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ABSTRACT With the development of 3D visualization technology, the amount of geological data informa-
tion is increasing, and the interactive display of big data faces severe challenges. Because traditional volume
rendering methods cannot entirely load large-scale data into the memory owing to hardware limitations,
a visualization method based on variational deep embedding clustering fusion Hilbert R-tree is proposed
to solve slow display and stuttering issues when rendering massive geological data. By constructing an
efficient data index structure, deep clustering algorithms and space-filling curves can be integrated into the
data structure to improve the indexing efficiency. In addition, this method combines time forecasting, data
scheduling, and loading modules to improve the accuracy and real-time data display rate, thereby improving
the stability of 3D visualization of large-scale geological data. This method uses real geological data as
the experimental dataset, comparing and analyzing the existing index structure and time-series prediction
method. The experimental results indicate that when comparing the index of the variational deep embedded
clustering-Hilbert R-tree (VDEC−HRT ) with that of the K-means Hilbert R-tree (KHRT ), the time required
is reduced by 55.67%, the viewpoint prediction correctness of the proposed method is improved by 22.7%
compared with Lagrange interpolation algorithm. And the overall rendering performance and quality of the
system achieve the expected results. Ours experiments prove the feasibility and effectiveness of the proposed
scheme in the visualization of large-scale geological data.

INDEX TERMS 3D visualization of massive data, deep learning, Hilbert R-tree, deep clustering, time-series
forecasting, view frustum culling.

I. INTRODUCTION
Three-dimensional visualization technology has always been
an indispensable part of the development of computer
graphics. It is an effective method for multi-dimensional
presentation and the analysis of data objects in various indus-
tries, such as medicine, remote sensing, geology, and oil and
gas exploration [1]–[4]. Among them, the volume-rendering
algorithm [5]–[7] is applied to geological exploration, which
can clearly depict the internal level of detailed information
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and characteristics of the geological body and provides a data
research platform for researchers in related fields.

However, when dealing with a variety of data, the devel-
opment of 3D visualization faces several challenges. For
example, traditional volume rendering algorithms are more
complex and require a large amount of memory space, neces-
sitating relatively advanced computer hardware. In addition,
for large-scale volume data, the calculation speed is slow,
and there arise delays in the response time of interactive
displays, and lags during browsing, among other issues.
Therefore, several 3D visualization solutions have certain
limitations.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 28821

https://orcid.org/0000-0003-2793-6979
https://orcid.org/0000-0001-7339-3130
https://orcid.org/0000-0002-6429-2466
https://orcid.org/0000-0003-3991-2771
https://orcid.org/0000-0002-4057-6712
https://orcid.org/0000-0003-2950-2488


Y.-H. Zhang et al.: Fast 3D Visualization of Massive Geological Data Based on Clustering Index Fusion

FIGURE 1. Flow of proposed algorithm. (A) Read the data, determine the range of the data body in the space, determine the size of an
MBC, divide the original data body equally to obtain several MBCs, calculate the Hilbert code values of all MBC center points through
the Hilbert curve formula, sort them, and finally complete the global clustering through VDEC operation. (B) TCN is used to predict the
position of the next view point, so as to avoid problems such as picture stuck jump caused by centralized loading when the amount of
data is too large. (C) Finally realize geological data visualization through visual cone clipping and volume data division.

Currently, a major problem of the 3D visualization process
is that large-scale data cannot be displayed quickly and with
high-quality using traditional volume rendering technology.
Many related optimization solutions have been proposed. The
literature [8]–[15] proposes a modified R-tree structure to
improve query efficiency. The literature [16]–[18] further
optimizes the structure of the Hilbert R-tree based on the
R-tree; however, this method has shortcomings in the pro-
cessing of large-scale data. The main problem is that when
mapping with a spatial filling curve, significant overlapping
space is generated in the process of building a tree structure,
thus affecting the efficiency of data retrieval. Considering the
problems of Hilbert R-tree in the literature [19], [20] with
respect to clustering, the coverage overlap between nodes
can be reduced to a certain extent by clustering, thereby
enabling the formation of a compact and efficient data struc-
ture. In addition to solving the problem of fast visualization
regarding data structure, there are also some solutions to
address the display lag when the data object is large. The
Lagrangian interpolation algorithm is used to predict the
trajectories of viewpoints, and different interpolation steps
are set to determine the final prediction accuracy and ren-
dering effect. Moreover, the deep learning model [21]–[26]
is also used to predict the trajectory of viewpoints, which
improves the accuracy of prediction. The literature [27]–[30]
introduces the visual cone clipping algorithm in the real-time
rendering of large-scale terrain, which performs the nec-
essary clipping of data objects according to the change
in the viewpoint range to load data objects quickly
and accurately. In addition, level-of-detail (LOD) techno-
logy [31]–[34] reduces the detailed information of data
according to viewpoint position and object distance, thus
improving the rendering efficiency.

