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ABSTRACT This paper proposes a Model Predictive Control (MPC) algorithm for target tracking amongst
static and dynamic obstacles. Our main contribution lies in improving the computational tractability and
reliability of the underlying non-convex trajectory optimization. The result is an MPC algorithm that runs
real-time on laptops and embedded hardware devices such as Jetson TX2. Our approach relies on novel
reformulations for the tracking, collision, and occlusion constraints that induce a multi-convex structure
in the resulting trajectory optimization. We exploit these mathematical structures using the split Bregman
Iteration technique, eventually reducing our MPC to a series of convex Quadratic Programs solvable in
a few milliseconds. The fast re-planning of our MPC allows for occlusion and collision-free tracking in
complex environments even while considering a simple constant-velocity prediction for the target trajectory
and dynamic obstacles. We perform extensive bench-marking in a realistic physics engine and show that our
MPC outperforms the state-of-the-art algorithms in visibility, smoothness, and computation-time metrics.

INDEX TERMS Quadrotors, target-tracking, occlusion, collision avoidance, dynamic obstacles.

I. INTRODUCTION
Target tracking is one of the most popular and important
applications of quadrotors. It forms an important component
of aerial cinematography pipelines [1], [2]. It is also critical
for perception-aware control wherein a quadrotor needs to
navigate while always keeping certain features or fiducial
markers in its field of view [3] for improved state esti-
mation. Target-tracking algorithms can also be re-purposed
for autonomous structural inspection purposes. While tar-
get tracking in free-space is relatively simple, occlusions
stemming from static and dynamic obstacles pose a diffi-
cult challenge in cluttered environments. Moreover, often the
occlusion avoidance is in direct conflict with the collision
avoidance requirement. In other words, trajectories that are
trivially collision-free lead to severe occlusion of the target.

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Liu .

A. CORE CHALLENGE
In this paper, we focus only on motion planning and con-
trol aspects of the target tracking problem, assuming that a
robust computer vision pipeline is available for estimating the
position of the target and quadrotor’s state. In this context,
the core challenge stems from the complex nature of the
occlusion/collision avoidance constraints. We can view these
constraints as highly non-linear and non-convex functions
of states/control if we adopt an optimization perspective.
As a result, it is computationally challenging to include
themwithin trajectory optimization orModel Predictive Con-
trol (MPC) algorithms. Although the solution process of
non-convex optimizations is well understood, their appli-
cation in real-time control and motion planning remains
problematic. To be more precise, optimizers like Gradi-
ent Descent (GD), sequential quadratic programming(SQP),
Gauss-Newton, etc., rely heavily on the quality of the ini-
tial guess or more precisely, how close it is to the optimal
solution. Furthermore, their underlying numerical structure
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ensures slow, conservative progress towards the optimal solu-
tion.1 One possible approach to improve the computational
tractability of non-convex optimizations is to leverage the
partial convex structures in the problem. For example, prob-
lems with the so-called difference of convex structure are
efficiently solvable through a heuristic called convex-concave
procedure [4]. However, the partial convex structures are
often not apparent, and one needs to employ carefully
constructed reformulations to make these structures more
explicit. Our proposed work is a step forward in this direction.
Although we consider the specific application of target track-
ing with quadrotors, we expect the developed formulation to
have a much broader impact (see Section VII).

B. CONTRIBUTION
1) ALGORITHMIC
For the first time, we present a multi-convex approxima-
tion of trajectory optimization associated with target track-
ing problems. We achieve this by rephrasing tracking and
occlusion/collision avoidance constraints in a single unified
form that reassembles a polar representation of the Euclidean
distance (see Eqn. (10) and (16)). This is strikingly differ-
ent from the models employed in existing works [5] (see
Eqn. (2)) and [6] (see Eqn. (6)). We show that our chosen
representation induces a multi-convex structure in these con-
straints (see Defn. 1). Thus, when we combine it with the
Alternating Minimization (AM) [7] and split-Bregman tech-
nique [8], [9], our trajectory optimization decomposes into
three smaller blocks: one convex Quadratic Programs (QP)
and two parallel single-variable optimizations solvable in
closed form. Importantly, all the individual blocks scale
linearly with the number of obstacles. Leveraging all the
aforementioned reformulations, our developed optimizer can
produce diverse trajectories from arbitrary initial guesses in
real-time. Finally, we construct a Model Predictive Control
algorithm that uses our multi-convex optimizer in a receding
horizon manner following real-time iteration paradigm [10].
Please refer Section II-E for a summary of contribution over
author’s prior work.

2) APPLIED
We provide an open-source implementation of our optimizer
integrated with Gazebo physics Engine in Robot Operating
System framework [11]: https://bit.ly/3fLI6zi.We have tested
our optimizer extensively in different benchmarks and pro-
vide access to those as well. Our released implementation is
expected to spur further development in this field.

3) STATE-OF-THE-ART PERFORMANCE
We perform two sets of benchmarking to validate the superi-
ority of our proposed optimizer and the MPC algorithm built
on top it. For the former, we compare our AM/split-Bregman

1Non-convex optimizations have the so-called trust-region (or line-search)
constraints that limit the progress that the optimizer can make towards the
individual solutions between subsequent iterations.

approach with state-of-the-art convex-concave procedure
(CCP) [4]. We show that our optimizer is robust to initial-
ization and outperforms CCP by more than two orders of
magnitude in computation time while achieving comparable
optimal cost. For the latter, we benchmark our multi-convex
MPC against existing state-of-the-art algorithms using three
metrics: visibility score (extent of occlusion constraint satis-
faction), acceleration norm (optimal cost), and computation
time. In environments with just static obstacles, we outper-
form recent work [12] in avoiding occlusion from the obsta-
cles while using up to 30% less control effort. Our MPC’s
performance is a direct consequence of small computation
time (0.006s) that is one order of magnitude lower than that
of [12]. Among existing works, only a few consider occlusion
from dynamic obstacles during tracking. The MPC approach
of [5] can be regarded as the current state-of-the-art, and we
show that our MPC also demonstrates substantial improve-
ment over it in terms of the chosen metrics.

II. PROBLEM FORMULATION AND RELATED WORKS
In this section, we first present a generic formulation for
target tracking with quadrotors and then use it to review the
existing works and contrast them with the critical ideas of the
proposed work. We begin by establishing the notation style
used in our formulation.

A. SYMBOLS AND NOTATIONS
We will use normal-faced small case letters to represent
scalars, while bold font variants represent vectors. We will
represent matrices through bold-font upper case letters. The
variable t will represent the time stamp of a variable. The
upper case variant T will denote the transpose of a matrix.
We summarize the main symbols in Table 1. We also define
some symbols in their first place of use. We use a special
construction at some places in the paper where a variable
at different time-stamps is stacked to form a vector. For
example, α will be formed by stacking different α(t).

B. TRAJECTORY OPTIMIZATION FOR TARGET TRACKING
We can formalize target-tracking as the following optimiza-
tion problem:

min
∑
t

ẍ(t)2 + ÿ(t)2 + z̈(t)2, (1a)

smin ≤

∥∥∥∥∥∥
x(t)− xr (t)y(t)− yr (t)
z(t)− zr (t)

∥∥∥∥∥∥
2

≤ smax , (1b)

(x(t), y(t), z(t)) ∈ Cb, Cfree∀t. (1c)

The cost function ensures smoothness of the computed tra-
jectory by minimizing the norm of the acceleration at each
time instant. The inequality constraints (1b) is the tracking
constraint meant to ensure that the robot is within a distance
(smin, smax) from the target at all times. Constraint (1c) forces
the trajectory to lie in some feasible sets at all times. Of these
sets, Cb is formed by the initial/final boundary conditions
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TABLE 1. Important symbols.

and the bounds on the positions and their derivatives up to
second order (velocity and acceleration). We assume that Cb
is convex and formed by a combination of affine equality and
inequality constraints. The set Cfree constrains the trajectory
to be collision and occlusion-free at each time instant.

