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ABSTRACT Soft biometrics inference in surveillance scenarios is a topic of interest for various applications,
particularly in security-related areas. However, soft biometric analysis is not extensively reported in wild
conditions. In particular, previous works on gender recognition report their results in face datasets, with
relatively good image quality and frontal poses. Given the uncertainty of the availability of the facial region
in wild conditions, we consider that these methods are not adequate for surveillance settings. To overcome
these limitations, we: 1) present frontal and wild face versions of three well-known surveillance datasets; and
2) propose YinYang-Net (Y Y-Net), a model that effectively and dynamically complements facial and body
information, which makes it suitable for gender recognition in wild conditions. The frontal and wild face
datasets derive from widely used Pedestrian Attribute Recognition (PAR) sets (PETA, PA-100K, and RAP),
using a pose-based approach to filter the frontal samples and facial regions. This approach retrieves the facial
region of images with varying image/subject conditions, where the state-of-the-art face detectors often fail.
YY-Net combines facial and body information through a learnable fusion matrix and a channel-attention
sub-network, focusing on the most influential body parts according to the specific image/subject features.
We compare it with five PAR methods, consistently obtaining state-of-the-art results on gender recognition,
and reducing the prediction errors by up to 24% in frontal samples. The announced PAR datasets versions

and Y Y-Net serve as the basis for wild soft biometrics classification and are available in here.

INDEX TERMS Gender recognition, selective attention, soft biometrics analysis, visual surveillance.

I. INTRODUCTION

Soft biometric cues are particularly useful in security-related
issues and have increased in popularity in recent years. This
is mainly motivated by their applicability in person identi-
fication, while requiring no cooperation from the subjects
and being robust to low quality data [1], [2]. Furthermore,
the availability of massive amounts of data acquired in
uncontrolled conditions, provided by surveillance cameras
and hand-held devices, has also contributed to enhancing the
interest in this topic.

Gender is a particularly relevant soft label and its classi-
fication has been extensively reported in the literature, with
various datasets announced [3]-[7]. However, we consider
that gender recognition in wild conditions is not yet exten-
sively explored, with most of the previous methods frequently
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linking it to face analysis in relatively good quality data,
without the challenges found in surveillance scenarios. Alter-
natively, gender information can be retrieved in video surveil-
lance settings, using Pedestrian Attribute Recognition (PAR)
datasets, with methods analyzing up to 51 attributes simulta-
neously and not the gender alone. This promotes the use of
weighted losses for the different attributes and is an evident
obstacle towards the optimization of results for each one.
Given that the face is intuitively a discriminative attribute
to classify gender, our main goal is to develop an inte-
grated framework that uses facial information, whenever pos-
sible, in surveillance conditions. This is useful for scenarios
where analysis is carried out mostly from frontal poses, such
as airports, casinos, and border services. However, reliably
retrieving the facial region from surveillance images can not
be considered a solved problem. In this context, we start by
creating frontal versions of PAR datasets (PETA, PA-100K,
and RAP) using pose data from Alphapose [8]-[10].
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FIGURE 1. lllustration of the effect of the learnable fusion matrix, a major
component of YY-Net, as an attention mechanism with respect to the
(non)availability of facial information.

Then, we create wild face datasets using a pose-based
approach to define the head Region of Interest (ROI), from
frontal PAR images. This approach is applicable in con-
texts with varying image quality and uncooperative subjects,
outperforming state-of-the-art face detectors. Based on the
varying image/subject qualities and face variability factors,
the created wild face datasets contrast with the state-of-
the-art, showing its applicability for wild soft biometrics
classification.

To effectively classify gender, using the created datasets,
we propose YinYang-Net (YY-Net), a model that combines
face and body-based features through a learnable fusion
matrix, promoting weighted conjunction of both types of
information. Fig. 1 displays the effect of that matrix, with
respect to the availability of face information. Moreover,
we apply a residual link with body features, using a chan-
nel attention sub-network, to promote a weighted face-body
combination. This contributes to better focus on the most
influential body parts for gender recognition.

According to our experiments, the proposed model
improves gender recognition results in all frontal PAR
datasets, when compared to five state-of-the-art PAR meth-
ods. Furthermore, in non-frontal images, where the facial
region is unavailable, YY-Net uses body information and
not the weighted combination of face-body features. In this
context, it also outperforms the baseline PAR methods, in all
datasets.