To this end, this study proposes a fast 3D visualiza-
tion method based on deep clustering for use in massive

geological data research. Firstly, in terms of data structure,
deep clustering is adopted to reduce the partial overlap of
tree structure, improving the efficiency of the overall index
traversal for the data. Moreover, through the construction of
a deep learning model under the time-series model to realize
accurate viewpoint location prediction, and in combination
with an improved data scheduling scheme to accelerate the
volume rendering efficiency, this strategy allows for reduc-
tion in the complexity of the operation, load, and rendering of
potential data in advance, and avoids sluggish browsing. This
technique results in improved efficiency of the visualization
in several ways to achieve rapid 3D visualization of massive
geological data. The experiments prove that the proposed
scheme has adequate feasibility and research value.

II. METHOD
This study proposes a method of deep clustering com-
bined with an data structure using deep learning to predict
the trajectory of the viewpoint, as well as the application
of improved field-of-view removal technology in the rapid
3D visualization of massive geological data. As shown in
Figure 1, the algorithm for the rapid 3D visualization of data
is mainly divided into three modules: a) the establishment
of an efficient data index structure, b) the prediction of the
motion trajectory of the viewpoint, and c) the scheduling
and loading of volume data in the field-of-view removal
technology.

First, the geological data file is read, the original geological
data format is mapped onto the 3D structure of space, and
the sub-blocks with the smallest boundary cube are divided.
Then, mutual information maximization is applied to clearly
distinguish the samples from these datasets, using the Hilbert
curve to reduce the dimensionality and the variational deep
embedded clustering (VDEC) to perform the clustering oper-
ation, considering the center after clustering. The value of
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the code builds a Hilbert R-tree. Furthermore, the next mod-
ule is entered to determine the coordinates of the current
viewpoint position. This process has two branches: the first
to use the frustum model to crop and render the spatial data
corresponding to the current viewpoint position, and the sec-
ond to perform a temporal convolutional network(TCN ) pre-
diction based on the current viewpoint position. The position
coordinates of the next viewpoint are predicted by the frustum
model, and the potential data are unloaded and rendered by
comparing the divided regions. These new viewpoint coordi-
nates are re-determined to draw the next frame.

The following subsections introduce the relevant algo-
rithms of each module.

A. INDEX STRUCTURE OF DATA
Considering the inefficiency of the index caused by the scal-
ing up of data, it is insufficient to only improve only the hard-
ware. More importantly, it is more efficient to solve the rapid
3D visualization of massive geological data by improving the
algorithm and combining these software and hardware opti-
mizations. In this study with the index of the module using
the Hilbert R-tree structure, due to connecting the Hilbert
space-filling curve in a particular way and passing through
the data in high dimensional space, the goal is to encode
the location coordinates sorting, straight for one-dimensional
data and then finding adjacent elements with a minimum
bounding rectangle box, node up, and framed space is larger,
to form the Hilbert R-tree. However, when the Hilbert R-tree
structure is applied to large-volume data, the spatial overlap
of nodes will also occur. In other words, within the same leaf
node, spatial data objects do not originally belong to the same
category, but the adjacent data code values after spatial curve
transformation, which forms a clustering problem. For large-
scale datasets, it may be considered to first gather the data
with relatively close structure using a reasonable algorithm
to avoid the misclassification of adjacent code values after
subsequent conversion, and for quickly index.

1) VARIATIONAL DEEP EMBEDDING CLUSTERING
To optimize the indexing technology, this study uses
the VDEC . Compared with the traditional clustering algo-
rithm, on the one hand, it uses the variational autoencoder
(VAE) [35], [36] to reflect the input data distribution with
an unsupervised algorithm. On the other hand, it learns the
feature representation and cluster assignment of data into
the latent variable space through deep embedding clustering
(DEC), and iteratively optimizes the target, thereby improv-
ing the performance of clustering.