The main computation challenge of the above formulated
trajectory optimization stems from the non-convexity of (1b)
and the set Cfree. In the following, we review the solution
approaches presented in existing works. We specifically aim
to cover two aspects: (i) the occlusion/collision model or in
other words the algebraic form of Cfree and (ii) the algorithms
employed to solve the target-tracking trajectory optimiza-
tion problem. Note that some existing approaches like [13]
simplify the problem by ignoring the effect of occlusion
and focus only on collision avoidance while tracking. In our
experimentation, we found that such an approach can work
if the quadrotor equipped with a downward-looking camera
is always allowed to hover over the target. But quadrotors
with front-facing cameras need to take potential occlusion
into account actively. Furthermore, occlusion avoidance also
becomes crucial when the quadrotor needs to follow the target
from a distance.

C. EXISTING OCCLUSION MODELS
Inspired by the GPU ray casting model [14], authors in [5]
proposed a cost function to be used within their developed
MPC to prevent occlusion from obstacles. Using the notation
presented in Table 1, the occlusion cost of [5] is defined as

cocc =

{
‖dv‖, if dv > 0 and pproj > rTctircti − 1.
0, otherwise.

(2)

dv =
pproj
rTchrch

, pproj = rTchrcti. (3)

rch = (xr (t)− x(t), yr (t)− y(t), zr (t)− z(t)). (4)

rcti = (xoi(t)− x(t), yoi(t)− y(t), zoi(t)− z(t)). (5)

FIGURE 1. Fig. (a): Visualization of the occlusion cost of [5] for a simple
example with one obstacle. The target is a fixed point. As can be seen,
the cost value increases radially from the center of the obstacle and away
from the target. The cost surface does not explicitly depend on the
geometry of the obstacle. Thus, some points which are occlusion-free are
erroneously assigned high-cost value. This is exemplified in Fig. (b),
wherein the point shown in green is occlusion-free with respect to the
target (line-of-sight (red) does not intersect with the obstacle (blue)). But
the occlusion-cost of this point is not zero. This conservative behavior of
occlusion-cost (2) coupled with its non-smooth nature shown in
Fig. (a) leads to sub-optimal behavior in the presence of multiple static
and dynamic obstacles as the quadrotor is unable to find occlusion-free
regions.

The variables rch, rcti are respectively the vectors to the target
and the ith obstacle from the quadrotor’s current position.
The occlusion model of [5] first checks whether the obstacle
blocks the target. That is, whether the target is behind the
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obstacle and falls within the occlusion cone formed by the
tangents drawn to the obstacle ellipsoid from the quadro-
tor center. If the conditions of occlusion are met, then the
visibility cost given by (2) is invoked. Fig. 1(a) shows a
visualization of the cost surface for a simple scenario with
a cylindrical-shaped obstacle and a stationary target point.
The following key observations can be made from Fig. 1(a).
First, the occlusion cost does not depend on the geometry
of the obstacle. It just increases radially from the center of
the obstacle in a direction away from the target. This is an
overly conservative model as a large part of the workspace
that is indeed occlusion-free is assigned high-cost values
(see Fig. 1(b)). As a result, (2) leads to sub-optimal perfor-
mance when used within a trajectory optimizer. The second
important thing to note is that the cost surface itself is non-
smooth, indicating the computational difficulty of tractably
optimizing over this cost function. Our experiments have also
shown that it is difficult to reliably trade-off the occlusion cost
of (2) with the costs stemming from collision avoidance.

An alternate occlusion model that directly works in the
image space was proposed in [6]. Let µr and µoi denote
the quadotor and obstacle projection on the 2D image, then
occlusion can be defined in terms of euclidean separation
between these image points in the following form:

‖µr − µoi‖
2
2 ≥ r

2
oi, (6)

where, roi is the semi-minor axis of the ellipse obtained by
projecting the sphere shaped obstacles onto the image.

Many existing works derive occlusion avoidance con-
straints from the line of sight (LOS), i.e. a line connecting
the quadrotor to the target at any given time instant [12],
[15]–[17]. Intuitively, occlusion happens when the line of
sight passes through an obstacle (see Fig. 3). Thus, occlusion
avoidance is essentially collision avoidance for the line of
sight trajectory constructed at each time instant (see Defn. 2).
Authors in [12], [15], [17] use this insight to construct occlu-
sion cost for their trajectory optimizers. Importantly, their
cost representation can be derived from the generic signed
distance field representation of the environment.

Our occlusion model also follows the LOS based reason-
ing. However, we differ from existing works [12], [15]–[17]
in terms of chosen algebraic representation that presents
strong computational benefits when integrated within a tra-
jectory optimizer.

D. OPTIMIZATION ALGORITHMS
A standard approach of solving optimization of the form
(1a)-(1c) is to use techniques like SQP that are read-
ily available through software libraries like ACADO [18],
NLOPT [19]. For example, this approach was followed in [5],
[6]. In contrast, works like [15] use a customized form of
first-order GD originally proposed for manipulation prob-
lems [20]. At the most fundamental level, both SQP and GD
are based on first-order Taylor series expansion of the under-
lying constraint functions. Thus, the initialization of these
optimizers requires us to guess where the Taylor expansion

will be computed at the first iteration. As mentioned earlier,
this choice has a significant impact on the performance of the
GD and SQP optimizers. A good initialization can be ensured
by leveraging graph search techniques [21]. Authors in [12],
[17] show how graph search technique can also be used to
decompose (1a)-(1c) into hierarchy of smaller problems.

The fundamental difference between the above-citedworks
and our approach is that our custom optimizer never per-
forms any linearization of the underlying non-linear track-
ing, occlusion/collision avoidance constraints. As a result,
it does not require any sophisticated initialization for the
states and controls. We always initialize the states/controls
with their initial boundary conditions or nominal values in all
our implementation.

E. CONTRIBUTION OVER AUTHOR’s PRIOR WORK
Our occlusion/collision and tracking constraints reformula-
tion builds on the collision avoidance constraints proposed
in our prior work [22], [23]. In fact, the collision avoidance
constraints of [22], [23] is a special case of the occlusion
avoidance and tracking constraints proposed in the current
work. Our proposed optimizer also differs from [22], [23] in
the use of Lagrange multipliers. While the former follows the
more conventional Alternating DirectionMethod ofMultipli-
ers (ADMM) template, our proposed optimizer is built on the
split Bregman iteration technique [8], [9]. The prior work [23]
was also restricted to offline trajectory optimization while
our current work constructs a real-time MPC on top of the
proposed optimizer. Finally, the current work considers a very
different application of target-tracking as compared to our
prior works [22], [23].

III. MATHEMATICAL PRELIMINARIES
A. MULTI-CONVEXITY AND ALTERNATING
MINIMIZATION (AM)
Definition 1: Consider a function g(ξ1, ξ2, ξ3) whose

argument can be split into three separate blocks of variables.
The function g(.) is said to be multi-convex (multi-affine) if
fixing two of the variable blocks makes it convex (affine)
with respect to the remaining variables. For example, fixing
(ξ1, ξ2) makes g convex (affine) in ξ3 [24].
The above definition trivially extends to arbitrary number

of blocks of variables.

1) ALTERNATING MINIMIZATION
Alternating (or Gauss Seidel) minimization is an efficient
technique for optimizing over multi-convex functions. For
example, the iteration for minimizing multi-convex function
g(ξ1, ξ2, ξ3) has the following form [7]:

k+1ξ1 = argmin
ξ1

g(ξ1,
kξ2,

kξ3), (7a)

k+1ξ2 = argmin
ξ2

g(k+1ξ1, ξ2,
kξ3), (7b)

k+1ξ3 = argmin
ξ3

g(k+1ξ1,
k+1ξ2, ξ3). (7c)
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where k represents the iteration index. In each iteration,
we optimize over each variable block in a sequence. While
optimizing over a specific block, all other blocks of variables
are held fixed at values obtained at either the previous itera-
tion or that obtained at preceding steps of the same iteration.

2) A TOY EXAMPLE
Consider g(x1, x2, x3, x4) = (x1(x2 + x3)x4 − 2)2. We can
identify three blocks of variables ξ1 = x1, ξ2 = (x2, x3)
and ξ3 = x4 with respect to which g(.) is multi-convex.
Following (7a)-(7c) will reduce the minimization of g(.) into
a sequence of Quadratic Programs (QP).
Remark 1: Identifying the correct variables blocks with

respect to which a function is multi-convex is non-trivial.
Several layers of reformulation are often needed to make the
multi-convex structure more explicit. Moreover, the chosen
blocks have a substantial impact on the efficiency of the
resulting AM-based optimizer.

