stability issues of T-S fuzzy systems with time delays
have been investigated in recent years [1]–[4]. It is interesting
to note that the models of practical systems are always
containing several nonlinear properties. Hence the Takagi-
Sugeno (T-S) fuzzy system models [5], [6] were introduced
to approximate these nonlinear elements in many physical
examples. T-S fuzzy system is a useful tool to solve the con-
trol design problems in many nonlinear practical applications
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for dynamic systems; such as guidance and mooring
control in autonomous surface vehicle; nonfragile control
of permanent-magnet synchronous motor; stabilization of
inverted pendulum and motor drive control; predictive and
dissipative control of neural networks; predictive control for
a diesel engine; performance control of truck-trailer model;
dissipative control of wind turbine model; sampled-data con-
trol of reaction-diffusion neural networks, vehicle suspension
systems, and wind energy conversion systems [7]–[18]. This
approach provides a connection between the linear control
theory and the fuzzy concept. It is also interesting to note
that interval time-varying delay in [10]–[12], [19] is more
suitable to describe the transportation delay than constant
delay in [20]–[22]. In recent years, stability and performance
for T-S fuzzy systems with time delays were investigated
by Lyapunov theory and LMI (Linear Matrix Inequality)
approach in [10]–[23].

Sampled-data state feedback input is a useful approach to
implement some complicate control schemes; such as parallel
distributed compensator (PDC) in T-S fuzzy system [20]–[23]
and switching control in switched system [24]. Parallel
distributed compensator and switching control are always
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used to enrich the performance for T-S fuzzy systems
and switched systems, but PDC and switching control are
difficult to implement by analog devices. Hence sampled-
data state feedback control input is an available consideration
to implement PDC and switching control for systems under
consideration. Suppose the control input is calculated by
a digital device (computer or chip), then the feedback
value will be remained until the next sampling instant
to reflect the sampled value [16]–[18], [20]–[24]. The
allowable upper bound for fixed sampling period T > 0
will be an important issue to guarantee the performance of
systems under consideration. To implement the distant from
state feedback control, networked control technology was
provided to finish the goal in the recent years. Aperiodic
sampling concept in [20] is a more practical application, but
only pointwise sampling period can be guaranteed the perfor-
mance of systems under consideration. Since the congestion
for transmission in network or signal processing of sampler,
the actual information transmits to actuator will produce in
different sampling periods [19], [22], [23]. Hence interval
sampling period is more suitable for practical implementation
in sampled-data control systems than constant and pointwise
sampling periods [13], [14], [16]–[19], [22], [23], [25]. In this
paper, we propose a novel inequality and new Lyapunov-
Krasovskii functional to guarantee the mixed performance
and design the robust PDC state feedback sampled-data
control input with interval sampling period.

In the past, the H∞ performance of systems under
consideration was used to minimize the effect of regulated
output with respect to disturbance input and guarantee that
the closed-loop system is stable [4], [7], [9], [12], [20], [21],
[25]–[27]. On the other hand, the H2 performance of systems
was applied to minimize the dynamics with respect to initial
condition of system under consideration and zero distur-
bance. Hence the system with mixed performance has been
an interesting research topic in recent years [20], [26], [27].
In this paper, the mixed H2/H∞ performance scheme is
proposed to minimize upper bound of H∞ performance
with respect to H2 measure. Linear fractional perturbation
is a general presentation about systems with some uncertain
elements or nonlinearities [28], [29]. In this paper, we use
LMI optimization approach in [30] to guarantee the mixed
H2/H∞ performace and design the sampled-data PDC. The
main contributions of this paper can be highlighted as
follows:
• In this paper, the optimal H∞ performance for uncertain
T-S fuzzy system with interval time-varying delay and
linear fractional perturbations is achieved by sampled-
data PDC. TheH2 measure can be provided to guarantee
the upper bound in response for regulated output of
system under consideration.

• To overcome the difficulty about the multiplication and
combination of matrices, the full matrix formulation
approach is developed in this paper. With the proposed
approach, our results can be shown in LMI optimization
formulation which can be solved by LMI toolbox

of Matlab directly. For more complex system under
consideration or other inequalities used, our developed
approach is also a good tool for further analysis.

• An upper bound about the sampling period can be
evaluated instead of pointwise values in our past
results [20]. Interval time-varying delay is considered
instead of constant delay in [20]–[22] for the uncertain
T-S fuzzy system under consideration. The proposed
LMI conditions are easier to solve than the proposed
ones in [20].

• To improve the conservativeness for proposed condi-
tions in time-varying delay, inequalities in Lemmas
1 and 2 are used simultaneously. Lyapunov-Krasovskii
functional including the term XT (t)PX (t) is proposed
to derive the LMI conditions in our main results. The
vector X (t) includes possible information of system
under consideration to improve the conservativeness of
the proposed results. From the illustrated examples, the
better disturbance attenuation and more exact evaluation
on H2 measure have been shown in our main results.

The remainder of this paper is organized as follows. The
problem formulation and main results are given in Section 2.
Section 3 provides some examples to illustrate the main
results. Finally, a conclusion is made in Section 4.
Notations: For a matrix A, we denote the transpose by AT ,

symmetric positive (negative) definite by A > 0 (A < 0).
A ≤ B means that matrix B − A is symmetric positive
semi-definite. Sym(X ) = X + XT , I and 0 denote the
identity matrix and zero matrix with appropriate dimension,
respectively, Eq,i =

[
0n×(i−1)n I 0n×(q−i)n

]
∈ Rn×qn,

i = 1, 2, · · · , q, q = 2, 3, · · · , 15, L2 (0,∞) ={
w ∈ Rm

∣∣∫∞
0 wT (t)w (t) dt <∞

}
, andm = {1, 2, · · · ,m}.