In summary, the major contributions of this paper are:

o We present frontal and wild face versions of well-known
PAR datasets (PETA, PA-100K, and RAP), released as
meta-data, yielding from a pose processing approach.
Given their face variability factors, these wild face
datasets contrast with the state-of-the-art, representing
more challenging sets to soft biometrics applications;

o« We propose YY-Net, an attention-based model for
wild gender recognition, complementing face and body
information, that surpasses the state-of-the-art in PAR
datasets, particularly in frontal samples.

The remainder of this paper is organized as follows:
Section II summarizes the most relevant gender recognition
works; Section III describes the proposed model; Section IV
describes the proposed datasets, and Section V discusses the
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results obtained. The main conclusions and future work are
presented in Section VI.

Il. RELATED WORK

A. FACE-BASED GENDER RECOGNITION

The face is one of the most discriminative aspects to classify
gender, which culminated in several datasets designed for this
task [3]-[6]. Given the nature of gender and age estimation,
simple Convolutional Neural Network (CNN) models (with
only five layers) can be used for gender recognition [11].
However, more complex architectures have recently been
used, such as those based on Residual Networks of Residual
Networks (RoR) [12], which have outperformed other CNN
architectures.

Some works have focused on complementing the face
images with facial attributes analysis. Han et al. [13] pro-
posed a Deep Multi-Task Learning (DMTL) framework for
joint estimation of face attributes, considering their corre-
lation and heterogeneity for various demographic attributes
(gender, age, race). Ranjan et al. [14] developed HyperFace,
a multi-task framework based on Alexnet [15] for face detec-
tion, fused with a CNN for face landmarks detection and
gender recognition. Liu et al. [3] combined a Support Vector
Machine (SVM), for face attribute classification, with a CNN
for appropriately resized face localization and another for
distinguishing face identities.

The complement of particular face attributes for gen-
der classification is also a topic of research. Datcheva and
Brémond [16] analyzed smile-face dynamics in gender esti-
mation, relating its importance with the subject’s age and
demonstrating the complement of dynamic and appearance-
based features. Lapuschkin et al. [17] examined which facial
attributes actually impact age and gender prediction, using
a Layer-wise Relevance Propagation. In the same topic,
Yaman ef al. [18] used ear appearance to aid gender estima-
tion in profile face images, employing domain adaptation.
Ryu et al. presented InclusiveFaceNet [19], proposing the
inclusion of race and gender for face attribute detection.

B. BODY-BASED GENDER RECOGNITION

Regarding wild gender recognition, where the focus is
on the whole body and not on the facial region alone,
we present works using PAR datasets [20]-[22], a context
that more closely relates to surveillance scenarios. Some
works opt to analyze the relation of different body parts:
Wang et al. [23] proposed a model based on a Recurrent Neu-
ral Network (RNN) encoder-decoder framework, using Long
Short-Term Memory (LSTM) as a recurrent neuron, with
joint recurrent learning via images division into six horizontal
strips; Zhao et al. [24] also used a similar partition strategy,
combining LSTM and BN-Inception [25] networks.

The importance of various attributes is also reported in
the literature, namely on the relation of attributes towards
pedestrian attribute recognition. Learning the relationship,
dependency, and correlation between attributes and using this
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FIGURE 2. Cohesive perspective of the YY-Net, divided into three parts: 1) Model Architecture; 2) Backbone; and 3) Classifier. The Model
Architecture displays our processing flow, where the input data feeds two different backbones: 1) for the body; and 2) for facial information. The
facial regions are obtained according our head detection approach, using pose information. The backbones derive from ResNet50, with
classifier-related layers ignored, as shown in the Backbone portion. The combination of the face and body inputs is done through a classifier,
which uses the proposed Face Attention Module to fuse both types of information effectively.

information to accurately predict attributes have been the
focus of some works [26], [27]. Similarly, using a hierarchical
feature embedding framework [28] has proven to promote
finer-grained clustering, translating into increased attribute
recognition accuracy. However, enhancing the localization
of attribute-specific areas, typically adopted by state-of-the-
art methods, may not necessarily improve performance [29].
Image and subject-based features are also aspects to con-
sider for accuracy improvement, given that their importance
in gender classification varies with image quality and face
availability [30].