B. TRAJECTORY PARAMETRIZATION
Our optimizer parametrizes the position trajectories in the
following manner:

x(t1)
x(t2)
. . .

x(tn)

 = Pcx ,


ẋ(t1)
ẋ(t2)
. . .

ẋ(tn)

 = Ṗcx ,


ẍ(t1)
ẍ(t2)
. . .

ẍ(tn)

 = P̈cx . (8)

where,P, Ṗ, P̈ arematrices formedwith time-dependent basis
functions (e.g polynomials) and cx are the coefficients asso-
ciated with the basis functions. Similar expressions can be
written for y(t), z(t) as well in terms of coefficients cy, cz,
respectively.

IV. MAIN ALGORITHMIC RESULTS
In this section, we present our main algorithmic results:
a multi-convex trajectory optimization algorithm for
occlusion-free tracking and the resulting MPC. We begin
by describing our main assumptions and the novel building
blocks in the first few subsections.

A. ASSUMPTIONS
• We assume that the quadrotor is moving at moderate
speeds for which kinematic models are sufficient. Due
to the differential flatness property, the motion along
x, y, z axes, and the yaw motion are all decoupled.
These assumptions are standard in the existing liter-
ature on quadrotor motion planning, including those
dealing specifically with target tracking [13] and drone-
cinematography [25]. Finally, like [12], [25], we assume
that the variation of pitch and roll angles have minimal
effect on the visibility of the target. This is reasonable for
most commercially available quadrotors that have field-
of-view of around 90 degrees.

• We assume that the static and dynamic obstacles are
modeled as ellipsoids (or cylinders in 2.5D). This is a

FIGURE 2. We can convert the cost map resulting from an occupancy grid
representation of the environment to a set of polygons as shown in
Fig. (a). These can be further converted to ellipsoidal representations as
shown in Fig. (b) that can be handled efficiently by our optimizer.

fairly standard assumption for dynamic obstacles [5].
For static obstacles, we can leverage the so-called cost-
map converter in Robot Operating System (ROS) [26]
that can provide polygonal decomposition of occupancy
maps that can be further decomposed into ellipsoidal
representations (see accompanying video). An exam-
ple of the aforementioned cost-map to ellipsoidal con-
version is shown in Fig. 2(a)-2(b). It is important to
point that many existing algorithms work with the same
assumption as ours on the static obstacle form [6], [27].

• Independent Camera Control: Similar to works
like [13], [25], we assume that the camera motion
is decoupled from the quadrotors body motion. Thus,
we can always align the camera of the quadrotor to the
LOS vector. For a quadrotor moving in 2D with a front-
facing, body-fixed camera, this boils down to aligning
the yaw angle of the quadrotor at each instant to the LOS
vector.
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B. REFORMULATING TRACKING CONSTRAINTS
We rephrase the tracking constraints (1b) in the following
manner:

ftar = 0, smin ≤ dr (t) ≤ smax . (9)

ftar =

 x(t)− xr (t)− dr (t) sinβr (t) cosαr (t)
y(t)− yr (t)− dr (t) sinβr (t) sinαr (t)
z(t)− zr (t)− dr (t) cosβr (t)

 . (10)

Using the parametrization presented in (8), we can put ftar =
0,∀t in the following compact form:

Atarcx − bxtar (dr ,αr ,βr ) = 0. (11a)

Atarcy − bytar (dr ,αr ,βr ) = 0. (11b)

Atarcz − bztar (dr ,αr ,βr ) = 0. (11c)

bxtar = xr + dr cosαr sinβr . (12a)

bytar = yr + dr sinαr sinβr . (12b)

bztar = zr + dr cosβr . (12c)

where, Atar = P and xr , yr , zr are formed by stacking
xr (t), yr (t), zr (t) at different time instants. Similar process
is followed for constructing dr ,αr ,βr from their respective
time-stamped scalar values.

C. COMBINED OCCLUSION/COLLISION
AVOIDANCE CONSTRAINTS
Definition 2: The line of sight (LOS) trajectory at time t is

a straight line connecting the robot’s position and the target
position. Mathematically, we can identify any point on this
trajectory through the following equation:

(xlos, ylos, zlos)(t, uj)

=

(1− uj)x(t)+ ujxr (t)(1− uj)y(t)+ ujyr (t)
(1− uj)z(t)+ ujzr (t)

 , ∀uj ∈ [0, 1] (13)

The different points on the LOS trajectory are identified by
their respective uj values. Using (13), we can define occlusion
avoidance as collision avoidance for each point on the LOS
trajectory. That is, we have

(xlos(t, uj)− xoi(t))2

a2i
+

(ylos(t, uj)− yoi(t))2

b2i

+
(zlos(t, uj)− zoi(t))2

c2i
≥ 1 (14)

where, for ease of exposition, we have made the assumption
that the ith obstacle is an axis-aligned ellipsoids. The size of
the ellipsoids are given by the radius along each axis ai, bi, ci
which also incorporates the inflation due to the size of the
quadrotor. Extension to rotated ellipsoids is straightforward
and does not affect the multi-convex structure of our tra-
jectory optimization or MPC in any manner. Inequality (14)
ensures that each point on the LOS trajectory is outside of the
obstacle ellipsoid.

FIGURE 3. The figure explains the occlusion model used in our trajectory
optimization. It is defined using the distance doi (t,uj ) between the
points on the LOS connecting the quadrotor with the target at any given
time instant t . A doi (t,uj ) < 0 implies that the LOS at time t intersects
with the obstacle, and consequently, the target is occluded from the
quadrotor’s camera at that instant.

Remark 2: Collision avoidance is contained in the
occlusion-avoidance constraints. Specifically, evaluat-
ing (14) for uj = 0 gives us the standard collision avoidance.
Thus, (14) is enough for characterizing the set Cfree.

Inequalities (14) have the same form as the tracking
constraints presented in (1b). Thus, we follow the same
reformulation technique presented in the last subsection and
rephrase (14) in the following form:

Cfree : focc = 0, doi(t, uj) ≥ 1, ∀t, uj. (15)

focc =

 (xlos − aidoi sinβoi cosαoi)(t, uj)− xoi(t)
(ylos − bidoi sinβoi sinαoi)(t, uj)− yoi(t)
(zlos − cidoi cosβoi)(t, uj)− zoi(t)

 .
(16)

Using the trajectory parametrization presented in (8), we can
reduce focc = 0,∀t, uj to the following form:

Aocccx = bxocc(do,αo,βo). (17a)

Aocccy = byocc(do,αo,βo). (17b)

Aocccz = bzocc(do,αo,βo). (17c)

where,

Aocc =


Au
Au
...

Au


(×n)

, Au =


P(1− u1)
P(1− u2)

...

P(1− um),


(18)

bxocc = x̃o + ado cosαo sinβo, (19a)
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x̃o =


x̃o1
x̃o2
...

x̃on

 , x̃oi =


xoi + xru1
xoi + xru2

...

xoi + xrum



ado cosαo sinβo =


a1do1 cosαo1 sinβo1
a2do2 cosαo2 sinβo2

...

andon cosαon sinβon

 (19b)

byocc = ỹo + bdo sinαo sinβo, (20a)

ỹo =


ỹo1
ỹo2
...

ỹon

 , ỹoi =


yoi + yru1
yoi + yru2

...

yoi + yrum

 ,

bdo sinαo sinβo =


b1do1 sinαo1 sinβo1
b2do2 sinαo2 sinβo2

...

bndon sinαon sinβon

 (20b)

bzocc = z̃o + cdo cosβo, (21a)

z̃o =


z̃o1
z̃o2
...

z̃on

 , z̃oi =


zoi + zru1
zoi + zru2

...

zoi + zrum

 ,

cdo cosβo =

 c1do1 cosβo1
c2do2 cosβo2
...cndon cosβon

 (21b)

In (18), (×n) signifies vertically stacking a matrix n times.
For convenience, we recall that n is the number of obstacles in
the environment while m is the number of discrete uj ∈ [0 1]
chosen to identify points on the LOS trajectory. The vectorαoi
is formed by stacking αoi(t, uj) for all t and uj. Similar con-
struction follows for βoi,doi. Furthermore, we stack different
αoi,βoi,doi across obstacle index i to construct αo,βo,do.