The VAE can approximate the true high-dimensional dis-
tribution of complex data using unsupervised algorithms and
can reconstruct the data characteristics of the hidden variable
space. First given the dataset X = {x1, x2, . . . , xn}εRD×n,
after the prior distribution p(z) of the latent feature space, the
latent variable space is generated as z, and then reconstructed
by p(x|z) to generate x̃. We denote the weight and bias of the
encoder as model ∅, and the weight and bias of the decoder

as model θ .DEC uses autoencoders as a network architecture
and clustering allocation to reinforce losses as specifications.
Network parameters are initialized through the autoencoder,
and a two-layer neural network is defined as:

x̃ ∼ Dropout (x), h ∼ b1(W1x̃ + u1)

h̃ ∼ Dropout (h), y ∼ b2(W2h̃+ u2)

Dropout() means that the dimension of input data of any
set part is 0, b represents the activation function of the
encoder, and the model parameter ∅ is W1, u1,W2, u2. First,
the training model of the compressed data part of the encoder
is collected by rebuilding the loss of the auto-encoder and
discarding the decoder part. For a given dataset X =

{x1, x2, . . . , xn}εRD×n, the corresponding feature Z∅ can be
obtained through the initial mapping f∅ between data space
and feature space, then the algorithm iteratively improves the
clustering by minimizing the KL divergence between the soft
label distribution and the auxiliary target distribution. In order
to effectively improve the clustering performance, the sample
can be clearly distinguished from the entire dataset, and the
concept of mutual information maximization [37] is intro-
duced in the VAE to identify the most unique information of
the sample.

I (x, z) = Dkl[p(z|x)p̌(x)||p(z)p̌(x)] (1)

Here, p̌(x) is the distribution of the original sample;
the larger the KL divergence between p (z | x) p̌ (x) and
p (z) p̌ (x), the higher the correlation between x and z. This
means that for each data point x, the encoder p(z|x) can
encode a unique z, and the optimization goal of the feature
encoder is to maximize mutual information:

p(z|x) = argmax[I (x, z)] (2)

Because it is difficulty to calculate the posterior distribu-
tion, the approximate posterior distribution qφ(z|x) is intro-
duced to estimate the true posterior distribution p(x|z), which
only needs to minimize KL[qφ(z|x)||p(z|x)]:

Dkl[qφ(z|x)||p(x|z)]

=

∫∫
qφ (z | x)p̌ (x) log

qφ(z|x)
p (z|x)

dxdz (3)

From equations (2) and (3), we can obtain the total mini-
mization goal of the encoder as

p (z | x) = MIN {
∫∫

p̌ (x)[qφ (z | x) log
qφ(z|x)
p (z|x)

− p (z | x) log
p (z|x)
p (z)

]dxdz} (4)

The data that maximizes the lower bound of the target log-
likelihood change can be obtained as:

logPtarget (x) = Lθ,∅ + Dkl[qφ(z|x)||p(z|x)] (5)

using the Bayesian formula:

p(z|x) =
p(z)p(x|z)
p(x)

(6)
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Using the non-negativity of KL divergence, we can obtain:

Dkl[qφ(z|x)||p(z|x)]

= logp(x)+ E[logqφ(z|x)− logp(z)− logpθ (x|z)] (7)

and depending on the following,

logPtarget (x)− Dkl[qφ(z|x)||p(z|x)]

= E[logqφ(z|x)]− Dkl[qφ(z|x)||p(z)] (8)

= > logPtarget (x) ≥ E[logpθ (x|z)]

−Dkl[qφ(z|x)||p(z)] (9)

= > LVAE (θ,∅) =
∑n

i
Ex∼q∅(z|xi)[logpθ (xi|z)]

−

∑n

i
Dkl[qφ(z|xi)||p(z)] (10)

Define z to obey a normal distribution:

p(z) ∼ N (z; 0, t) (11)

The variational self-encoding network VAE is used to output
the two dimensions of the parameter meanµ and the variance
σ 2 vector in the hidden layer:

qφ(z|x) ∼ N (z;µ, σ 2t) (12)