II. PROBLEM FORMULATION AND MAIN RESULT
Consider the following T-S fuzzy system with interval time-
varying delay and sampled-data PDC:

Rule i:
If z1 (t) is about Mi1 and · · · zr (t) is about Mir , then

ẋ(t) = Ā0i (t) x(t)+ Ā1i (t) x (t − h(t))

+ B̄ui (t) u (t)+ B̄wi (t)w(t), t ≥ 0, (1a)

y (t) = Āy0i (t) x (t)+ Āy1i (t) x (t − h (t))

+ B̄yui (t) u (t)+ B̄ywi (t)w(t), t ≥ 0, (1b)

x (t) = ϕi (t) , t ∈ [−hM , 0] , i ∈ {1, · · · ,m} , (1c)

where z (t) ∈ Rr is a premise variable, Mij, i ∈ {1, · · · ,m},
j ∈ {1, · · · , r}, Ā0i (t) = A0i + 1A0i (t), Ā1i (t) = A1i +
1A1i (t), B̄ui (t) = Bui +1Bui (t), B̄wi (t) = Bwi +1Bwi (t),
Āy0i (t) = Ay0i + 1Ay0i (t), Āy1i (t) = Ay1i + 1Ay1i (t),
B̄yui (t) = Byui + 1Byui (t), B̄ywi (t) = Bywi + 1Bywi (t),
x (t) ∈ Rn is state at time t , u (t) ∈ Rp is a control input,
w(t) ∈ Rm is the disturbance input, y (t) ∈ Rq is the regulated
output, h(t) > 0 is an interval time-varying delay belonging
to 0 <hm ≤ h(t) ≤ hM , ḣ (t) ≤ hD < 1, hm, hM , and
hD are some positive constants which can be estimated and
given in advance, and the initial vector ϕi ∈ C0, where
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C0 is the set of continuous functions from [−hM , 0] to Rn.
Matrices A0i, A1i ∈ Rn×n, Bui ∈ Rn×p, Bwi ∈ Rn×m, Ay0i,
Ay1i ∈ Rq×n, Byui ∈ Rq×p, and Bywi ∈ Rq×m, i ∈ m,
are constant matrices. 1A0i (t), 1A1i (t), 1Bui (t), 1Bwi (t),
1Ay0i (t),1Ay1i (t),1Byui (t), and1Bywi (t), i ∈ m, are some
perturbed matrices and satisfy the following linear fractional
perturbation conditions:[

1A0i (t) 1A1i (t) 1Bui (t) 1Bwi (t)
]

= Mxi ·1xi (t) ·
[
Nx0i Nx1i Nxui Nxwi

]
, (2a)[

1Ay0i (t) 1Ay1i (t) 1Byui (t) 1Bywi (t)
]

= Myi ·1yi (t) ·
[
Ny0i Ny1i Nyui Nywi

]
, (2b)

1xi (t) = [I − 0xi (t)4xi]−1 0xi (t) , 4xi4
T
xi < I , (2c)

1yi (t) =
[
I − 0yi (t)4yi

]−1
0yi (t) , 4yi4

T
yi < I , (2d)

where Mxi, Mzi, Nx0i, Nx1i, Nxui, Nxwi, Ny0i, Ny1i, Nyui, Nywi,
4xi, and 4yi, i ∈ m, are some given constant matrices with
appropriate dimensions. 0xi (t) and 0yi (t), ∀i ∈ m, are
unknown matrices representing the parameter perturbations
which satisfy

0xi(t)T · 0xi(t) ≤ I , ∀i ∈ m, t ≥ 0, (2e)

0yi(t)T · 0yi(t) ≤ I , ∀i ∈ m, t ≥ 0. (2f)

If we use the standard fuzzy inference method [5], [6], the
system (2) is inferred as follows:

ẋ =
m∑
i=1

vi (z (t)) ·{Ā0i (t) x(t)+ Ā1i (t) x (t − h (t))

+ B̄wi (t)w(t)+ B̄ui (t) u (t)}/
m∑
i=1

vi (z (t))

=

m∑
i=1

ηi (z (t)) · {Ā0i (t) x (t)+ Ā1i (t) x (t − h (t))

+ B̄wi (t)w(t)+ B̄ui (t) u (t)}, t ≥ 0, (3a)

y (t) =
m∑
i=1

ηi (z (t)) ·{Āy0i (t) x (t)+ Āy1i (t)

· x (t − h (t))+ B̄ywi (t)w (t)+ B̄yui (t) u (t)},

t ≥ 0, (3b)

x(t) = ϕ (t)=
∑m

i=1
ηi (z(t))·ϕi (t), t ∈ [−hM , 0] , (3c)

where vi (z (t)) = min
j
�ij

(
zj (t)

)
, ηi (z (t)) = vi (z (t))

/
∑m

i=1 vi (z (t)), �ij
(
zj (t)

)
is the grade of membership of

zj (t) in fuzzy set Mij. The term ηi (z (t)) is denoted as the
ratio weight of each fuzzy rule. In this paper, we assume
vi (z (t)) ≥ 0, i ∈ {1, · · · ,m}, and

∑m
i=1 vi (z (t)) > 0. Hence

ηi (z (t)) ≥ 0 and
∑m

i=1 ηi (z (t)) = 1, for all t ≥ 0. The
sampled-data state feedback control input is selected as:

Rule i:
If z1 (t) is about Mi1 and · · · zr (t) is about Mir , then

u (t) = −Kix (Tk) , t ∈ [Tk ,Tk+1) . (4a)

In the practical condition, the state of the system will be
sampled by a sampler. The sampling instants may be defined

by 0 = T0 < T1 < T2 < · · · . From the sampling instants,
the following time-varying function can be defined:

τ (t) = t − Tk , t ∈ [Tk ,Tk+1) ,

where the sampling period τk = Tk+1 − Tk , τk ≤ τM =

maxk=∞k=0 τk , τM is a positive constant which can be estimated
and given in advance. In this paper, the sampling period τk
is interval and defined less than τM > 0. Then we have 0 ≤
τ (t) ≤ τM , t ≥ 0, and Tk = t − τ (t) , t ∈ [Tk ,Tk+1).

The sampled-data control input can be inferred as
follows:

u (t) = −
∑m

i=1
ηi (z (t)) ·Kix (Tk)

= −

∑m

i=1
ηi (z (t)) ·Kix (t − τ (t)) , t ≥ 0, (4b)

where Ki ∈ Rp×n, i ∈ m, is the designed controller gain.
From (3) and (4b), we have

ẋ(t) =
∑m

i=1

∑m

j=1
ηi (z(t)) ηj (z(t))

· {Ā0i (t) x (t)+ Ā1i (t) x (t − h (t))+ B̄wi (t)w (t)

− B̄ui (t)Kjx (t − τ (t))}, t ≥ 0, (5a)

y (t) =
∑m

i=1

∑m

j=1
ηi (z(t)) ηj (z(t))

· Āy0i (t) x (t)+ Āy1i (t) x (t − h (t))

+{B̄ywi (t)w (t)− B̄yui (t)Kjx (t − τ (t))}, (5b)

x(t) =
∑m

i=1
ηi (z(t)) · ϕi (t), t ∈ [−hM , 0] . (5c)

The following lemmas will be used to derive the main results
in this paper.
Lemma 1 [20]: Let x (t) be a differentiable function:

[t − h2, t − h1] → Rn. For a matrix R > 0 and matrices
N1, N2, N3 ∈ R4n×n, the following inequality holds:

−

∫ t−h1

t−h2
ẋT (s)Rẋ (s) ds ≤ δT (t)�δ (t) ,

where

δT (t) = [xT (t − h1) xT (t − h2)
1
h

∫ t−h1

t−h2
xT (s) ds

2
h2

∫ t−h1

t−h2

∫ s

t−h2
xT (u) duds],

h = h2 − h1 ≥ 0,

� = h ·
[
N1R−1NT

1 +
1
3
N2R−1NT

2 +
1
5
N3R−1NT

3

]
+ Sym(N151 + N252 + N353),

51 = E4,1 − E4,2, 52 = E4,1 + E4,2 − 2E4,3,

53 = E4,1 − E4,2 − 6E4,3 + 6E4,4.