D. PROPOSED TRAJECTORY OPTIMIZATION
We are now in a position to use the reformulation of the
tracking and occlusion/collision constraints to present the
proposed trajectory optimization for target tracking.

min
1
2
ξT1Qξ1. (22a)

Aξ1 = b(ξ2, ξ3). (22b)
ξ1 ∈ Cξ1 , ξ3 ∈ Cξ3 . (22c)

where, ξ1 = (cx , cy, cz), ξ2 = (αr ,αo,βr ,βo), ξ3 =
(dr ,do), and

A =



[
Atar
Aocc

]
0 0

0
[
Atar
Aocc

]
0

0 0
[
Atar
Aocc

]

 , b=



bxtar
bxocc
bytar
byocc
bztar
bzocc


,

(23)

Q =

 P̈T P̈ 0 0

0 P̈T P̈ 0

0 0 P̈T P̈

 . (24)

Note that the cost function (22a) is just a matrix represen-
tation of the sum of squared acceleration presented in (1a),
obtained through the trajectory parametrization (8). Simi-
larly, the constraints (22c) are a reformulation of the fea-
sible set Cb. Specifically, the Cξ1 constrains the coefficients
cx , cy, cz to satisfy the boundary conditions on the trajectory
and the bounds on positions, velocities, and accelerations.
Mathematically, Cξ1 is a combination of affine equality and
inequality constraints. The set Cξ3 is the feasible set for ξ3
that captures the constraints of dr (t) and doi(t, uj) (recall (9)
and (15)).

The splitting of the variable blocks is done consciously
to induce some useful structures in the problem and will be
discussed shortly. Moreover, the fact that the cost function
only depends on ξ1 will also prove useful.

E. SOLUTION BY SPLIT-BREGMAN ITERATION
Split-Bregman (SB) technique [8] solves optimization
(22a)-(22c) by relaxing the non-convex equality con-
straints (22b) as l2 penalties.

min
ξ1∈Cξ1 ,ξ3∈Cξ3

1
2
ξT1Qξ1−〈λ, ξ1〉+

ρ

2

∥∥Aξ1−b(ξ2, ξ3)∥∥22 .
(25)

The key point to note in SB technique is the introduction of
a Lagrange multiplier λ that aims to balance the conflicting
objective of minimizing the primary cost function (accel-
eration norm) and the residual of the equality constraints.
Intuitively, λ appropriately weakens the effect of primary
cost function to allow the optimizer to focus on reducing the
constraint residual [9].
Remark 3: In (25), we have rolled all the non-convex

constraints into the form of an augmented Lagrangian cost.
The remaining constraints in our trajectory optimizer are
simply convex bounds on the position, velocity, and accelera-
tion. Thus, our reformulated problem is feasible by construc-
tion. This is particularly useful when dealing with infeasible
initializations.
Remark 4: For a given ξ2, ξ3, the equality con-

straints (22b) is affine in ξ1 and thus the optimization (25)
is a convex QP with respect to the same variable. Similarly,
for a given ξ1, ξ2, the optimization is convex QP in the ξ3.
Remark 5: For a given ξ1, ξ3, optimization (25) is solv-

able in closed form for ξ2.
Remark 4 is precisely the multi-convex structure foreshad-

owed in the earlier sections. We validate Remark 5 later in
this section.

1) SOLUTION PROCESS
SB employsAMapproach forminimizing (25) that reduces to
the following iterates, where left superscript k again specifies
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the iteration index.

k+1ξ1 = arg min
ξ1∈Cξ1

1
2
ξT1Qξ1 − 〈

kλ, ξ1〉

+
ρ

2

∥∥∥Aξ1 − b(kξ2,
kξ3)

∥∥∥2
2
, (26)

ξ2 = argmin
ξ2

ρ

2

∥∥∥Ak+1ξ1 − b(ξ2,
kξ3)

∥∥∥2
2
, (27)

ξ3 = arg min
ξ3∈Cξ3

ρ

2

∥∥∥Ak+1ξ1 − b(k+1ξ2, ξ3)
∥∥∥2
2
. (28)

The Lagrange multiplier is updated based on the following
rule [8], [9]:

k+1λ = kλ− ρ∇ξ1

∥∥∥Ak+1ξ1 − b(k+1ξ2,
k+1ξ3)

∥∥∥2
2
. (29)

Note, how the gradient in the second term of (29) is takenwith
respect to only ξ1. This is because our primary cost function
g(.) is independent of ξ2, ξ3 [8].

2) CONNECTIONS TO ADMM
The SB technique is closely related to the Alternating Direc-
tion Method of Multipliers (ADMM) [28], where a Lagrange
multiplier will be associated with each of constraints (22b).
In other words, the dimension of λ will be equal to the
rows of A. In contrast, in our use of SB technique, λ will
have a much lower dimension equal to that of ξ1. However,
the main reason for choosing SB over ADMM is because
it simplifies the iterates (27)-(28) to parallel least-squares
problem. We discuss this further next.

a: ANALYSIS OF STEP (26)
This optimization is a standard convex constrained QP. Since
the obstacles are axis-alligned ellipsoids (or cylinders), this
QP can be split into three decoupled problems for each of
cx , cy, cz. For rotated ellipsoids, all three coefficients would
need to be computed simultaneously as the matrix A will no
longer be block-diagonal. The state-of-the-art interior-point
solvers for QP show a cubic scaling with respect to the total
number of equality and inequality constraints. In (26), the
number of hard inequality and equality constraints are fixed
as these just stem from simple kinematic bounds and bound-
ary conditions, respectively (set Cξ1 ). The occlusion/collision
avoidance enters just as a quadratic cost. Thus, the compu-
tation complexity of solving QP (26) is independent of the
number of obstacles. As the number of obstacles increase,
only the computation cost associated with constructing the
QP, or in other words, obtaining ATb will change. Moreover,
the growth in computation complexity can be made approx-
imately linear with parallelization of matrix-vector product.
See Section VI-E for validation.

b: ANALYSIS OF STEP (27)
In the previous step, we obtained k+1ξ1 or in other words,
(k+1cx , k+1cy, k+1cz). Using this solution, we can compute

(k+1x(t), k+1y(t), k+1z(t)) and stack them up together to

obtain the position trajectory (k+1x, k+1y, k+1z). Now, for a
given position trajectory and kξ3, the variable blocks (αr ,βr )
and (αo,βo) constituting ξ2 are decoupled from each other.
Thus, optimization (27) decomposes into following two par-
allel problems:

αr ,βr = arg min
αr ,βr

∥∥∥k+1x− xr − kdr cosαr sinβr
∥∥∥2
2

+

∥∥∥k+1y− yr − kdr sinαr sinβr
∥∥∥2
2

+

∥∥∥k+1z− zr − kdr cosβr
∥∥∥2
2
. (30)

αo,βo = arg min
αo,βo

∥∥∥k+1̃x− x̃o − kdo cosαo sinβo
∥∥∥2
2

+

∥∥∥k+1̃y− ỹo − kdo sinαo sinβo
∥∥∥2
2

+

∥∥∥k+1̃z− z̃o − kdo cosβo
∥∥∥2
2
. (31)

where,

k+1̃x=Aocc
k+1cx , k+1̃y=Aocc

k+1cy, k+1̃z=Aocc
k+1cz.

(32)

Optimizations (30) can be further simplified by noting that
(αr (t), βr (t)) at different time instants are decoupled from
each other for a given position trajectory. In other words,
all the elements of αr ,βr are independent of each other.
A similar reasoning can be used to deduce that each of
(αoi(t, uj), βoi(t, uj)) are decoupled from each other and the
decoupling here happens across time t , obstacle index i,
and uj. As a result, the elements of αo,βo also have no
inter-dependency.
The decoupled nature of the variables highlights one more

computational structure. The l2 penalties in (30) are just
several parallel projections of k+1x − xr , k+1y − yr and
k+1z− zr onto a sphere centered at origin with radius kdr (t).
Thus, we can represent the solution as the following closed-
form expression.

k+1αr = arctan 2(k+1y− k+1yr , k+1x− k+1xr ),

k+1βr (t) = arctan 2(
k+1x(t)− k+1xr

cos k+1αr
, k+1z− k+1zr ). (33)

Following a similar process, we can derive the solution of (31)
in the following form.

k+1αo = arctan 2(k+1̃y− k+1yo, k+1̃x− x̃o),

k+1βo(t) = arctan 2(
k+1̃x− x̃o
cos k+1αo

, k+1̃z− z̃o). (34)

c: ANALYSIS OF STEP (28)
For a given position trajectory at the k+1 iteration, dr and do
constituting ξ3 are decoupled from each other and thus (28)
decomposes into following parallel sub-problems:
k+1dr