Pose information and body part localization are also influ-
ential for pedestrian attribute recognition. Li er al. [31]
used pose data to aid in attribute body part localization,
fusing features at multiple levels for attribute recognition.
Zhang et al. [32] proposed a Deep Template Matching
method to capture body parts features, complemented
by pose keypoints to guide discriminative cues learning.
Liu et al. [33] used body ROI and assigned attribute-specific
weights based on extracted ROI proposals and attribute local-
ization. Yaghoubi et al. [34] used body keypoint estimation
to define attribute region of interest, while also evaluating
pose effect. Finally, Barra et al. [35] explored the usage of
body pose information for gender classification in setups with
subjects and camera in movement.

C. ATTENTION-BASED GENDER RECOGNITION

Various works base their approaches on attention mecha-
nisms. Effective attention maps at different scales [36], ana-
lyzing relevant image patches [37], or focusing on different
feature levels [38] are all reported methodologies to discover
discriminative regions for attribute classification. Alterna-
tively, using an attention consistency loss [39] based on
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heatmaps difference of original and flipped images can yield
good performances.

Attribute relation was also the basis of attention
approaches [40]-[44]. Li et al. [40] used Convolutional
LSTM (ConvLSTM) for spatial and semantic correlation
between attributes, combining it with channel attention to
adjust the weight of relevant channel features adaptively.
Zhao et al. [42] proposed the use of a Recurrent Attention
Model (also based on ConvLSTM), mining the correlations
among different spatially related attributes. Ji er al. [43]
announced an encoder-decoder with multiple LSTM, aiming
to exploit more contextual knowledge, mining deeper rela-
tions between images and attributes. Gao et al. [44] proposed
a two-stage training, complementing semantic segmentation
with attribute recognition, relating attributes in an attention-
based manner between both stages.

Ill. YinYang-Net

An overview of YY-Net is shown in Fig. 2. The input is
processed in two ways: 1) retrieving body information; and
2) retrieving face information. We obtain facial informa-
tion by first processing the image to obtain pose data and
then using a head ROI detection approach, described in
Section IV-A. We use Alphapose [8]-[10] to collect pose
information. Both body and face information are retrieved
from a modified ResNet50 [45], via feature maps at Layer 4.
Finally, we pass both feature maps to a classifier for gender
recognition.

A. NETWORK ARCHITECTURE

The key concept of our approach is to combine face and
body information to classify gender. The facial region is
intuitively a discriminative attribute for gender recognition,
and its importance is linked to the subject pose. To achieve
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our goal, we use a ResNet50, pretrained in ImageNet [46],
for feature extraction of both face and body images. To better
control features combination, we retrieve features from a
modified ResNet50 model, with Flatten, Pooling, and FC lay-
ers removed. We refer the modified ResNet50 as backbone.
We use two different backbones for face and body image
processing to fine-tune extraction based on the body region
inputted.

Given an input image I, we denote the features extracted
as ¢;(I) € RHXWixCi ¢ (face, body}. For a 3 x 256 x
192 input image, we obtain a H; x W; x C; of 2048 x 8 x 6,
for both values of i. We represent our features as X:

X; = ¢id), i€ {face,body}, (1)

where ¢; is the backbone for a given input type. Given that
our framework aims to use facial information effectively,
Fig. 2 displays the steps involved for gender recognition in
frontal images. However, we are able to adapt our framework
to consider any pose images through pose data processing,
following our head detection approach. Representing 6 as
said approach, we define gender recognition of the n””* input
as:

5) _ f(p(Xfacena Xbodyn ))s

" Kvoay,).
where f is a sequence of Average Pooling, FC, and Batch
Normalization layers, p is our Face Attention Module (FAM),

1 is the indicator function, and X are the features extracted
from a given body part.

if Lo(1,,)=Frontal
otherwise,

@

B. FACE ATTENTION MODULE

Having the body and face features extracted, we combine
them efficiently by promoting the focus of YY-Net in the
most relevant regions of the body. We design a weighted
face-body feature combination by using a learnable weights
matrix: F € R¥*WixCi We denote the features combination
X, as:

XCZXbody OF O Xface, 3)

where © represents the Hadamard product, F is our fusion
matrix and X are the extracted features. The importance
of each body part is expected to vary depending on the
image quality, person pose, and partial occlusions. For
this reason, we add a channel-attention sub-network, based
on the Squeeze-and-Excitation block [47], to modulate
inter-channel dependencies. The combined input X, passes
through a series of linear and nonlinear layers, as shown in
the Classifier part of Fig. 2, yielding a weight vector for
the feature importance across channels. Then, we induce a
residual link of this vector with body features to promote
information complementary. We express the FAM output as:

P = 1p(Xc)‘i‘Xbody: )

where ¥ is the sequence of linear and nonlinear layers pre-
viously described, X refers to the result of (3), and Xpody
corresponds to the extracted body features.