Lemma 2: For any matrices R > 0 and S, two nonnegative
real numbers hm and hM with hm ≤ h (t) ≤ hM , a
differentiable vector function x (t) ∈ Rn, and[

R S
∗ R

]
> 0,
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the following inequality is satisfied:

− (hM − hm) ·
∫ t−hm

t−hM
ẋT (s)Rẋ (s) ds

≤ −

[
x (t − h (t))− x (t − hM )
x (t − hm)− x (t − h (t))

]T [R S
∗ R

]
[
x (t − h (t))− x (t − hM )
x (t − hm)− x (t − h (t))

]
= ZT2 (t)�2Z2 (t) ,

where

ZT2 (t) =
[
xT (t − h (t)) xT (t − hm) xT (t − hM )

]
,

�2 =

−2R+ S + ST R− S R− ST

∗ −R ST

∗ ∗ −R

 .
Proof: By Jensen inequality, we have

− (hM − hm) ·
∫ t−hm

t−hM
ẋT (s)Rẋ (s) ds

= − (hM − hm) ·
[∫ t−h

t−hM
(t) ẋT (s)Rẋ (s) ds

+

∫ t−hm

t−h(t)
ẋT (s)Rẋ (s) ds

]
≤ −

[
1+

(h (t)− hm)
(hM − h (t))

]
[x (t − h (t))− x (t − hM )]T R

× [x (t − h (t))− x (t − hM )]

−

[
1+

(hM − h (t))
(h (t)− hm)

]
[x (t − hm)− x (t − h (t))]T R

× [x (t − hm)− x (t − h (t))]

≤ −

[
x (t − h (t))− x (t − hM )
x (t − hm)− x (t − h (t))

]T [R S
∗ R

]
×

[
x (t − h (t))− x (t − hM )
x (t − hm)− x (t − h (t))

]

−


√
(h (t)− hm)
(hM − h (t))

(x (t − h (t))− x (t − hM ))

−

√
(hM − h (t))
(h (t)− hm)

(x (t − hm)− x (t − h (t)))


T

×

[
R S
∗ R

]

×


√
(h (t)− hm)
(hM − h (t))

(x (t − h (t))− x (t − hM ))

−

√
(hM − h (t))
(h (t)− hm)

(x (t − hm)− x (t − h (t)))


≤ −

[
x (t − h (t))− x (t − hM )
x (t − hm)− x (t − h (t))

]T [R S
∗ R

]
×

[
x (t − h (t))− x (t − hM )
x (t − hm)− x (t − h (t))

]
.

This completes the proof.

Lemma 3 ([28], [29]): Suppose that 1xi (t) is defined in
(2a) and satisfying (2c), then for real matrices Ui,Wi and Xi
with Xi = XTi , the following statements are equivalent:

(I ) The inequality is satisfied

Xi + Ui1xi (t)Wi +W T
i 1

T
xi (t)U

T
i < 0,

(II) There exists a scalar εi > 0, such thatXi εi · Ui W T
i

∗ −εi · I εi ·4
T
xi

∗ ∗ −εi · I

 < 0,

where the matrix 4xi is defined in (2c).
Definition 1: Consider the system (5) with (2) and the

sampled-data PDC in (4b). Assume
(i) With w (t) = 0, the system (5) with (2) is asymptotically

stable by the sampled-data PDC in (4b).
(ii) With zero initial conditions (i.e. ϕ (t) = 0,
−hM ≤ t ≤ 0), the signals w (t) and y (t) are bounded
by∫ `1

0
yT (t) y (t) dt ≤ γ 2

·

∫ l

0
wT (t)w (t) dt, ∀w 6= 0,

for all positive constants `1 and γ . If the parameter
`1 is selected as∞, the disturbance input w should be
constrained in L2 (0,∞).

(iii) Under zero disturbance w (t) = 0, an upper bound
α > 0 can be found satsifying the following condition∫ `2

0
yT (t) y (t) dt ≤ α,

for all positive constant `2.
Then we say that the system (5) with (2) is asymptotically
stabilizable by the sampled-data PDC in (4b) with Ki, H∞
performance γ , and H2 measure α.
The delay-dependent LMI optimization results are devel-

oped to guarantee the asymptotic stability and mixed
performance by the design of sampled-data PDC in (4b).
Theorem 1: Suppose there exist some constants η, such that

the following LMI optimization problem:

minimize γ̄ , (6a)

subject to

[
R̂5 Ŝ1
∗ R̂5

]
> 0, (6b)[

R̂6 Ŝ2
∗ R̂6

]
> 0, (6c)

9̂ij=



9̂11ij 9̂12ij 9̂13i 0 9̂15ij 9̂16ij 9̂17

∗ −I 0 εi ·Myi 0 0 0
∗ ∗ −εi · I 0 εi ·4xi 0 0
∗ ∗ ∗ −εi · I 0 εi ·4yi 0
∗ ∗ ∗ ∗ −εi · I 0 0
∗ ∗ ∗ ∗ ∗ −εi · I 0

∗ ∗ ∗ ∗ ∗ ∗ 9̂77


< 0, i ∈ N , j ∈ N , (6d)
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where

9̂11ij = Sym
(
1T

2 P̂11 +

(
η · ET16,1 + E

T
16,16

)
0̂1ij

)
+ �̂1

+ �̂2 + �̂3,

9̂12ij = 0̂
T
2ij, 9̂13i = εi ·

(
η · ET16,1 + E

T
16,16

)
Mxi,

9̂T
15ij = [Nx0iÛT Nx1i ÛT

0 0 − NxuiK̂j 0 0 0 0 0 0 0 0 0 N xwi 0 ],
9̂T

16ij = [Ny0iÛT Ny1iÛT

0 0 − NyuiK̂j 0 0 0 0 0 0 0 0 0 N ywi 0],

9̂17 = [
√
hm ·3T

1 N̂11
√
hm ·3T

1 N̂12
√
hm ·3T

1 N̂13√
hM ·3T

2 N̂21
√
hM ·3T

2 N̂22
√
hM ·3T

2 N̂23√
hM − hm ·3

T
3 N̂31

√
hM − hm ·3

T
3 N̂32√

hM − hm ·3
T
3 N̂33

√
τM ·3

T
4 N̂41

√
τM ·3

T
4 N̂42

√
τM ·3

T
4 N̂43],

9̂77 = diag[−R̂1 − 3R̂1 − 5R̂1 − R̂2 − 3R̂2 − 5R̂2
− R̂3 − 3R̂3 − 5R̂3 − R̂4 − 3R̂4 − 5R̂4],