The heavy parameter technique is used to sample in the
distribution space Z of the latent variables to obtain z:

z = µ+ σ ∗ ε, ε ∼ N (0, 1) (13)

The sampled z is input into the generation model p(x|z) to
generate a new x̃, and the KL divergence is obtained between
qφ (z | x) and the prior distribution p (z) as the loss of the
coding model:

Lq∅ =
1
2

∑J

j=1
(1− log

(
σ 2
)
+

(
µ2
j

)
+ (σ 2

j )) (14)

For the generative model, the reconstruction error of the
decoder is defined as its loss:

Lpθ = ||xi − x̃||
2 (15)

The coding part of the autoencoder is trained as the learned
feature information z, and the similarity between it and the
cluster center is computed.We define the similarity and target
distribution as follows, where j is the dimension of the latent
variable space:

qij =
(1+ ||zi − cj||2)

−1∑
j (1+ ||zi − cj||

2)
−1 (16)

and

pij =
q2ij
/∑

i qij∑
j q

2
ij

/∑
i qij

(17)

In addition, we define the loss function of the target vari-
able Pand the similarity variable Q as

Lc =
n∑
i=1

k∑
j=1

pij log
pij
qij

(18)

According to the similarity between the feature represen-
tation z and the cluster center, as in formula (16), the cluster
label of x is obtained as follows:

Si = argmax
j

qij (19)

We use the gradient descent iterative method to optimize
the overall objective function:

L = Lpθ + Lq∅ + γLc (20)

2) VARIATIONAL DEEP EMBEDDING CLUSTERING FUSION
HILBERT R-TREE
The specific structural process pseudocode of the vari-
ational deep embedding clustering fusion Hilbert R-tree
(VDEC − HRT ) is shown in Algorithm 1:

B. PREDICTION OF VIEWPOINT MOVEMENT TRAJECTORY
A certain amount of data can be directly loaded into memory;
however, when the data size increases, only essential data
must be loaded, and the redundant data must be blocked.
If the data range can be predicted in advance, it is loaded
into the memory for rendering and the amount of data loaded
duringmemory access time can be avoided, making the image
smoother and more stable.

The viewpoint prediction module in this study accurately
predicts the expected position of future viewpoints according
to the continuously changing viewpoint positions and per-
spectives, which is a typical time-series prediction problem.
In this study, a time series convolution network is used for
prediction, and its basic network structure consists of the
following three parts:

1) CAUSAL CONVOLUTION
A one-way time-constrained structure, implying that the con-
volution operation at the current moment c is only based on
the information before and at the historical moment c − 1.
The structure is shown in Figure 2.

FIGURE 2. Causal convolution structure diagram.

2) EXPANSION CONVOLUTION
This mainly solves the problem of the causal convolution
having too many stacked layers and is limited by the con-
volution kernel size. Its structure is shown in Figure 3, where
D represents the cavity coefficients 1, 2, and 4, and k is the
convolution kernel size.
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Algorithm 1 Algorithm Flow of Constructing the Index Structure
Algorithm 1:VAE − DEC fusion Hilbert R-tree index structure:

1: Determine the overall smallest boundary cube (MBC) according to the size occupied by the target object in the space and
divide it equally to obtain nMBC sub-blocks

2: for i in 1 . . .− n:

3: Fill MBC block with the Hilbert curve (m =
n∑
i=1

8i−1 ∗ ki)

4: Convert the Hilbert value corresponding to the center point Cp of the n smallest bounding cubes according to the
above formula, where center Cp = [

∑n
i=1 (x i

/
n),
∑n

i=1 (yi
/
n),
∑n

i=1 (zi
/
n)]

5: end for
6: Sort theMBC center code values and get LMBC (m1,m2, . . . ,mn)
7: Sample data objects and calculate the boundary coordinates and center coordinates of theMBC block for each data object

according to the size of the data volume
8: Use the data sample x,Lq∅ ,Lpθ to pre-train the variational autoencoding model
9: K − means initialize cluster center c

10: for i in 1 . . .− n :
11: Calculate the latent variable space of x to represent z: z ∼ p∅(z|x)
12: Update the target distribution Pij with z and equations (16) and (17)
13: Save the cluster center label Sold = S and update the label with:
14:

Si = argjmax qij

15: for L in 1 . . .− T :
16: Gradient descent method to optimize the objective function L = Lpθ + Lq∅ + γLc
17: if O(Sold 6=S)

N < δ (where O is the number of label changes)
18: Return the weights of pθ and q∅, the cluster center c
19: end if
20: end for
21: continue
22: Re-sort according to the Hilbert code value of the cluster center c after clustering
23: Determine the maximum number of child nodes that a Hilbert R-tree node can store according to memory constraints
24: if SIZEcurrentcluster ≤ MAXnode−HRT :
25: All elements of the current category are regarded as nodes of the current level of the tree structure
26: else:
27: Arrange the Hilbert code values corresponding to the data center in ascending order to form a leaf node
28: According to the time when the node is generated, the middle node and the root node of the tree are formed from bottom

to top to construct an efficient Hilbert R-tree index structure

FIGURE 3. Expanded convolution structure diagram.

3) RESIDUAL CONNECTION
The basic unit of TCN uses causality and dilative con-
volution as the standard convolution layer and adds layer

normalization and a linear function. Every two of these unit
blocks are connected with identity mapping as a residual
module so that the network model can transmit information
in a cross-layer manner.

In contrast to RNN and other networks, TCN has the
characteristics of parallelism, gradient stability, and flexible
receptive field. The forecasting process begins by selecting
N points of data are selected from the dataset. Each point
corresponds to the viewpoint coordinates of the continuous
motion track at different times. The current time coordi-
nates have three dimensions (i, j, k), and the coordinates at
time Tc are Pc(ic, jc, kc). The coordinate sequence X =
(p1, p2, . . . , pc) is set at the current time and the previous
time as the input of the model. The convolution kernel is
F = (f1, f 2, . . . , fk ), where K is the size of the convolution
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kernel, the input sequence is X = (p1, p2, . . . , pc), and the
causal convolution at pc can be expressed as

F(pc) =
∑K

k=1
fkPc−K+k (21)

The output of causal convolution after introducing dilated
convolution is

Fd (pc) =
∑K

k=1
fkPc−(K−k)d (22)

The input of the hidden layer is normalized through
regularization, and a nonlinear is introduced through Relu
function:

Fo(Fd ) = max(0,Fd ) (23)

Dropout is introduced after passing through the above convo-
lutional layer to simplify the network and prevent overfitting.

F ′o ∼ Dropout(Fo(Fd )) (24)

To obtain the long time series information with the expan-
sion convolution, the stability of the network model needs to
be considered as the network layers are deepened. Therefore,
identity mapping is added to increase network stability, and
the output result is

O = F ′o(pc)+ pc (25)

Two of these unit blocks were used as a residual module
along with the identity map:

On = Activation(F ′o(pc)+ pc) (26)

The deep network is stacked using residual modules, and
the structure is shown in Figure 4. TCN blocks are repeatedly
connected, and the output of each stack is used as the input of
the next one to deepen the network layers and extract essential
features. Finally the Relu nonlinear factor is added to the
output feature, and a one-dimensional convolution layer is
used to replace the coordinate position of the next viewpoint
predicted by the output of the full connection layer.

FIGURE 4. Schematic diagram of TCN structure.

C. SCHEDULED LOADING OF VOLUME DATA
As the amount of data increases, the number of objects to be
drawn during the loading process of 3D data also increases
significantly. Visibility judgment is an effective method to
reduce unnecessary drawing when loading large-scale data,
thereby accelerating the image rendering speed. The frustum
clipping method is a visibility judgment method, and its over-
head operation is relatively small and easy to modify. There-
fore, an efficient frustum clipping algorithm is conducive to
fast and accurate loading of graphics objects, thereby greatly
improving its display performance.

In the first part of this article, the original data are equally
divided into MBC sub-blocks, and the original geological
data structure is then recombined using the Hilbert R-tree
algorithm. When judging whether the current data object
is visible, it turns to judge the viewpoint and each spatial
position relationship of the MBC data sub-blocks. When it
is found that the data object is outside the viewpoint area,
it will be cropped immediately, thereby shortening the time
for object traversal in the structure and improving the render-
ing speed.