VOLUME 10, 2022

Pose

Backside

Frontal : Sideways

PA-100K PETA

RAP

FIGURE 3. Examples of images considered as frontal, sideways and
backside. Each row is related to one of the three PAR datasets and each
column regards examples of the respective pose.

C. IMPLEMENTATION DETAILS

Images are resized to 256 x 192 with random horizontal
mirroring as inputs. The Stochastic Gradient Descent (SGD)
algorithm is used for training, with momentum of 0.9 and
weight decay of 0.0005. The initial learning rate is set to
0.01 for the backbones and classifier. Plateau learning rate
scheduler is used with a reduction factor of 0.1 and a patience
epoch number of 4. Batch size is set to 32 and the number of
training epochs is set to 30, using Binary Cross Entropy with
Logits (BCELogits) as loss function.

IV. FRONTAL PAR AND FACE DATASETS

We create frontal and wild face versions of three well-known
PAR datasets. The frontal images are obtained from a divi-
sion of three possible values: frontal, sideways, and back-
side. We differentiate these values based on pose information
from Alphapose [8]-[10]: if the rightmost shoulder, from the
top left of the image, is the left shoulder, the subject faces
forward (frontal); otherwise, the subject is facing backward
(backside). Regarding sideways classification, we attribute
this label to subjects with a shoulder length, with respect to
the upper body height, less than 0.5. Examples of the pose
classes considered are presented in Fig. 3.

A. HEAD DETECTION

Head ROI detection also uses pose information, cropping
head regions from frontal images. Initially, we obtain the
coordinates x and y of the right and left ears, considering
the head’s central point as the arithmetic mean of such coor-
dinates. Then, head ROIs are drawn using the top-left and
bottom-right bounding boxes coordinates, centered in the
head’s central point, with the head ROI height as % of the
whole body silhouette height. Head bounding boxes drawing
is based on Detectron [48]. To ensure the versatility of our
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FIGURE 4. Comparison of the head ROI detection results between
MTCNN, EXTD, RetinaFace, and our approach, in images with varying
quality, head pose and blurriness. Green boxes denote cases where the
method accurately locates the face, and red boxes denote the opposite.
Dotted red boxes refer to cases where the model over-predicted the
number of existent faces. All images are resized to the same resolution
for visualization purposes.

approach, head ROI detection is applied to the original image,
before resizing.

Based on the pose data, this head ROI detection approach
can detect the head of multiple people in an image. However,
although various people may appear in PAR dataset images,
pedestrian attributes are typically related to the main/central
cropped person. Therefore, given this setting, this approach
only detects the head of the main person by considering,
for each image, the pose data outputted from Alphapose
with the highest confidence. This allows it to retrieve head
regions from frontal images with varying quality and/or par-
tial occlusions. Other face detectors, such as MTCNN [49],
EXTD [50], and RetinaFace [51], fail to detect head region as
reliably as the used approach in the considered (wild) image
conditions. To show the versatility of this method, Fig. 4
presents some examples of head ROI detection in frontal PAR
images. In our head detection comparison, we use the default
implementation of all methods.

We observe that MTCNN only detects faces in higher
quality images, failing to detect in lower quality ones.
This is expected since MTCNN was not designed to target
“small faces” specifically, unlike EXTD and RetinaFace.
Nonetheless, these methods fail to detect faces in low quality
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TABLE 1. Dataset image-based feature analysis. Values are normalized
for the combination of all dataset values, for each feature. Datasets
named with Frontal suffix refer to datasets composed solely of frontal
images.

[ Dataset | Resolution [ Luminosity | Blurriness |
PETA 0.037 £0.024 | 0.432 +0.100 | 0.120 4= 0.148
PETAFEontal 0.037 £0.023 | 0.437 +0.101 0.140 £ 0.158
PA-100K 0.062 £ 0.063 | 0.449 +0.126 | 0.095 £ 0.089
PA-100Kgrontal 0.061 £0.064 | 0.459 4+ 0.127 | 0.100 = 0.090
RAP 0.131 £0.083 | 0.407 +0.107 | 0.022 +0.013
RAPEontal 0.138 £0.090 | 0.416 +0.108 | 0.023 4+ 0.013

images reliably. EXTD was able to detect faces in more
images but outputs more incorrect detections as well. Reti-
naFace accurately detects faces in more images than MTCNN
but is not able to detect faces when quality is subpar, with a
background color similar to the person (second and fourth
column) or with blurry faces (third and fifth column). Our
approach detects the facial region in all presented scenarios,
regardless of the image quality. This is an important aspect,
given that we intend to provide our model with facial images
from surveillance scenarios, with varying image quality. Fur-
thermore, we use the described approach to create wild face
datasets, representing a challenging set for soft biometrics
classification. The variability encountered in these datasets
is displayed in Fig. 5.