�̂1 =

3∑
i=1

Sym(3T
1 N̂ 1i5i31+3

T
2 N̂2i5i32+3

T
3 N̂ 3i5i33

+3T
4 N̂ 4i5i34),

�̂2 = 3
T
5

−2R̂5 + Ŝ1 + ŜT1 R̂5 − Ŝ1 R̂5 − ŜT1
∗ − R̂5 ŜT1
∗ ∗ − R̂5

35

+3T
6

−2R̂6 + Ŝ2 + ŜT2 R̂6 − Ŝ2 R̂6 − ŜT2
∗ − R̂6 ŜT2
∗ ∗ − R̂6

36,

�̂3 = ET16,1Q̂E16,1−(1− hD) · E
T
16,2Q̂4E16,2

−ET16,3(Q̂1 − Q̂3)E16,3 − E
T
16,4(Q̂2 + Q̂3)E16,4

−ET16,6Q̂5E16,6 − Ā · ET16,15E16,15

− η · Sym
(
ET16,1Û

TE16,16

)
−ET16,16

[
Û + ÛT

− R̂
]
E16,16,

Q̂ = Q̂1 + Q̂2 + Q̂4 + Q̂5,

R̂ = hm · R̂1 + hM · R̂2 + (hM − hm) · (R̂3 + R̂5)

+ τM · (R̂4 + R̂6),

51 = E4,1 − E4,2, 52 = E4,1 + E4,2 − 2E4,3,

53 = E4,1 − E4,2 − 6E4,3 + 6E4,4,

11 =

[
ET16,1 hm · ET16,7 hM · ET16,8 (hM − hm

)
· ET16,9

τM · ET16,10 0.5 · h2m · E
T
16,11 0.5 · h2M · E

T
16,12

0.5 · (hM − hm)2 · ET16,130.5 · τ
2
M · E

T
16,14]

T
,

12 = [ET16,16
(
E16,1 − E16,3

)T (
E16,1 − E16,4

)T(
E16,3 − E16,4

)T (
E16,1 − E16,6

)T
hm ·

(
E16,7 − E16,3

)T hM ·
(
E16,8 − E16,4

)T
(hM − hm) ·

(
E16,9 − E16,4

)T
τM ·

(
E16,10 − E16,6

)T ]T ,

31 = [ET16,1 ET16,3 ET16,7 ET16,11 ]
T
,

32 = [ET16,1 ET16,4 ET16,8 ET16,12 ]T ,

33 = [ET16,3 ET16,4 ET16,9 ET16,13 ]T ,

34 = [ET16,1 ET16,6 ET16,10 ET16,14 ]T ,

35 =
[
ET16,2 ET16,3 ET16,4

]T
,

36 =
[
ET16,5 ET16,1 ET16,6

]T
,

0̂1ij = [A0iÛT A1iÛT 0 0 − BuiK̂j
0 0 0 0 0 0 0 0 0 Bwi 0],

0̂2ij = [Ay0iÛT Ay1iÛT 0 0 − ByuiK̂j 0 0 0 0 0
0 0 0 0 Bywi 0],

has a feasible solution with some constants γ̄ > 0, εi > 0,
i ∈ N , a nonsingular matrix Û ∈ Rn×n, some positive
definite symmetric matrices P̂ ∈ R9n×9n, Q̂i, R̂j ∈ Rn×n,
i ∈ 5, j ∈ 6, and some matrices Ŝ1, Ŝ2 ∈ Rn×n, N̂ij ∈ R4n×n,
i ∈ 4, j ∈ 3. Then the system (5) with (2) is asymptot-
ically stabilizable by the sampled-data PDC in (4b) with
Ki = K̂iÛ−T , H∞ performance γ =

√
γ̄ , and H2 measure

given by

α = XT (0)PX (0)+
∫ 0

−hm
ϕT (s)Q1ϕ (s) ds

+

∫ 0

−hM
ϕT (s)Q2ϕ (s) ds+

∫
−hm

−hM
ϕT (s)Q3ϕ (s) ds

+

∫ 0

−hM
ϕT (s)Q4ϕ (s) ds+

∫ 0

−τM

ϕT (s)Q5ϕ (s) ds

+

∫ 0

−hm

∫ 0

s
ϕ̇T (u)R1ϕ̇ (u)duds

+

∫ 0

−hM

∫ 0

s
ϕ̇T (u)R2ϕ̇ (u)duds

+

∫
−hm

−hM

∫ 0

s
ϕ̇T (u) (R3 + R5) ϕ̇ (u)duds

+

∫ 0

−τM

∫ 0

s
ϕ̇T (u) (R4 + R6)ϕ̇ (u)duds, (6e)

where

P =
̂̂̂
UP̂

̂̂̂
U
T
>0,

̂̂̂
U = diag [U U U U U U U U U ] ,

U = Û−1, Qi = UQ̂iU
T
> 0, Rj = UR̂jU

T
> 0,

i ∈ 5, j ∈ 6,

X (0) =
[
ϕT (0)

∫ 0

−hm
ϕT (s) ds

∫ 0

−hM
ϕT (s) ds∫

−hm

−hM
ϕT (s) ds

∫ 0

−τM

ϕT (s) ds∫ 0

−hm

∫ s

−hm
ϕT (u) duds∫ t

−hM

∫ s

−hM
ϕT (u) duds

∫
−hm

−hM

∫ s

−hM
ϕT (u) duds∫ 0

−τM

∫ s

−τM

ϕT (u) duds
]T
.
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Proof: Define the Lyapunov-Krasovskii functional

V (xt) = XT (t)PX (t)+
∫ t

t−hm
xT (s)Q1x (s) ds

+

∫ t

t−hM
xT (s)Q2x (s) ds+

∫ t−hm

t−hM
xT (s)Q3

× x (s) ds+
∫ 0

−hm

∫ t

t+s
ẋT (u)R1ẋ (u)duds

+

∫ 0

−hM

∫ t

t+s
ẋT (u)R2ẋ (u)duds

+

∫
−hm

−hM

∫ t

t+s
ẋT (u) (R3 + R5) ẋ (u)duds

+

∫ 0

−τM

∫ t

t+s
ẋT (u) (R4 + R6)ẋ (u)duds, (7)

where P, Qi, Rj, i ∈ 5, j ∈ 6, are defined in (6e), and

X (t)

= [xT (t)
∫ t

t−hm
xT (s) ds

∫ t

t−hM
xT (s) ds

∫ t−hm

t−hM
xT (s) ds∫ t

t−τM
xT (s) ds

∫ t

t−hm

∫ s

t−hm
xT (u) duds∫ t

t−hM

∫ s

t−hM
xT (u) duds∫ t−hm

t−hM

∫ s

t−hM
xT (u) duds

∫ t

t−τM

∫ s

t−τM
xT (u) duds

]T
.