In this part of this article, the two-layer frustum clipping
algorithm is used as follows:

1). First, the rough cutting algorithm is adopted. We sim-
plify the viewing cone into a simple cone, the position rela-
tionship between the cone and the space object is judged, and
the overall judgment times are reduced to improve the cutting
efficiency. The flow of the rough clipping algorithm flow is
shown in Algorithm 2:
A: Simplify the viewing cone hexahedron into a simple

cone. The cross-sectional view is shown in Figure 5. From the
viewpoint position, make the smallest cone encompassing the
viewing cone and use the simple cone to check the positional
relationship between it and the smallest boundary cubeMBC .

FIGURE 5. The position profile of the MBC block and simple cone (where
A is the central coordinate of an MBC block, C is A point on the visual
axis, AC is perpendicular to the cone surface at point B, and d is the
distance from the center of MBC block to any vertex).

B: If the center of A(x, y, z) /∈ cone an MBC block is not
inside the cone, AB ≥ d , the MBC block is judged to be
outside the cone, and the algorithm ends. Otherwise, proceed
to C .
C: If (d + zsinθ

/
2)2 ≤ (x2 + y2)cos(θ

/
2)2, the MBC

block is judged to be outside the cone, and the space object
contained in the MBC block is cut. Otherwise, the MBC
block is judged to have intersected the cone, the fine clipping
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algorithm can be used for further clipping, and the algorithm
ends.

2). The fine cropping algorithm is based on the previous
rough cropping and further uses the standard viewing frustum
truncated pyramid to finely crop the space object and improve
the accuracy of the cropping.

When using the standard frustum for cutting, the MBC
block of the data was first used to determine the spatial
position of the six faces of the frustum (i.e., the top, bottom,
left, right, near, and far of the hexahedron in Figure 6). The
overall idea is that when the MBC block is located outside
a certain plane equation of the frustum, it is invisible and
the object is cropped; if the MBC block is not cropped in
the above process, it means that the positional relationship
with the frustum is inclusive or intersect, specifically in the
following two cases:

FIGURE 6. Schematic diagram of the frustum.

(1) Inclusive: When the MBC block is in all six planes,
indicating that the space object is located in the viewpoint
area, the space object is directly sent to the GPU drawing
pipeline for rendering and display.

(2) Intersect: When the inner side of a certain plane of
the frustum contains a part of the MBC , and the outer side
of the plane also contains a part, indicating that the space
object and the frustum are intersecting, then continue to judge
the underlying objects and traverse all the space objects in
turn.

Specifically, the viewpoint position is located at the zero
point of the world coordinate system and the viewing cone
model is placed along the positive Z axis, with the set pro-
jection matrix used to transform the vertices, allowing for the
six plane equations corresponding to the truncated cone to be
obtained.

After obtaining the six planes, the general approach is to
calculate the distance from each vertex to each plane; how-
ever, it would be more complicated to calculate eight vertices
in this way. The method in this study is to first determine the
vertices n and p of theMBC block. Point p is the vertex closest
to the plane, and point n is the vertex of the farthest diagonal
(the vertex furthest from p). Suppose p(xmin, ymin, zmin) brings
six plane equations ax+ by+ cz+ d = 0 : if axmin+ bymin+
czmin + d > 0, it can be judged that the vertex of the MBC
block closest to the plane is outside the plane, and then the
MBC block is outside the plane for clipping.

In the same way, if p(xmin, ymin, zmin) is inside the plane
and n(xmax , ymax , zmax) is outside the plane, axmin + bymin +
czmin+d < 0 and axmax+bymax+czmax+d > 0mean that the
MBC block intersects the frustum. If point p and point n are
both inside the frustum plane equation, axmin+bymin+czmin+
d < 0, axmax+bymax+czmax+d < 0, it means that theMBC
block is inside the plane and is directly sent to the rendering
pipeline for rendering and display.

Among these, the viewpoint movement process is regarded
as a dynamic viewpoint model. The movement process
divides the entire range of data objects into visible, potential,
and unloading areas. After the predicted viewpoints were
obtained through the cutting of the frustum model above, the
unloading and loading rendering were performed by compar-
ing the divided regions below. Specifically, when the view-
point is at position A, parts 1 and 2 in the figure are the visible
areas, which are rendered and displayed; the potential areas
are visible areas 2 and 3 of the predicted next viewpoint B,
which need to be rendered in advance, and the data in this area
are marked as visible data and loaded into the GPU pipeline
for rendering, making it convenient for the user to directly
read and display the data object during continuous browsing.
When the viewpoint moves from A to B, area 1 is marked as
an unloaded domain to reduce memory, as shown in Figure 7:

FIGURE 7. Diagram of data region division.