B. DATA ANALYSIS

To prove that frontal datasets preserve the main characteris-
tics of the original one, we analyze the major image-based
factors that influence gender recognition. Note that train/test
sets follow the set divisions of each PAR dataset (i.e., we did
not alter the train and test set division). The frontal datasets
sets are images, from the original train/test sets, that match
the defined frontal criterion (defined in IV). We consider res-
olution, luminosity, and blurriness as the main image-based
features: resolution is retrieved from image width and height
multiplication; for luminosity, we use the red, green, and
blue value channels to measure the perceived brightness [52];
and blurriness yields from the convolution of the images
with a Laplacian kernel, taking the variance as result. The
image-based feature analysis of the used PAR datasets, and
respective frontal versions, is shown in Table 1.

The obtained results suggest that frontal datasets preserve
the characteristics of the original version. As such, they are
not easier for gender recognition, and the accuracy variance
of models on these datasets (when compared to the original
ones) derives from pose and face access. Furthermore, given
the resolution and blurriness values, RAP can be considered
the dataset with the highest quality, while PETA is the lowest
quality one.

Another conducted experiment was the evaluation of image
number ratio between fest and all (train + test) images.
Furthermore, we assess the image number ratio of frontal
and PAR datasets, for the test and train set, to verify if the
pose division was balanced. We present the ratios analyzed
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FIGURE 5. Examples of image quality variability in wild face datasets. The datasets contain subjects with varying facial expressions, levels of
cooperativeness, and partial occlusions. Each row refers to one variability factor, and each group of four columns regards examples of a PAR dataset.

TABLE 2. Number of images, test/all image number ratio for each
dataset, and frontal/PAR image number ratio, for train and test set.
Frontal datasets are represented with the subscript term Frontal and
test/all ratios are represented by dataset Ratio.

Dataset Train . Test . Dataset

Images | Ratio | Images | Ratio Ratio
Pt | 18 | 0 | a0 | 039 | (o
SRy e | o
RAPm | 11275 | 0¥ | g0 | 036 | oo

in Table 2. The test/all images ratios are very similar between
all PAR datasets and their frontal versions. Additionally,
frontal/PAR ratios are similar between datasets and around %,
which is expected given that the dataset pose division is based
on three values (frontal, sideways, and backside).

Regarding the wild face datasets, all the ratios presented
for frontal datasets are analogous for the face ones. The reso-
lution, luminosity, and blurriness of face datasets are similar
to the frontal dataset values, given that the facial regions were
retrieved from frontal images.

V. EXPERIMENTS
A. DATASETS, METHODS, AND EVALUATION METRICS
Our experiments are carried out in three state-of-the-art PAR
datasets: PETA [20], PA-100K [21], and RAP [22]. The
PETA dataset has 19,000 images, divided into three subsets:
9,500 for training, 1,900 for validation, and 7,600 for testing.
The PA-100K dataset is composed of 100,000 images from
outdoor surveillance cameras. It is split into 80,000 images
for training, 10,000 for validation, and 10,000 for testing. The
RAP dataset contains 41,585 images. Following the official
protocol [22], we split the dataset into 33,268 training images
and 8,317 test images. Furthermore, we carried out experi-
ments in the proposed frontal datasets, consisting of frontal
images of the described PAR datasets.

The PAR methods used in our experiments are VAC [39],
APR [27], ALM [38], StrongBase [29], and DeepMar [26].
All models are evaluated using the original implementations
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TABLE 3. Gender mA of different models on frontal PAR datasets. The
outperforming method for each dataset is shown in bold.

l Methods [ PETAFrontal [ PA'IOOKFrontal [ RAPFrontal l
ALM [38] 91.27 91.23 95.71
APR [27] 92.49 91.63 95.80
DeepMar [26] 91.09 90.75 95.96
VAC [39] 91.17 90.15 94.49
StrongBase [29] 92.62 92.05 96.14
YY-Net 93.45 92.79 97.07

with minor adaptations to only classify gender and not all
pedestrian attributes.