The time derivatives of V (xt) along the trajectories of system
(5) with (2) satisfy

V̇ (xt)

= ẊT (t)PX (t)+ XT (t)PẊ (t)+ xT (t)Qx (t)

− xT (t − hm) (Q1 − Q3) x (t − hm)

− xT (t − hM ) (Q2 + Q3)x (t − hM )

− (1− ḣ (t))·xT (t − h(t))Q4x (t − h(t))

− xT (t− τM )Q5x (t − τM )+ ẋT (t)Rẋ (t)−∇ (t)

−

∫ t−hm

t−hM
ẋT (s)R5ẋ (s) ds−

∫ t

t−τM
ẋT (s)R6ẋ (s) ds,

(8a)

where

Q = Q1 + Q2 + Q4 + Q5,

R = hm · R1 + hM · R2 + (hM − hm) · (R3 + R5)

+ τM · (R4 + R6),

∇ (t) =
∫ t

t−hm
ẋT (s)R1ẋ (s) ds+

∫ t

t−hM
ẋT (s)R2ẋ (s) ds

+

∫ t−hm

t−hM
ẋT (s)R3ẋ (s) ds+

∫ t

t−τM
ẋT (s)R4ẋ (s) ds.

Define

Y (t) =
[
xT (t) xT (t − h(t)) xT (t − hm) xT (t − hM ))

xT (t − τ (t) ) xT (t − τM )
1
hm

∫ t

t−hm
xT (s) ds

1
hM

∫ t

t−hM
xT (s) ds

1
hM − hm

∫ t−hm

t−hM
xT (s) ds

1
τM

∫ t

t−τM
xT (s) ds 2

h2m

∫ t
t−hm

∫ s
t−hm

xT (u) duds

2

h2M

∫ t

t−hM

∫ s

t−hM
xT (u) duds

2

(hM − hm)2

∫ t−hm

t−hM

∫ s

t−hM
xT (u) duds

2

τ 2M

∫ t

t−τM

∫ s

t−τM
xT (u) duds wT (t) ẋT (t)

]T
,

01ij (t) = [Ā0i (t) Ā1i (t) 0 0 − B̄ui (t)Kj 0 0

0 0 0 0 0 0 0 B̄wi (t) 0],

02ij (t) = [Āy0i (t) Āy1i (t) 0 0 − B̄yui (t) Kj 0 0

0 0 0 0 0 0 0 B̄ywi (t) 0],

we have

X (t) = 11Y (t) ,

Ẋ (t) = 12Y (t) ,

where 1i, i ∈ 2, are defined in (6c). By Lemma 1 with ∇ (t)
in (8a), we have

−∇ (t) ≤ Y T (t)�1Y (t) , (8b)

where

�1 = hm ·3T
1 ∃131 + hM ·3T

2 ∃232

+ (hM − hm) ·3T
3 ∃333 + τM ·3

T
4 ∃434 + �̄1,

∃i = Ni1R
−1
i NT

i1 +
1
3
Ni2R

−1
i NT

i2 +
1
5
Ni3R

−1
i NT

i3 , i ∈ 4,

�̄1 =

3∑
i=1

Sym(3T
1N 1i5i31 +3

T
2N2i5i32

+3T
3N 3i5i33+3

T
4N 4i5i34),

Nij ∈ R4n×n, i ∈ 4, j ∈ 3, should be selected and 3i, 5j,
i ∈ 4, j ∈ 3, are defined in (6c). From Lemma 2, we have

−

∫ t−hm

t−hM
ẋT (s)R5ẋ (s) ds+

∫ t

t−τM
ẋT (s)R6ẋ (s) ds

≤ Y T (t)�2Y (t) , (8c)

where

�2 = 3
T
5

−2R5 + S1 + ST1 R5 − S1 R4 − ST1
∗ − R5 ST1
∗ ∗ − R5

35

+3T
6

−2R6 + S2 + ST2 R6 − S2 R5 − ST2
∗ − R6 ST2
∗ ∗ − R6

36,
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35 and36 are defined in (6c). Then from system (5), we have∑m

i=1

∑m

j=1
ηi (z(t)) ηj (z(t))

·

[(
−ẋ (t)+ 01ij (t)Y (t)

)T UT (ηx (t)+ ẋ (t))

+ (ηx(t)+ ẋ (t))T U
(
−ẋ (t)+ 01ij (t)Y (t)

)]
= 0.

(8d)

By (8a)-(8d), we can obtain the following result with γ̄ = γ 2:

V̇ (xt)+ yT (t) y (t)− γ 2
· wT (t)w (t)

≤

∑m

i=1

∑m

j=1
ηi (z(t)) ηj (z(t)) ·Y

T (t)5ij (t)Y (t) , (8e)

where

5ij (t) = 1T
2 P11 +1

T
1 P12+�1 +�2 +�3

+ Sym
((
η · ET16,1 + E

T
16,16

)
U01ij (t)

)
+0T2ij (t) 02ij (t) ,

�3 = ET16,1QE16,1−(1− hD) · E
T
16,2Q4E16,2

−ET16,3(Q1 − Q3)E16,3 − E
T
16,4(Q2 + Q3)E16,4

−ET16,6Q5E16,6 − γ 2
· ET16,15E16,15

− η · Sym
(
ET16,1UE16,16

)
−ET16,16

[
U + UT

− R
]
E16,16. (8f)

Define the following matrices:

6ij(t) =
[
61ij (t) 0T2ij (t)
∗ − I

]
=

[
Ā1ij ĀT2ij
∗ − I

]
+1xyij (t) ,

61ij (t) = 1T
2 P11 +1

T
1 P12+�1 +�2 +�3

+ Sym
((
η · ET16,1 + E

T
16,16

)
U01ij (t)