= arg min
smin≤dr≤smax

∥∥∥k+1x−xr − dr cos k+1αr sin k+1βr
∥∥∥2
2

29016 VOLUME 10, 2022



H. Masnavi et al.: Real-Time Multi-Convex MPC for Occlusion-Free Target Tracking With Quadrotors

+

∥∥∥k+1y− yr − dr sin k+1αr sin k+1βr
∥∥∥2
2

+

∥∥∥k+1z− zr − dr cos k+1βr
∥∥∥2
2
. (35)

k+1do

= arg min
do≥1

∥∥∥k+1̃x− x̃o − do cos k+1αo sin k+1βo
∥∥∥2
2

+

∥∥∥k+1̃y− ỹo − do sin k+1αo sin k+1βo
∥∥∥2
2

+

∥∥∥k+1̃z− z̃o − do cos k+1βo
∥∥∥2
2
. (36)

Both of the optimizations (35) and (36) are convex QPs
with simple box constraints. We note that different time
instant values of dr (t) are independent of each other when
the position trajectory is fixed. In other words, the elements
of dr do not have any inter-dependency. A similar decoupling
exists across the elements of do. Thus, optimization (35) gets
simplified to q parallel single-variable QPs, where we again
recall q to be the number of planning steps. Similarly, (36)
reduces to m ∗ n ∗ q parallel single-variable QPs. Each of
these single variables QPs is solvable in symbolic form.More
precisely, we can compute the unconstrained solution and
then ensure the constraints by simply clipping the solution
to the min/max values.
Remark 6: The evaluation of closed form symbolic solu-

tions of (30)-(31) and (35)-(36) are linear complexity opera-
tions that do not require any matrix-factorization/inverses or
matrix-vector products.

F. INTERPRETATION OF THE OCCLUSION COST
IN OUR FORMULATION
Consider the following residual extracted from the norm on
the r.h.s of (29).

k+1rocc =
∥∥∥Aocc

k+1ξ1 − bocc(k+1ξ2,
k+1ξ3)

∥∥∥2
2

=

∥∥∥k+1̃x− x̃o − k+1do cos k+1αo sin k+1βo
∥∥∥2
2

+

∥∥∥k+1̃y− ỹo − k+1do sin k+1αo sin k+1βo
∥∥∥2
2

+

∥∥∥k+1̃z− z̃o − k+1do cos k+1βo
∥∥∥2
2
. (37)

The variable k+1rocc shows how much of the occlusion-
constraint is violated after the k + 1 iteration of our opti-
mizer. Alternately, it can also be viewed as the analogy of
occlusion cost in our formulation. A visualization of this cost
surface at any particular time instant is shown in Fig. 4(a)
and its heat map representation is shown in Fig. 4(b). For
the construction of the cost surface, we sampled many dif-
ferent (k+1x, k+1y) and computed the corresponding optimal
k+1αo,

k+1βo,
k+1do from (34) and (36), respectively.

As can be seen, our occlusion cost perfectly captures the
effect of obstacle geometry. The cost value peaks at the
obstacle center and then smoothly drops off to zero as we
move away from it. Our occlusion cost also correctly assigns
zero cost to any point from where the line-of-sight to the

target is unobstructed from the obstacle. Both the smooth
cost surface and accurate modeling of occlusion are in sharp
contrast to the cost surface shown in Fig. 1(a).

G. MPC THROUGH REAL-TIME ITERATION
Our MPC implementation involves solving the trajectory
optimization (22a)-(22c) in a receding horizon manner. That
is, at each step, we obtain the full trajectory but only execute a
small portion of it. In practice, we average a small portion of
the velocity trajectory to obtain a piece-wise constant approx-
imation of the time-varying profile which is then commanded
to the quadrotor. Similar process has been followed in many
works such as [29].

A fundamental challenge inMPC is to solve the underlying
trajectory optimization in real-time. In practice, it is not
possible to solve the optimization till convergence. As a
result, the so-called Real-Time Iterations scheme [10] is
adopted where only an approximate solution is obtained by
running the optimization for a few iterations. For example,
in non-linear MPC community, it is common to perform
only one iteration of the sequential quadratic programming
or Gauss-Newton method [10], [30]. The obtained solution is
given to the robot and for the next MPC step, the trajectory
optimization is warm-started from the previous solution. The
process of warm-starting is the key and simulates an online
approach towards solving an optimization problem.

V. VALIDATION
The objective of this section is two-fold. First, we empir-
ically validate the convergence of our optimizer. Second,
we compare it with an alternate approach where we solve
the original formulation (1a)-(1c) using the state-of-the-art
convex-concave procedure (CCP) [4]. The occlusion con-
straints weremodeled through the standard quadratic inequal-
ity form presented in (14). Our comparisonwith CCP baseline
is meant to establish the effectiveness of our several layers of
reformulations and the resulting AM optimizer presented in
the previous section.
Running Example:To empirically validate the convergence

of our optimizer, we consider a simple problem set-up, where
a quadrotor needs to move between a start and a goal posi-
tion while keeping the LOS to a static target occlusion-free.
Thus, in this setting, we do not have the tracking constraints.
We also ignore the velocity and acceleration bounds.

A. CONVERGENCE VALIDATION
Fig. 5(a)-5(f) summarizes the results for different initial
guesses. In Fig. 5(a), 5(c), the initial-guess trajectory vio-
lates both collision and occlusion avoidance constraints.
In Fig. 5(e), a trivial straight line from the start position
to the target was used as the initial guess. Following core
observations are worth pointing out. First, our optimizer is
robust to initial guess and we have observed that on an aver-
age 40-50 iterations are enough to obtain occlusion residual
in the order of 10−3. Second, if we ignore the occlusion
constraints, the trivial straight line trajectory from start to
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FIGURE 4. Fig. (a) shows the visualization of the our occlusion cost given
by (37) while Fig. (b) shows its heat map representation. As can be seen,
the cost-surface peaks at the center of the obstacle and gradually reduces
to zero as we move away from it. Importantly, the exact geometry of the
obstacle is reflected in our occlusion cost. This is in sharp contrast to the
occlusion model of [5] shown in Fig. 1(a)-1(b).

goal satisfies the collision avoidance constraints. Thus, even
this simple problem set-up shows how occlusion avoidance
in tracking applications often conflicts with the collision
avoidance requirement.

B. COMPARISONS WITH CCP
A CCP [4] approach for solving the point to point navigation
discussed in the previous sub-section will amount to solving

the following optimization problem:

minimize (1a), subject to Fξ1 ≤ g (38)

where F, g are obtained by linearizing the quadratic occlu-
sion constraints (14). Fig. 6(a)-6(b) show one qualitative
result obtained with CCP. For comparison, we also show the
final trajectory obtained with our optimizer. From qualitative
standpoint, the trajectories resulting from both the optimizers
seem similar. The CCP optimizer usually obtains a feasible
solution within 2 to 3 iterations and a couple of more itera-
tions are required to decrease the cost value. Thus the number
of iterations required by CCP is substantially less than our
optimizer (40-50). However, each iteration of CCP is more
expensive and thus, as shown in Fig. 6(c), our optimizer out-
performs CCP’s computation time by more than two orders
of magnitude. The timings presented in Fig. 6(c) are averaged
values over 10 different problem instances and correspond to
the Python implementations of both of the optimizers on an
i7-8600 laptop with 32 GB RAM.

The difference in computation time can be co-related to
the structural contrast between our optimizer and CCP. The
number of constraints stemming from occlusion avoidance in
the latter is equal to the number of rows in F in (38), which
in turn is equal to n ∗ m ∗ q (planning horizon times number
of obstacles times discretization of uj, recall Table 1). We ran
the CCP optimizer with n = 2,m = 20, q = 100 resulting
in a total of 2000 inequality constraints. There is also an
additional overhead of obtaining the matrix F and vector g
at each iteration of CCP based on the refined linearization
of (14) around the current solution. We note that in some
experiments, a denser discretization of uj could be needed
which will only further increase the computational burden
of CCP.