Because of the process of browsing the image constantly,
which changes direction and coordinates of the viewpoint,
a viewpoint trajectory is formed. Therefore, the current view-
point position and its historical data in module (b) can be used
to predict the next viewpoint position, and the data objects of
the potential area loaded into the memory to be displayed,
improving the smoothness of the image display during the
entire information loading process. The overall process of
combining viewpoint prediction and frustum clipping algo-
rithms is shown in Figure 8:

III. EXPERIENAL RESULTS AND DISCUSSION
A. EXPERIMENTAL PLATFORM
The processor used in this experiment was Intel Core
i5-9300H, the operating system was Windows 10, the chip
type was NVIDIA GeForce GTX 1650, the CPU frequency
is 2.40GHz, the memory was 8GB, and the code was written
using PyCharm2019, Visual Studio 2019, and QT5.7.

The data used in the experiment are a subset of the seismic
area data of an oil field in China and are stored in SEG −
Y format. Divided into three groups, dataset A is 458.3MB,
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FIGURE 8. Viewpoint movement combined with frustum clipping flow
chart.

dataset B is 3219.5MB (the data in group B is more evenly
distributed), dataset C is 13984.1MB (the data in group C is
larger in amount and more scattered), and the data contains
buried information such as depth, range, thickness, and the
stretching trend.

B. DATA RECORD
Experiments were conducted to evaluate the effectiveness
of this method by comparing the relevant modules. Specif-
ically, this method is mainly divided into the following parts,
as shown in Figure 9:

FIGURE 9. Experimental methods flow chart of test and evaluation.

1) INDEXING EFFICIENCY OF DATA STRUCTURES
In view of the VDEC model partially integrated with the
index data structure in this study, validation was carried out
on MNIST handwritten dataset. First, k − means was used
to initialize the cluster center, and encoder was used for
pre-training. The optimizer used was the Adam optimizer,
the learning rate was set to 0.003, and the parameters were

updated after every 10 epochs trained. The output dimension
was set to 10, and the training was conducted 300 times. The
hidden feature space Z was constructed according to themean
and variance returned by the encoding layer. For visualiza-
tion, T − sne was used to map the sampled part Z to a two-
dimensional space. The aggregation distribution of data in the
potential space is shown in Figure 10, which indicates that the
representation of potential features is suitable for clustering,
and the clustering accuracy of reconstructed samples based
on real labels and models reaches 94.3% with a Jaccard
similarity coefficient 0.959, and an NMI score of 0.956.

FIGURE 10. Data clustering distribution diagram of VDEC potential space.

In addition, to evaluate the overall index effect of data
structure, we set the minimum particle size to 1MB in this part
to compare it not only with the related Hilbert tree structure,
but also with the index efficiency of octree (OCT ) structure.
Specifically, we take the same proportion data blocks (1%,
3% and 6%) for three groups of data, A, B and C respectively,
and compare the OCT , HRT , KHRT , and the VDEC− HRT
structure query data times for blocks. The recorded results are
shown in Table 1.

TABLE 1. Comparison of indexing efficiency of different data structures.

As shown in the results, for a A small amount of data in
group A, the query time of the method in this study is less
than that of the previous two methods, but the comparison
is not obvious. For group B data, compared using the OCT
algorithm, the index time of VDEC − HRT in this study
is reduced by 65.34%-68.87%; compared using the HRT
algorithm alone, the index time of VDEC − HRT in this
study is reduced by 64.30%-66.60%; compared usingKHRT ,
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the index time of VDEC − HRT is reduced by 46.63%-
57.54%. Compared using OCT , HRT and KHRT , the query
time of group C data subblock was reduced by 65.34%-
72.07%, 59.85%-65.63% and 49.26%-55.67%, respectively.
Therefore, even compared with large data, our algorithm
can make the data close to the original data nodes more
compact through improved clustering, effectively reducing
the frequent visits to disk, improving the query efficiency
significantly, and reducing the index time.