)
,

Ā1ij = 1T
2 P11 +1

T
1 P12+�1 +�2 +�3

+ Sym
((
η · ET16,1 + E

T
16,16

)
U 0̄1ij

)
,

Ā1ij = [A0i A1i 0 0 − Bui Kj 0 0

0 0 0 0 0 0 0 Bwi 0],

Ā2ij = [Ay0i Ay1i 0 0 − Byui Kj 0 0

0 0 0 0 0 0 0 Bywi 0],

1xyij (t) = Sym

([(
η · ET16,1 + E

T
16,16

)
UMxi 0

0 Myi

]

×

[
1xi (t) 0

0 1yi (t)

]
Nxyij

)
,

Nxyij =


Nx0i Nx1i 0 0 − NxuiKj

0 0 0 0 0 0 0 0 0 Nxwi 0
Ny0i Ny1i 0 0 − NyuiKj 0
0 0 0 0 0 0 0 0 Nywi 0

 .
(9a)

Then we can define the following enlarged matrices

9ij =


6̄1i 0̄

T
2ij 913i 0 915ij 916ij

∗ − I 0 εi ·Myi 0 0
∗ ∗ − εi · I 0 εi ·4xi 0
∗ ∗ ∗ − εi · I 0 εi ·4yi
∗ ∗ ∗ ∗ − εi · I 0
∗ ∗ ∗ ∗ ∗ − εi · I

 ,
(9b)

where

913i = εi ·
(
η · ET16,1 + E

T
16,16

)
UMxi,

9T
15ij =

[
Nx0i Nx1i 0 0 − Nxui Kj 0 0 0 0 0 0 0 0 0Nxwi 0

]
,

9T
16ij =

[
Ny0i Ny1i 0 0 − Nyui Kj 0 0 0 0 0 0 0 0 0Nywi 0

]
.

By the conditions in (6c) and with the following resultŝ̂U = diag[U U U U U U U U U U U U U U I U

I I I I I ],

Û = U−1,
̂̂̂
U = diag [U U U U U U U U U ] ,

P̂ =
̂̂̂
U
−1
P
̂̂̂
U
−T

> 0, Ŝi = U−1SiU−T ,

Q̂i = U−1QiU−T > 0, R̂i = U−1RiU−T > 0,

we have ̂̂U−19ij
̂̂U−T < 0.

This implies 9ij < 0 in (9b). By Lemma 3 and Schur
complement of [22] with (9b), we have the following
conditions in (9a) and (8f), respectively:

6ij (t) < 0, 5ij (t) < 0.

With w (t) = 0 and from (8e) with 5ij (t) < 0, we have

V̇ (xt) < 0, ∀x (t) 6= 0, for all t ∈ [T k ,Tk+1) .

The system (5) with (2) is asymptotically stable by the
sampled-data PDC in (4b). From (8e) with 5ij (t) < 0 in
(8f), we can integrate the equation in (8e) from 0 to ` > 0 to
yield

V (x`)− V (ϕ)+
∫ `

0
yT (t) y (t) dt

−γ 2
·

∫ `

0
wT (t)w (t) dt ≤ 0. (10)

With the zero initial condition (i.e. ϕ (t) = 0,−hM ≤ t ≤ 0),
` = `1, and (10), we have

V (ϕ) = 0, V
(
x`1
)
≥ 0.

From the above derivations, the following condition can be
guaranteed∫ `1

0
yT (t) y (t) dt ≤ γ 2

·

∫ `1

0
wT (t)w (t) dt, ∀w 6= 0,
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for all positive constants `1 and γ . From the condition in (10)
with ` = `2 and w (t) = 0, we have

V
(
x`2
)
− V (ϕ)+

∫ `2

0
yT (t) y (t) dt ≤ 0.

From (6d) and (7) with V
(
x`2
)
≥ 0 and, we have∫ `2

0
yT (t) y (t) dt ≤ V (ϕ) ≤ α.

This completes the proof.
Remark 1: In this paper, the sampling period τk =

Tk+1 − Tk ≤ τM can be allowed in an interval. It is more
efficient than periodic sampling and easy to implement in
the real world. The delay 0 < hm ≤ h(t) ≤ hM is also
assumed varying in a given interval. It is more practical than
constant delay. This term XT (t)PX (t) used in Lyapunov-
Krasovskii functional (7) will be a flexible choice. The
possible dynamics of system can be included into the time
derivative of the functional in (7). Since the high dimensional
matrix operations, a full matrix formulation approach is
developed to present the multiplication and combination of
matrices (Ei,j). The inequalities in Lemmas 1 and 2 are
simultaneous applied in derivations for positive definitive
matrices R3 and R5 for interval time-varying delay h(t), R4
and R6 for sampling period τk , respectively. It is interesting
to note that the inequality in Lemma 1 is less conservative
than Wirtinger-based one [20]. The major advantage of
Lemma 2 is that the delayed state terms x (t − h (t)) and
x (t − τ (t)) can be included into the derivation for the main
LMI conditions. More efficient results can be proposed for
interval time-varying delay and sampling period.
Remark 2: If the upper bound of variation of interval time-

varying hD is larger than 1 or unknown, the proposed results
in Theorem 1 of this paper are also valid by selecting the
matrix Q̂4 = 0.
Remark 3: In our past results in [20], some given pointwise

sampling intervals will be proposed to improve the fixed
sampling. In this paper, the proposed approach will allow that
the sampling period belongs to an estimated interval [0, τM ].
The interval time-varying delay is considered in this paper
instead of constant delay in [20]. It will be more practical
and flexible than the our published results in [20].
Remark 4: The larger values for sampling intervalτM ,

lower bound hm, upper bound hM , interval hM−hm of interval
time-varying delay are better to provide flexibility and less
conservativeness for our proposed results. The smaller value
for γ will provide better at disturbance attenuation for system
under consideration.
Remark 5: In Theorem 1, we use LMI conditions in

(6a)-(6c) to find the feasible solution for a known positive
parameter γ̄ = γ 2. The H2 measure of the system under
consideration can be calculated from our proposed result in
(6d). Smaller values of γ and α will imply better disturbance
attenuation and H2 measure, respectively.