To present our results, we use the label-based metric mean
Accuracy (mA) [22], which is the mean classification accu-
racy of the positive and negative samples for each attribute,
averaged over all attributes:

1 (tn, N tp; > ’ 5)
2” pi n;
where n is the number of examples, m the number of
attributes, p; is the number of positive examples and tp; is
the number of correctly predicted positive examples for the
th attribute; tn; and n; are defined analogously. We adapt this

metric to only consider the gender attribute, from the PAR
datasets.

B. GENDER RECOGNITION

Given that our focus is to improve wild gender recognition,
combining facial and body information, we start by assessing
the performance of YY-Net in frontal PAR datasets. We com-
pare it with five state-of-the-art PAR methods, presenting our
results in Table 3.

Our approach is better than all considered methods, which
corroborates the importance of effectively combining face
and body images in gender classification. When comparing
with the best result for each dataset, we improve gender
accuracy by 0.83%, 0.74%, and 0.93% in PETA, PA-100K,
and RAP, respectively. The improvement in all datasets
demonstrates the versatility of YY-Net, corresponding to an
error reduction of 11.25%, 9.31%, and 24.09%, respectively.
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TABLE 4. Gender mA of different models on PAR datasets. The
outperforming method for each dataset is shown in bold.

[ Methods [ PETA [PA-100K]| RAP |
ALM [38] 92.28 90.34 95.69
APR [27] 92.84 90.05 96.20

DeepMar [26] 92.33 90.39 96.40
VAC [39] 92.85 91.05 96.59
StrongBase [29] 93.13 90.77 96.74
YY-Net 93.39 91.20 96.86

TABLE 5. Gender mA of YY-Net in frontal datasets, when trained in PAR
datasets and in its frontal version. Frontal datasets are represented with
the subscript term Frontal. The highest evaluation accuracy for each
dataset is shown in bold.

Test

Train PETAFrontal PA-1 OOKFronta] RAPFronlal
PETA 93.88 78.67 81.47
PETAFrontal 93.45 77.38 78.09
PA-100K 79.02 92.70 89.51
PA-100KFontal 77.98 92.79 89.10
RAP 73.06 75.16 96.95
RAPEontal 73.51 77.94 97.07

The increased error reduction displayed in RAP could be
linked to its higher image quality, relative to the other PAR
datasets. High quality images might benefit more from effec-
tive facial and body information conjunction, giving the
increased body details, culminating in improved relevant
body portion focus.

With the intent to analyze the adaptability of our model
to deal with unconstrained pose scenarios, we evaluate its
performance in PAR datasets. We present, in Table 4, the
accuracy of the analyzed state-of-the-art PAR methods, for
each dataset.

Our results show that the combination of face and body
information, even in the context of unconstrained poses, con-
tributes to slight improvements. This effect was observed
for all three datasets. Compared to the second best method,
YY-Net improved by 0.26%, 0.15%, and 0.12% in PETA,
PA-100K, and RAP, respectively, which corresponds to an
error reduction of 3.79%, 1.68%, and 3.68%. The results
suggest that YY-Net is reliable in frontal pose images and
applicable in wilder contexts, with varying poses.

C. WITHIN AND CROSS-DOMAIN PERFORMANCE

To assess if the performance improvements in PAR datasets
derive essentially from more accurate results for frontal
images, we evaluate YY-Nets in frontal datasets, using the
weights from PAR training and compare it to Y Y-Nets trained
solely on frontal images. We report our results in Table 5,
exploring within and cross-domain settings.

This experiment shows that models trained on differ-
ent datasets have distinct performances, linked to dataset
length and quality differences. If we analyze the within-
domain, only PETA has a significant difference between PAR
and frontal training models, with the PAR model obtaining
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FIGURE 6. Comparison of StrongBase and YY-Net attention focus from
images where YY-Net correctly classifies gender and StrongBase does
not. Each row is related to one of the categories of diverging focus.

better performance. Models trained in PAR datasets do not
interact with more frontal images than those trained in frontal
datasets. However, they are trained in more images and with
more varying body poses. This contributes to better body
information processing which, in conjunction with our face
combination approach, translates into a more accurate gender
recognition. In this scenario, PETA training is more benefi-
cial than only PETAfonial, given that it is the dataset with
the lowest number of training images. Regarding the RAP
and PA-100K, their frontal versions contain enough training
images that PAR training does not translate into increased
within-domain performance.