In contrast, our optimizer used n = 2,m = 100, q =
100 and yet had a substantially lower computation time.
This is because our optimizer handles occlusion constraints
by augmenting it as an l2 norm penalty in steps (26)-(27)
and as a combination of both penalty and inequality con-
straints in step (28). In (26), occlusion constraints are refor-
mulated as a quadratic cost (third term) and since there are
no velocity/acceleration bounds in the running example of
this sub-section, this step is simply an equality constrained
QP with a closed form solution. The step (27) has a symbolic
solution (34) whose evaluation do not require any computa-
tion of matrix-vector/matrix-matrix products or matrix fac-
torization. The step (28) is a convex constrained QP with
dimension equal to n∗m∗q. However, themassive distributive
nature of this step allows us to again obtain a closed form
symbolic solution with no requirement of any sort of matrix
operation (Recall (36) and discussions around it).

The CCP optimizer marginally outperforms ours in terms
of achieved optimal cost (Fig. 6(d)). This is because our
choice of augmenting occlusion constraints in the cost func-
tion leads to a conflict between occlusion and the primary
objective of minimizing the acceleration norm.
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FIGURE 5. Figures show the convergence of our optimizer for different initial guesses for a problem set-up where the quadrotor
needs to move between a start and a goal position while keeping the LOS to the target (cyan) occlusion-free at all time instants. The
obstacles are shown in blue and have been inflated with the size of the quadrotor. The heat map shows the occlusion cost in different
regions of the workspace. Note that if we ignore the occlusion constraints, the collision avoidance constraints are trivially satisfied by
a straight line from start to goal (red line). On average, the occlusion residuals converge to zero in around 40-50 iterations.
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FIGURE 6. Fig. (a) shows the sample trajectories obtained from the CCP [4] optimizer for the point to point navigation task
presented in Fig. 5(a). The trajectories obtained after convergence are qualitiatively very similar to that obtained with our
optimizer. As shown in Fig. (b), the CCP optimizer is able to obtain a feasible solution in 3 iterations. However, each
iteration of CCP is computationally very expensive.

C. TARGET-TRACKING EXAMPLE
We now present a simple example to demonstrate the con-
vergence of our optimizer on target-tracking example. The
main objective is to show that if the target trajectory is known
completely, then the residual of our tracking constraints goes
to zero. Fig. 7(a) shows the output of our optimizer. The
initial guess for this example was taken to be the target tra-
jectory itself. The minimum and maximum tracking distance
was kept as 1m and 3m, respectively. Fig. 7(b) shows the
convergence of occlusion and tracking residuals. Once again,
we see that around 50 iterations are enough to obtain a low
residual solution. We would like to point out that if the target
trajectory is not known, then the convergence of the tracking
constraints is not guaranteed. In such a case, the aim should be
to satisfy the tracking requirement as best as possible. As long
as occlusion is avoided, the target can always be kept in the

field of view, albeit at a distance outside the minimum and
maximum thresholds.

VI. BENCH-MARKING
The objective of this section is to benchmark theMPC built on
top of our optimizer with existing state-of-the-art approaches.
Our entire multi-convex MPC and simulation pipeline is
publicly available at https://bit.ly/3fLI6zi. Our simulation
pipeline is shown in Fig. 8. As presented in Section IV, our
main focus is on designing the optimizer/high-level MPC
that provides a feasible feed-forward trajectory to the lower
level controller. We used [31] as our low-level controller that
is guaranteed to track any smooth, differentiable trajectory
respecting the kinematic bounds. The trajectories resulting
from our optimizer are guaranteed to fulfill all these con-
ditions. The smoothness stems from the polynomial nature
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of the trajectories while the kinematic bounds are included
as convex constraints in the optimizer and thus they are
guaranteed to be satisfied at each control cycle.

A. IMPLEMENTATION DETAILS
For benchmarking, we implemented trajectory optimiza-
tion (22a)-(22c) and the resulting MPC in C++ using
Eigen [32] as our linear algebra back-end. We integrated
our MPC with Gazebo physics engine in ROS [11] to
perform real-time high fidelity simulations. The simulator
provides state feedback of the quadrotor and the obsta-
cles at 100 Hz. However, our MPC can run potentially
at up to 250Hz depending upon the number of obstacles
in the environment and number of iterations of the opti-
mizer. Due to warm-starting of the MPC from the solution
obtained in the previous control cycle, just one iteration of
the optimizer proved sufficient in almost all the benchmarks.
We designed the target trajectory by first teleoperating it over
the workspace and then replaying the recorded trajectory dur-
ing run-time. The teleoperation setup allowed us to generate
complex trajectories for the target.

Our MPC implementation had terminal constraints that
forced the final velocity and acceleration of the quadrotor to
be zero. We also tried setting the terminal values to the pre-
dicted velocity and acceleration of the target. However, this
led to poor performance. This is unsurprising as long-term
trajectory of the target is not known in advance and the linear
predictions used by our MPC are only rough estimates of the
true values. The prediction horizon of ourMPCwas set to 10s.

B. STATE-OF-THE-ART AND COMPARISON METRICS
A core objective of this section is to establish the supe-
riority of our multi-convex MPC over two state-of-the-art
approaches: the AutoChaser algorithm proposed in [12] and
MPC algorithm of [5]. The former is designed for tracking
amongst only static obstacles, while the latter also consid-
ers dynamic obstacles. We use the publicly available author
implementation of [12]. This implementation had a prediction
horizon of 7s. We tried increasing this value but it increased
the computation time and the resulting control delay led to
poor tracking performance.

To the best of our knowledge, no open-source implemen-
tation of [5] has been released by the authors. Thus, we built
our own implementation following closely the mathematical
formulation presented in the cited work. We used the state-
of-the-art library ACADO [18] to prototype the trajectory
optimization and the resulting MPC of [5]. We performed
extensive tuning between collision avoidance, occlusion, and
acceleration cost to get the best performance. We also release
our implementation of [5] for verification.

We use the following metrics to benchmark our MPC with
state-of-the-art approaches:

1) VISIBILITY SCORE
Following [12], we define visibility score as the small-
est distance between static/dynamic obstacles and the LOS

trajectory. Clearly, a distance below zero will imply that the
line of the sight is blocked by the obstacles and the target is
occluded from the quadrotor’s camera. The visibility score
is a proxy for the satisfaction of occlusion constraints and
thus, a value less than zero means the occlusion constraints
are not satisfied. Note that exact value of visibility score is
not important as long as it is above zero.

2) ACCELERATION NORM
This metric measures how rapidly the quadrotor needs to
change its direction and speed to ensure collision/occlusion-
free tracking. In other words, the acceleration norm quanti-
fies trajectory smoothness and has been extensively used to
benchmark trajectory optimization algorithms. Furthermore,
having a smooth trajectory is also critical for applications like
drone cinematography to ensure that the images taken of the
target are of high-quality [15].

3) COMPUTATION TIME
This metric measures the time taken per MPC step and quan-
tifies the real-time applicability of the algorithm.

C. STATIC ENVIRONMENT TESTS
1) BENCHMARK
Fig. 9(a) shows our test environment with static obstacles
(grey rectangles), wherein the moving target is shown as a
red colored cylinder. The magenta colored line shows the
line of sight connecting the quadrotor and the target. We cre-
ated different benchmarks in this environment by varying
the trajectory of the target. Notably, the target’s trajectories
were designed in a way to ensure sharp turns near obsta-
cles to thoroughly test the occlusion avoidance capabilities
of our multi-convex MPC and the existing approach [12].
Fig. 9(a)-9(b) show the qualitative results obtained across two
benchmarks. Note, Fig. 9(a) shows only the first few seconds
of a long trajectory spread out over several minutes. As can
be seen, our multi-convex MPC can leverage fast re-planning
to counter the target’s motion behind the obstacles and main-
tain occlusion-free tracking. In contrast, the AutoChaser [12]
is not responsive enough and thus at times, the target is
completely occluded from its field of view. Fig. 10(a)-10(b)
further quantify the occlusion avoidance in terms of visibility
score across eight different trajectories. The exact visibility
score is not important and Fig. 10(a)-10(b) aims to highlight
the parts where the visibility score goes to zero. This in turn
signifies the violation of the occlusion avoidance constraints.
Our MPC maintains perfect tracking while in sharp contrast,
the visibility score for AutoChaser [12] goes below zero at
several time instants.