III. ILLUSTRATIVE EXAMPLES
This section includes three examples to demonstrate the
use and main contribution of the proposed results. Some
comparisons have been made in Examples 1-2. Example 3 is
a practical nonlinear system which has been designed by our
developed approach to achieve mixed performance for its
corresponding T-S fuzzy system. Some simulation diagrams
have been provided to show the efficiency of proposed results.
Example 1: Consider the T-S fuzzy system (5) with (2) and

the following parameters [20]:

m = 2, A01=
[
−2.1 0.1
1 − 2

]
, A02=

[
−1.9 0
−0.2 − 1.1

]
,

A11 =
[
−0.5 0.05
−0.4 − 0.45

]
, A12 =

[
−0.45 0
−0.55 − 0.6

]
,

Bw1 = Bw2 =
[
0.3
0.1

]
, Bu1 = Bu2 =

[
1
−0.2

]
,

Ay01 =
[
1 0

]
, Ay02 =

[
0.5 − 0.6

]
,

Ay11 =
[
−0.8 0.6

]
, Ay12 =

[
−0.2 1

]
,

Byw1 = Byw2 = −0.6, x (t) =
[
1 − 1

]T
,

t ∈ [−hM , 0] ,

Byui = Mxi = Myi = Nxji = Nxwi = Nxui = Nyji = Nywi
= 4xi = 4yi = 0, i = 1, 2, j = 0, 1. (11)

With the sampling interval 0 < τ i ≤ 0.25 = τM , hm = 0,
hM = 2, and from the statements in Remark 5, LMI conditions
in (6b)-(6d) of Theorem 1 with η = 1 and γ = 0.95 have a
feasible solution with

K̂1 = [0.0016 − 0.0005] ,

K̂2 = [0.0016 0.0001] ,

Û =
[
0.3441 0.1178
0.1471 0.3352

]
.

Then the system (5) with (2) and (11) is asymptotically
stabilizable by the sampled-data PDC in (4b) with

K1 = K̂1Û−T = [0.006 − 0.0041] , (12a)

K2 = K̂2Û−T = [0.0055 − 0.0022] , (12b)

H∞ performance γ = 0.95, and H2 measure α = 258.3151.
In Theorem 1, we can minimize the disturbance attenuation to
γ = 0.942 with α = 929.0876. Some comparisons are made
in Table 1 to show that the proposed results in this paper are
more flexible and practical than [20] and [21]. In [20], the
optimal results are γ = 0.9504 and α = 16520.
Example 2: Consider the uncertain T-S fuzzy system (5)

with (2) and the following parameters:

m = 2, A01=
[
−1.1 0.1
0.2 − 1

]
, A02=

[
−1.2 0
−0.1 − 1.1

]
,

A11 =
[
−0.9 0.05
−0.2 − 1

]
, A12 =

[
−1 0.1
−0.25 − 1

]
,

Bw1 =
[
0.2
0.01

]
, Bw2 =

[
0.2
0.02

]
, Bu1 =

[
1
−0.1

]
,
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TABLE 1. Some comparisons of the sampled-data T-S fuzzy time-delay
system (5) with (2) and (11).

Bu2 =
[

1
0.1

]
, Ay01 =

[
1 0

]
, Ay02=

[
0.8 − 0.1

]
,

Ay11 =
[
−0.8 0.6

]
, Ay12 =

[
−0.2 1

]
, Byw1 = 0.3,

Byw2 = −0.5, Mxi =

[
0.01 0
0 0.02

]
, Myi = 0.01,

Nx0i =
[
0.1 0
0 0

]
, Nx1i =

[
0 0
0 0.1

]
,

Nxui = Nxwi =
[
0
0

]
,

Ny0i = Ny1i =
[
0.1 0

]
, Nywi = Nyui = 0,

4xi = 4yi = 0.1, i = 1, 2,

x (t) =
[
1 − 1

]T
, t ∈ [−hM , 0] . (13)

With the sampling interval 0 < τ i ≤ 0.11 = τM , hm = 0,
hM = 0.2, LMI optimization problem in (6a)-(6d) of Theorem
1 with η = 1 has a feasible solution with

γ̄ = 0.2674, K̂1 = [0.7259 0.7714] · 10−3,

K̂2 = [0.0009 0.001] , Û =
[
2.0829 0.3245
0.3471 0.1278

]
.

Then the system (5) with (2) and (13) is asymptotically
stabilizable by the sampled-data PDC in (4b) with

K1 = K̂1Û−T = [−0.001 0.0088] , (14a)

K2 = K̂2Û−T = [−0.0015 0.0121] , (14b)

H∞ performance γ =
√

Ā = 0.5171, and H2 measure
α = 32.8703. Some comparisons are made in Table 2. In the
proposed approach in 20], the optimal results are γ = 0.561
and α = 81.3265.
In the mixed performance of system under consideration,

smaller values of γ and α will imply better attenuation on
disturbance and exact estimation on H2 measure, respec-
tively. From Tables 1-2, better attenuation effect of T-S fuzzy

TABLE 2. Some comparisons of the sampled-data T-S fuzzy time-delay
system (5) with (2) and (13).

system with parameters in (11) or (13) can be achieved by our
proposed sampled-data PDC (4) with feedback gains (12) or
(14), respectively. The more exact estimation on H2 measure
can be gotten from our proposed approach in this paper. The
periodic and pointwise sampling period can be extended to
interval sampling one. Interval time-varying delay has been
investigated instead of constant delay.
Example 3: Consider a nonlinear mass-spring-damper

system [31]:

Ms̈(t)+ g (s(t), ṡ(t))+ f (s(t))+ ϕ1 (s(t))w(t)

= ϕ2 (s(t)) u(t), (15)

where s(t) is the displacement, M is the mass, u is the input
force, w is the disturbance input, g (s, ṡ), f (s), ϕ1 (s), and
ϕ2 (s) are nonlinear terms with respect to damper, spring, w,
and u, respectively.
By the same assumption in [31] with M = 1,

g (s(t), ṡ(t)) = −0.75ṡ(t), f (s) = 0.67s(t)3 − 0.05s(t),
ϕ1 (s(t)) = −0.5 − 0.1s(t)2, and ϕ2 (s) = 1 − 0.1s(t)2.
Define x1 (t) = s(t), x2 (t) = ṡ(t), nonlinear system (15) can
rewritten as

ẋ1 (t) = x2 (t) , (16a)

ẋ2 (t) = −0.67x31 (t)+ 0.05x1 (t)+ 0.75x2 (t)

+

(
0.5+ 0.1x21 (t)

)
w (t)

+

(
1− 0.1x21 (t)

)
u (t) , (16b)

y (t) = x2 (t)+ 0.5u(t), (16c)

where x (0) =
[
1 −1

]T , |x1 (t)| ≤ 1.5, and |x2 (t)| ≤ 2.5.
Since the displacement variable s(t) can be measured easily,
we can choose the premise variable as z (t) = s(t) = x1 (t) ∈
R and represent the system (16) by the following T-S fuzzy
model with normalized membership function η1 (x1 (t)) =
1−x21