When we analyze the cross-domain performance,
we observe that PAR training is more beneficial to PETA
and PA-100K, with RAP having better performance with
frontal training only. These differences could be associated
with image quality, where RAP is the highest quality dataset,
given our results in Table 1. This is particularly relevant,
given that high-quality images have increased face impor-
tance, particularly in frontal images. As such, training solely
in frontal images may promote a more effective face data
processing, translating into a better face-body combination.
In this case, training for various poses might dissipate this
aspect leading to a poorer generalization, expressed by worse
cross-domain performance in RAP. For PETA and PA-100K,
more training data (PAR) promotes better generalization,
as the cross-domain results demonstrate.

D. FACE ATTENTION INFLUENCE
Given that YY-Net uses face information to aid in gender
recognition, we assess whether this approach would, implic-
itly, focus more on faces to perform its task. To achieve our
goal, we compare Class Activation Maps (CAM) [53] from
our model with the StrongBase’s ones, from images where
StrongBase exclusively misclassifies. This is the chosen
method since it outperformed the remaining ones. We group
all three datasets and present the CAM of representative
images in Fig. 6.

The displayed examples suggest that our FAM does
not force a predominant face focus but does contribute to
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FIGURE 7. Crowd effect on attention focus from StrongBase and YY-Net.
Each column displays an example where YY-Net accurately classifies
gender and StrongBase misclassifies it.

amore coherent face-body combination. In the first row (Face
Focus), we observe a hip/upper body focus from StrongBase.
In these cases, the facial region is a more discriminative factor
(relative to the hip/upper body region), which is the focus
of YY-Net. However, there are instances where the facial
region may difficult/misguide gender recognition. In the sec-
ond row, we observe cases where the facial region is not
easily disclosed or presents unisex qualities. In these cases,
analyzing other body portions may be beneficial, which is
the approach taken by our model. StrongBase opts to focus
more on the neck/facial region, contributing to gender mis-
classification. Another scenario where YY-Net has better
performance is in crowded situations, where it is able to focus
on one subject, while StrongBase underperforms in the same
context. We display images with multiple subjects where our
model accurately classifies gender and StrongBase does not,
in Fig. 7.

Influenced by FAM, YY-Net is capable of focusing on
the main subject in the image. By contrast, StrongBase
has performance issues when other people appear in the
front/background, dispersing its attention to other subjects in
the image. This translates into a more scatter focus on the
main subject, contributing to incorrect gender classification.
In the image of the rightmost column, Y Y-Net complements
facial region information with hip one, contrasting with the
StrongBase, where the facial region was the main (sole)
focus. The approach of YY-Net is justifiable given the back-
ground ‘“‘noise’’ of other people, namely an arm near the facial
region, and the androgenic qualities of the subject.

The analysis of Figs. 6 and 7 focuses on the model
attention reasoning regarding its face/body balance impor-
tance and crowded scenarios, respectively. Note, however,
that said reasonings might not be extensible to all dataset
images. To further compare YY-Net and StrongBase gender

VOLUME 10, 2022

TABLE 6. Performance comparison, on PETAgontal dataset, when
gradually adding each component to the baseline model. Variants of the
same key parts lie in the same group. Components in bold are the
adopted approach in YY-Net.

[ Component [ mA |
Baseline (Face Input) 91.13
Baseline (Body Input) 92.49
Face-Body Combination (FBC) 92.65
Weighted FBC (WFBC) 93.10
WFBC + Body 93.26
Attention + WFBC 93.31
Attention + WFBC + Body (YY-Net) 93.45

classification performance, we process the output of each
model and assess the difference between each prediction and
the ground truth label. We perform this comparison in a set
of RAP and PA-100K images, where label O refers to male
and 1 to female, and create a scatter plot, displayed in Fig. 8.
We focus our analysis on four different regions, representing
cases where a model outperformed the other by the largest
margins. Furthermore, we display representative images of
each region, which will be the basis of our analysis.

In the cases where YY-Net outperforms StrongBase, our
model efficiently distinguishes females and males with
androgenic/unisex appearance. For both genders, the pose,
clothing, and face appearance misguides StrongBase in its
classification, with YY-Net being more resilient. If we
examine the cases where StrongBase was the outperform-
ing model, we observe that shorter hair females, with uni-
sex clothing, are situations where the performance of our
model is subpar. Additionally, males with faces blurred,
partial occluded, or with slightly uncooperative (misguided)
poses might represent a challenge for Y Y-Net. This suggests
that, although our model can handle subjects with andro-
genic/unisex qualities, these are also troublesome scenarios,
particularly for females. Based on the typical appearance of
females in PAR datasets (longer hair without unisex clothing),
YY-Net might have prioritized the facial region over body
information, thus contributing to gender misclassification.
For males, and females to a lesser extent, face blurriness
might be a major contributing factor for misclassification.
Given our subjacent approach of combining face with body
information to classify gender, this could justify the under-
performance in the stated conditions.