Fig. 10(c) compares the acceleration statistics of our
MPC with AutoChaser [12] across all benchmarks. The
median value of linear acceleration employed by our MPC
is 0.26m/s2. This is marginally lower than that employed by
AutoChaser algorithm [12] which stands at 0.30m/s2. How-
ever, the difference is more stark if we compare the maximum
acceleration values. The maximum acceleration employed
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FIGURE 7. Fig. (a): Sample trajectories from our optimizer for target tracking application. The obstacles are shown as black ellipses. Since the target is
moving, the occlusion cost surface would vary over time. Thus, for this example, we do not overlay the trajectories on the heat-map of the occlusion
cost. Fig. (b) shows the convergence of the occlusion and tracking constraints. The quadrotor starts at the position shown in blue which is different
from the start position of the target trajectory (shown in brown).

FIGURE 8. The simulation pipeline. Our main focus is on designing the high level optimizer/MPC that provides a feasible feed-forward trajectory to an
off-the-shelf low-level controller [31]. Our optimizer is guaranteed to provide a feasible trajectory to the low-level controller. To maintain clarity,
we only show the x component of state-feedback but the remaining y, z components are indeed integral parts of the state feedback.

by our MPC across all benchmarks is 0.95m/s2. This is
30% lower than that used by the AutoChaser (1.35m/s2).
We observed in the simulation that the higher acceleration
of the latter stems from the fact that it has a significant
control delay due to its higher computation time and thus it
often needs to accelerate sharply to maintain the visibility of
the target. We highlight this behavior in the accompanying
simulation video as well.

The angular acceleration employed by our MPC is higher
than that of AutoChaser [12].2 Our MPC’s median angular
acceleration value is 0.09rad/s2 which is 2 times higher than
0.047rad/s2 observed for the AutoChaser [12]. The factor
of difference between the maximum values is also approxi-
mately the same. This pattern in angular acceleration is due
to the fact that our MPC aggressively tries to keep the target

2As mentioned earlier, we independently control the yaw angle of the
quadrotor to always align with the LOS vector. Thus accelerations are
computed by second-order finite difference of the yaw angle at subsequent
time instants.

at the center of the field of view. In contrast, AutoChaser
adopts amore relaxed approach inmaintaining the orientation
towards the target.

Fig. 10(d) compares the computation time statistics
observed across all benchmarks for ourMPC andAutoChaser
algorithm [12]. The median computation time for our MPC
was 0.006s which was more than one order of mag-
nitude smaller than 0.08s observed for the AutoChaser.
The worst-case timing of AutoChaser was around 0.11s
while our MPC showed minimal variation across all
MPC iterations and always hovered around the median
value.

2) INSIGHT INTO PERFORMANCE GAIN
The performance gain of our MPC over [12] can be under-
stood in the following manner. As shown in the accompa-
nying video, [12] observes few instants of target motion and
then does a complex prediction of its future trajectory. This
process has a significant overhead. While the prediction is
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FIGURE 9. Fig. (a)-(b) show the qualitative comparison between the tracking performance obtained with our multi-convex MPC and the
state-of-the-art algorithm AutoChaser [12]. While AutoChaser gets occluded at multiple instances (yellow arrow), our MPC can react fast to
abrupt changes of the target’s motion near the obstacles and avoid occlusions. It should be noted that AutoChaser has been provided with
information about the global trajectory of the target in the form of intermediate waypoints. In contrast, our MPC only needs information about
the instantaneous position and velocity of the target.

being computed, the quadrotor is almost static and once the
prediction is completed, it tries to accelerate and catch upwith
the target. Thus, if the target is moving with moderately high

velocity and making very sharp turns around the obstacle,
by the time the prediction computation is done, the target
has already moved to a difficult position from where the
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FIGURE 10. Figures show the quantitative comparison between our multi-convex MPC and the state-of-the-art algorithm AutoChaser [12].
Our MPC outperforms with a higher visibility score across all benchmarks (a, b). A visibility score of below zero implies occlusion or
alternately non-satisfaction of occlusion avoidance constraints. Note that the specific values of visibility score are not important as long as
it is above zero. Thus, the main point to note from (a, b) is that unlike [12], our visibility score never goes below zero. Our MPC also
achieves a smoother acceleration profile (c) and shorter computation times (d).

occlusion cannot be avoided. Finally, [12] replans at a much
slower rate which proves detrimental to reliable tracking in
cluttered environments. In contrast to [12], our MPC uses
just a linear prediction but updates the motion plan almost
ten times faster.

D. DYNAMIC ENVIRONMENT TESTS
1) BENCHMARK
Fig. 11(a)-11(b) show our test environments with dynamic
obstacles (grey cylinders). For these test-cases, we assumed
that the target is stationary and thus the quadrotor needs to
change its position only to avoid occlusion from the dynamic

obstacles. However, as it moves, collision avoidance also
comes into play. Note, that if we disregard the occlusion, then
collision avoidance in these test-cases becomes trivial as the
quadrotor can just hover at its initial position. We chose a
stationary target because it was easier to benchmark ourMPC
with [5] in this setting. To elaborate further, the target trajec-
tory also needs to avoid collisions with the dynamic obstacles
for a meaningful comparison. Thus, it is extremely difficult
to recreate the exact same target trajectory within a physics
engine for a fair evaluation of our MPC and [5]. We created
different benchamrks in this test case by varying the trajec-
tories of the dynamic obstacles. Fig. 11(a)-11(b) show the
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FIGURE 11. Figues show the qualitative comparison between our multi-convex MPC and [5]. We consider a static target amongst dynamic obstacles.
The main task for the quadrotor is to continuously adapt its position to prevent occlusion from the dynamic obstacles. Our MPC maintains perfect
visibility while the trajectories resulting from [5] get occluded at multiple instances.

qualitative results obtained across two benchmarks. In both
these benchmarks, the quadrotor needs to find the narrow
path among the obstacles and execute it before the obstacles

enter its field of view. These represent a very challenging
scenario and as shown, our MPC outperforms that proposed
in [5] in avoiding occlusion. Fig. 12(a)-12(b) further quantify
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FIGURE 12. Quantitative comparison between our multi-convex MPC and [5]. We again outperform across all metrics: visibility score (a, b),
trajectory smoothness (c), and computation time (d). We again reiterate that the visibility score is a proxy for satisfaction of occlusion
avoidance constraints. Fig. (d) shows that our MPC can run in real-time on embedded hardware such as Intel NUC and Nvidia Jetson TX2.
The latter is particularly crucial for quadrotors given its light-weight structure. Note that, in this particular experiment, the target is static
and the simulation runs till the quadrotor reaches an occlusion-free region. Thus, the simulation times of ours and [5] are different.

the performance in terms of visibility score observed across
all benchmarks. Visibility score along trajectories obtained
with the MPC proposed in [5] go below zero at several time
instants across different benchmarks.

Fig. 12(c) presents a comparison of the acceleration pro-
files observed across all the benchmarks in the considered
dynamic environment tests. Due the very nature of this par-
ticular test set-up, we observed that accelerations generated
by both our MPC and [5] follow a bang-bang like structure.
That is, it increases sharply for a brief moment to provide
the necessary velocity to the quadrotor followed by a large

portion of zero accelerations. A negative acceleration is then
applied to bring the quadrotor to rest at the end. Due to
this behavior, the median (or even mean) acceleration values
will naturally be small and will not provide any meaningful
information. Consequently, we compare the maximum accel-
eration values between our MPC and [5]. Our MPC uses a
maximum acceleration of around 1.1m/s which is 2.8 times
lower than that generated by the [5]. The difference is sim-
ilar for the angular acceleration with our MPC’s maximum
value (0.4rad/s2) being 2.5 times lower than that resulting
from [5].
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FIGURE 13. Demonstration of our MPC while tracking a dynamic target (red) amongst dynamic obstacles (grey).

FIGURE 14. Fig. (a)-(h) verify how well our MPC maintains the range specified for tracking constraints (10) in the benchmarks
considered in Section VI-C. Since we assume that the target trajectory is not known in advance, guaranteeing satisfaction of range
thresholds at all time is intractable. Thus, we shift our attention to evaluating the extent to which our MPC can minimize the violation
of minimum and maximum specified distance for target tracking. The above figures summarize the results in the form of histograms of
the constraint violation observed in each simulation run. As can be seen, the violation is less than 10 cm for a large fraction of time in
each simulation run.
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FIGURE 15. Snapshots from our hardware experiment. We consider the case of a static target amongst dynamic obstacles similar to the
set-up discussed in Section VI-D. The quadrotor needs to constantly change its position to avoid both occlusion and collision from the
dynamic obstacles. The first column shows the third-person view while the second column shows the view from the quadrotor’s on-board
camera.