/
(1.5)2 = 1−x21

/
2.25 and η2 (x1 (t)) = 1−η1 (x1 (t)):
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Rule i:
If z (t) is about 0, then

ẋ(t) = A01x(t)+ Bu1u(t)+ Bw1w(t), t ≥ 0, (17a)

y(t) = Ay01x(t)+ Byu1u(t), t ≥ 0. (17b)

If z (t) is about ± 1.5, then

ẋ(t) = A02x(t)+ Bu2u(t)+ Bw2w(t), t ≥ 0, (17c)

y(t) = Ay02x(t)+ Byu2u(t), t ≥ 0, (17d)

where

A01 =

[
0 1

−0.67× 02 + 0.05 0.75

]
=

[
0 1

0.05 0.75

]
,

A02 =

[
0 1

−0.67× (±1.5)2 + 0.05 0.75

]

=

[
0 1

−1.4575 0.75

]
,

Bu1 =

[
0

1− 0.1× 02

]
=

[
0
1

]
,

Bu2 =

[
0

1− 0.1× (±1.5)2

]
=

[
0

0.775

]
,

Bw1 =

[
0

0.5+ 0.1× 02

]
=

[
0
0.5

]
,

Bw2 =

[
0

0.5+ 0.1× (±1.5)2

]
=

[
0

0.775

]
,

Ay01 = Ay02 =
[
0 1

]
,

Byu1 = Byu2 = 0.5.

With the sampling interval 0 < τ i ≤ 0.16 = τM , LMI
conditions in (6a)-(6c) of Theorem 1 with η = 1 have a
feasible solution with

γ̄ = 0.8482, K̂1 = [−2.4332 5.4494] ,

K̂2 = [−2.4329 5.4493] , Û =
[
0.7648 −1.1738
0.1328 2.137

]
.

Then the system (17) is asymptotically stabilizable by the
sampled-data PDC in (4b) with

K1 = K̂1Û−T = [0.6683 2.5085] , (18a)

K2 = K̂2Û−T = [0.6686 2.5084] , (18b)

H∞ performance γ =
√

Ā = 0.921, and H2 measure
α = 8. With disturbancew (t) = 0.2e−0.2tsin (20t) shown
in Figure 1, the output y (t) ∈ R of nonlinear system
(16) without control input is shown in Figure 2. From the
simulation, the displacement overtakes the constraints in
system (16). The device of system will be destroyed in a
short time. By using the sampled-data PDC in (4b) with K1
and K2 in (18), the output y (t) ∈ R and sampled-data
PDCu (t) = u (Tk) ∈ R,∀t ∈ [Tk ,Tk+1) with zero initial

FIGURE 1. The disturbance input.

FIGURE 2. The output vector y
(
t
)

∈ R without control input.

FIGURE 3. The output y
(
t
)

∈ R with zero initial state for the proposed
compensator.

state of nonlinear system (16) are shown in Figures 3 and 4,
respectively. From Figure 3, the H∞ performance γ = 0.921
can be observed. Under the proposed compensator and initial
state, the output y (t) ∈ R, state trajectories x (t) ∈ R2, and
sampled-data control u (t) = u (Tk) ∈ R,∀t ∈ [Tk ,Tk+1)
with zero disturbance are shown in Figures 5-7, respectively.
From the simulation results, the proposed sampled-data PDC
in (4b) with (18) is effective for disturbance rejection and H2
measure.
In this simulation, the selection of fuzzy rule is setting on

center and boundary points of displacement variable s(t). The
number of fuzzy rule is 2. If we would like to make better
approximation for original nonlinear system in (15)-(16). The
following T-S fuzzy model can be given by:
Rule i:
If z (t) is about 0, then

ẋ(t) = A01x(t)+ Bu1u(t)+ Bw1w(t), t ≥ 0, (19a)

y(t) = Ay01x(t)+ Byu1u(t), t ≥ 0. (19b)
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FIGURE 4. The sampled-data input u
(
Tk

)
∈ R with zero initial state.

FIGURE 5. The output y
(
t
)

∈ R with zero disturbance for the proposed
sampled-data input.

FIGURE 6. The state trajectories x
(
t
)

∈ R2 with zero disturbance for the
proposed sampled-data input.

If z (t) is about ±1.5, then

ẋ(t) = A02x(t)+ Bu2u(t)+ Bw2w(t), t ≥ 0, (19c)

y(t) = Ay02x(t)+ Byu2u(t), t ≥ 0. (19d)

If z (t) is about ±0.75, then

ẋ(t) = A03x(t)+ Bu3u(t)+ Bw3w(t), t ≥ 0, (19e)

y(t) = Ay03x(t)+ Byu3u(t), t ≥ 0, (19f)

where A0i, Bui, Bwi, Ay0i, Ayui, i = 1, 2, are given in (17), and

A03 =
[

0 1
−0.67× (±0.75)2 + 0.05 0.75

]
=

[
0 1

−0.326875 0.75

]
,

Bu3 =
[

0
1− 0.1× (±0.75)2

]
=

[
0

0.94375

]
,

FIGURE 7. The sampled-data input u
(
Tk

)
∈ R with zero disturbance.

FIGURE 8. The corresponding membership functions for T-S fuzzy system.

Bw3 =
[

0
0.5+ 0.1× (±0.75)2

]
=

[
0

0.55625

]
,

Ay03 = Ay01 =
[
0 1

]
,

Byu3 = Byu1 = 0.5.

The normalized membership function of T-S fuzzy system in
(19) is illustrated in Figure 8. In general, larger number of
fuzzy rule will make more approximate to original nonlinear
system under consideration. But it may cause that LMI
optimization problem of design scheme for sampled-data
PDC is infeasible.

IV. CONCLUSION
In this paper, a sampled-data PDC has been proposed to
guarantee mixedH2/H∞ performance of uncertain T-S fuzzy
systems with interval time-varying delay and linear fractional
perturbations. Full matrix formulation approach has been
investigated to improve the conservativeness of proposed
results. New inequality and Lyapunov-Krasovskii functional
have been developed to guarantee the efficiency of the
proposed results in this paper. Finally, some numerical
examples have been illustrated to show the main results.
In this paper, we consider interval time-varying delay and
interval sampling period instead of constant delay and
pointwise sampling period in [20], respectively. Furthermore,
some interesting research topics for T-S fuzzy systems
can be investigated, e.g., asynchronous non-PDC controller
and quantizer [32], [33], dissipativity and dissipative con-
trol [15], [16], event-triggered control [33], [34], finite-
time control [27]–[32], nonfragile control [14], passivity and
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passive control [25]. All these would constitute our future
research work.
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