E. ABLATION STUDIES

To validate the sensitivity of the obtained results with respect
to the major components of YY-Net, we evaluate the influ-
ence of each one on gender recognition accuracy. As Base-
line, a ResNet50 network with the modifications described
in Section III-A and a classifier without the FAM are used.
Furthermore, we analyze the influence of increment/variance
of the components used for two key parts: 1) combination of
face and body information; and 2) focus in body part attention
mechanisms. We present our results in Table 6.
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FIGURE 8. Scatter plot of the difference between YY-Net and StrongBase predictions, and ground truth (GT) labels, in RAP and PA-100K images. Points in
blue represent cases where YY-Net outperforms StrongBase, and points in red denote the opposite. Four different regions are highlighted in the plot,
displaying the cases where a model outperforms the other the most, for male (M) and female (F) recognition. Representative images, from the four
regions, are presented sideways of the plot, accompanied by descriptive labels.

To obtain an initial baseline, we start by evaluating the
importance of YY-Net components by assessing gender
recognition using only face or full-body images. The results
obtained by both baselines denote that full-body images
(which also contain the facial region) promote a higher gender
recognition accuracy than facial images. Nevertheless, nei-
ther facial nor body information by themselves are enough to
obtain YY-Net performance.

We assess the effect of combining face and body informa-
tion through the Hadamard product, denoted as Face-Body
Combination (FBC) in Table 6. This approach translates into
higher mA than the baseline with body input, corroborating
the idea that both inputs are valuable for gender recognition in
frontal images. However, this was only a slight improvement,
suggesting that the combination of the input is inefficient.
Adding the learnable fusion matrix F to influence facial
and body information combination, denominated as Weighted
FBC in the Table, promotes a mA increase.

The evaluation of the attention approach (Atfention) and
the preservation of complementary information (Weighted
FBC + Body) is also a focus of our experiments. Atten-
tion refers to the sequence of linear and nonlinear layers
(described in Section I1I-B) to modulate inter-channel depen-
dencies. The residual approach of complementing the com-
bined face-body information with body input contributes to
higher gender recognition accuracy. This notion is linked to
contextualizing face-body information, while using all the
available information (full-body). In practice, this strategy
intends to deviate the model from heavy facial region focus,
regardless of the subject appearance. The attention method,
along with the weighted face-body combination, provide an
efficient focus on the critical parts of the body to clas-
sify gender, obtaining a similar performance to only using
complementary information. Finally, YY-Net combines the
weighted FBC with attention, while also using complemen-
tary body information, which translates into an aggregated
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improvement when compared with all other evaluated com-
ponents. This approach promotes a balanced equilibrium
between face and body information, while focusing on the
most influential body portions for gender recognition.

VI. CONCLUSION

Subjects pose is known to hinder gender recognition in wild
conditions, influencing the focus of models on different sub-
ject features. In this context, frontal images typically bias the
focus towards the facial region, while the body silhouette is
the main focus in non-frontal data. Given that the state-of-
the-art usually evaluates gender in good quality face datasets,
we present frontal and wild face versions of well-known PAR
datasets, created through pose data processing. These subsets
supply the learning data to our proposed model, YY-Net,
designed to effectively complement face and body informa-
tion, making it suitable for gender classification in-the-wild.
In our proposal, the key is to use a learnable fusion matrix
and channel-attention sub-network, which enables a dynamic
focus on the most relevant body regions relative to specific
image/subject features, achieving state-of-the-art results in
PAR datasets.

The announced versions of the wild face datasets dif-
fer from the existing ones, presenting a more challenging
set to classify soft biometrics. Furthermore, the robustness
displayed by YY-Net to classify gender in wild conditions
supports its usability as a basis for subsequent developments
in soft biometrics analysis. Extending our approach to be
applied in the context of pedestrian attribute classification in
video settings [54] or classifying attributes of multiple people
in a given scene are potential improvements for future work.
Finally, given the limitations of YY-Net for specific group
cases, the implementation of an ensemble model based on
holistic gender analysis (StrongBase) and face-body balance
(YY-Net) is also a direction for future work.
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