Fig. 12(d) presents a comparison of the computation time
statistics. In this particular test setup, we performed the
comparisons on both laptops as well as embedded hardware
devices such Intel i5 NUC and NVIDIA Jetson TX2. The
laptop used had an i7-8750 processor with 16 GB RAM.

On the laptop, our MPC’s median computation time of
0.004s is 5 times less than that required by [5]. However,
a more meaningful difference can be obtained by looking at
the maximum computation time required as this reflects the
worst case performance. The computation time of our MPC
has minimal variation and thus it hovers around the median
value (0.006s). This turns out to be 15 times less than the
maximum computation time observed for [5].

Our MPC maintains almost identical performance on both
laptops and Intel NUC. But the worst-case computation time
of [5] increases by 54%. Our MPC is also able to main-
tain a real-time performance on Jetson TX2 with worst-case
computation time of 0.06s. However, the performance of [5]
degrades significantly with the worst-case computation time
reaching up to 0.70s.

2) INSIGHT INTO PERFORMANCE GAIN
The performance difference of [5] and our MPC can be
correlated to their occlusion cost. As shown in 1(a)-1(b),
the model (2) proposed in [5] is highly conservative as it
assigns high cost value to regions where the field of view
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is not occluded. Thus, in a highly cluttered and dynamic
environment, the SQP optimizer used to optimize this cost
fails to find zero occlusion regions. In contrast, our occlu-
sion cost shown in Fig.4(a)-4(b) precisely captures the effect
of obstacle geometry on visibility. Finally, the performance
difference between [5] and ours can also be attributed to our
faster re-planning due to shorter computation times.

E. ADDITIONAL RESULTS
Fig. 13 presents snapshots of a quadrotor tracking a mov-
ing target (red cylinder) amongst dynamic obstacles (grey
cylinders) using our MPC. The quadrotor is provided with
information about only the instantaneous positions and veloc-
ities of the target and the obstacles. Thus, it can construct
only a crude linear approximation of their future trajectory.
Although the actual trajectories for the target and the obsta-
cles are highly non-linear, the fast re-planning ensured by our
MPC allows the quadrotor to cope with the prediction errors
and ensure occlusion/collision free tracking.

1) RANGE-CONSTRAINTS IN TARGET-TRACKING
For the benchmark considered in Section VI-C, our optimizer
worked under the assumption that the target trajectory is not
known. As a result, it is not possible to guarantee satisfaction
of the range constraints ((1b) or (9) ) at all times in real-time
MPC setting. Nevertheless, in Fig. 14(a)-14(h), we verify how
well our optimizer is able to maintain the desired minimum
and maximum distance from the target. The min and max
values were chosen as 2m and 2.5m, respectively. As can be
seen, even in the absence of any long-term information about
the target trajectory, our MPC maintains the range thresholds
for most of the duration in each simulation run. For a large
fraction of time, the violation in minimum and maximum
distance thresholds is less than 10cm.

2) COMPUTATION TIME SCALING
Fig.16 shows how the computation time of our MPC scales
with the number of obstacles. The linear trend observed
validates the remarks made in Section IV-E2.a. To recall,
with an increase in the number of obstacles, only the com-
putation complexity of constructing the cost function in (26)
changes. The number of variables of the QP (cx , cy, cz)
remains the same as it depends only on the trajectory
parametrization. Furthermore, even within the cost term, only
the matrix-vector product ATb needs to computed at each
MPC iteration. The matrix-matrix product ATA does not
change between the MPC iterations and thus can be pre-
computed. Although a naive matrix-vector product scales
quadratically, with appropriate parallelization this scaling can
be made linear. Most linear algebra libraries like Eigen [32]
automatically implement such parallelization at the back-end
through multi-threading over CPUs.

3) HARDWARE IMPLEMENTATION
Fig. 15(a)-15(f) show the snapshots from our hardware imple-
mentation. We consider a set-up similar to that described

FIGURE 16. Linear computation-time scaling of our MPC with number of
obstacles.

in Section VI-D: static target amongst dynamic obstacles.
If we ignore the occlusion constraints, then the quadrotor can
just hover in place. In contrast, to avoid occlusions from the
dynamic obstacles and keep the target in the field of view, the
quadrotor needs to constantly change its positions based on
the current prediction of the obstacle trajectory.

VII. DISCUSSIONS
We proposed a real-time MPC for target tracking amongst
static and dynamic obstacles. The efficacy of our MPC is
derived from the custom optimizer employed to solve the
underlying non-convex trajectory optimization problem. Our
optimizer, in turn, is built on several layers of reformu-
lation that induce multi-convexity into the problem struc-
ture. We show that our MPC substantially outperforms the
state-of-the-art in several metrics: visibility score, control
effort, and computation time. An attractive feature of our
MPC is that it can cope with a very crude linear pre-
diction of obstacle and target trajectory. In contrast, the
state-of-the-art algorithm [12] requires the user to provide
intermediate goal-points of the target, which is then used to
perform sophisticated trajectory prediction for it.We note that
such apriori knowledge of intermediate target goal-points is
unlikely to be available in real-world settings. We observed
in our experiments that in the absence of intermediate-goal
points, the performance of [12] degraded substantially (see
attached video).

As mentioned earlier, occlusion-free target tracking
amongst dynamic obstacles is relatively less studied in the
existing literature. Our simulation tests were significantly
more complex than the current state-of-the-art [5] and our
MPC showed substantial improvement over the cited work.
In the accompanying video, we also show real-world hard-
ware demonstration for dynamic environments.

Our simulations implicitly validates the ability of
our multi-convex optimizer based MPC to withstand
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uncertainties in dynamics and lower level control parame-
ters. Our optimizer only considers kinematic model of the
quadrotor. However, our ROS based simulator considers the
full dynamics along with all the possible control delays. Our
optimizer does not have access to the simulator parameters
and thus in essence, these act as disturbances to our optimizer.
It is worth pointing out that the disturbance rejection is purely
a consequence of the fast milliseconds-level re-planning time
of our multi-convex optimizer that allows for fast course
correction of the quadrotor.

A. LIMITATIONS
The main limitation of a SB/ADMM approach for solving
non-convex optimization problems such as ours is that the
theoretical convergence properties are not well understood.
That is, the AM iterates (26)-(28) may not converge. In spite
of this, existing literature has an abundance of examples
where SB/ADMM have been empirically found to work
on even non-convex problems [33], [34]. Our own prior
works [22], [23] have also presented similar empirical evi-
dence. We have also empirically validated the convergence
of the proposed optimizer in Section V. We conjecture that
one of the reasons behind our AM’s reliable convergence is
that each sub-problem in every iteration is solved exactly to
its minimum. A more rigorous analysis is part of our future
work.

Another limitation of our optimizer is its sensitivity
towards the parameter ρ that controls the violation of the
occlusion and tracking constraints.We observed that although
a default value of ρ = 1 always worked, it resulted in slow
convergence. On the other hand, a larger value affected the
smoothness of the resulting trajectory but converged to a low
residual solution in lower number of iterations. In our imple-
mentation, we came up with an appropriate value by trial and
error. One way to improve this aspect of our optimizer is
to use a more sophisticated hyper-parameter tuning through
Bayesian optimization.

B. FUTURE WORK
The applications of our optimizer andMPC go beyond target-
tracking. It can also be used to keep important features in the
field of view while navigating from a point to another point
(Fig. 5(a)-5(e)). We are currently building on this foundation
to improve localization in autonomous driving. In this set-up,
neighboring cars often block the autonomous vehicle from
observing features from either side of the road. Thus, the
latter needs to constantly overtake or lane-change to maintain
the visibility of important features. This is similar to the
experiment shown in Fig. 11(a)-11(b).

In future, we also want to use our MPC as a teacher
in a data-driven behavior-cloning framework to achieve
occlusion-free target tracking based on just on-board depth
images. We note that target tracking is also extensively per-
formed with fixed-wing aerial vehicles that have more com-
plicated kinematics than quadrotors. We aim to extend our

current MPC to such class of vehicles as well while retaining
the fundamental multi-convex computational structure.
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