2) EVALUATION OF VIEWPOINT PREDICTIONS
To evaluate the accuracy of the prediction algorithm, we com-
pared the accuracy of the Lagrange interpolation, stacked
short and long memory networks, and the proposed method
for predicting data blocks with durations of 1, 4 and 8 min,
respectively. The results are listed in Table 2.

TABLE 2. Comparison of the accuracy of data block prediction algorithm
with different times.

It can be concluded from the data that the accuracy of
the proposed algorithm is 11.74%-23.01% higher than that
of the Lagrange interpolation algorithm and 2.16%-5.51%
higher than that of StackedLSTM . With the average frame rate
unchanged, we set the steps to 8, 16 and 24 frames respec-
tively, and randomly change the position and direction of the
camera to keep the viewpoint moving at a uniform speed
for 15 min. Moreover, to avoid the interference of different
average frame rate experiment, we chose the average frame
rates of 12, 24, and 48 frames to calculate the asynchronous
length and compare the prediction accuracy. The recorded
data is presented in Table 3.

TABLE 3. Influence of asynchronous length on prediction accuracy.

The data analysis results show that the accuracy rate
decreases as the selected step size increases, but the smaller
the selected step size frame, the weaker the prediction effect.

Therefore, the accuracy of the prediction can be improved by
adjusting the step size parameters.

In addition, when the average frame rate is approximately
30 fps, X and Y components of the partial position coordi-
nates were sampled during prediction, and the errors between
the predicted position using TCN and LSTM models and
the actual position coordinates are compared. The time step
was selected to be 15, and the curve was obtained after
15 iterations, as shown in Figure 11.

FIGURE 11. Comparison curve of prediction results.

According to the experimental results, the prediction accu-
racy of ACC − TCN in the coordinate dataset of this study
was 97.34%, and that of the ACC − LSTM was 93.86%. It is
evident that the prediction effect of TCN is better than that
of LSTM in the XY coordinate component of the viewpoint
in this study, indicating that TCN is effective in the long time
series tasks.

3) EVALUATION OF DATA LOAD RENDERING
In addition, to test the stability of the algorithm, frame
sampling points were selected as X -axis components to
evaluate the frame rates on three sets of datasets under the
no-prediction and proposed predictive scheduling loading
algorithms. The results are listed in Table 4.

TABLE 4. The frame rates of the proposed method are tested on three
sets of data.

The experimental results show that compared with no-
prediction, the frame rate is still higher and more stable even
when the data size is large, causing the rendering effect to be
smoother.

VOLUME 10, 2022 28829



Y.-H. Zhang et al.: Fast 3D Visualization of Massive Geological Data Based on Clustering Index Fusion

TABLE 5. Query time of data slicing for different algorithms.

FIGURE 12. Geological body data display effect.

FIGURE 13. Geological data along the different directions of the survey
line section display effect.

4) OVERALL PERFORMANCE EVALUATION
Here, with the index structure preloading model effectively,
this algorithm can test the interactive performance of the
entirety group Bdata. For example, after slicing geological
data every 10 samples and recording the time needed for
each algorithm according to the section; the results are shown
in Table 5, which significantly reduces the query time slice
compared with other algorithms.

Finally, we test the effect of the system’s overall display
settings that have different display modes for the entire sys-
tem platform rendering. Figure 12 is a blue map mode of
body data, Figure 13 is Lord with X as the contact line,

Y and Z as rendering time axis line direction, and is the
running observation of actual geological data. And it can be
seen that the system platform in this study can reflect the
internal structure and information of geological data with
high quality.

IV. CONCLUSION
In this study, based on the original Hilbert R-tree struc-
ture, variational deep embedding clustering is integrated to
improve the overlap of the data node space and directly
improve the efficiency of the index structure algorithm.
In addition, the new time-series convolutional network is
used to predict the viewpoint coordinates, which improves
the accuracy of the original prediction. Combined with the
data scheduling loading module, the data that need to be
drawn and displayed are preloaded into the memory. Through
comparative experiments on geological datasets, it is proven
that the proposed scheme can solve the problems of real-time
display and lag during large-scale data visualization through
the use of multiple modules, and improve the accuracy and
fluency of the entire data loading process.

In the future, the proposed method needs to be improved
and optimized, and the algorithm can be explored in greater
depth to include more complex and larger datasets. Moreover,
the method proposed in this study has only been tested on
geological datasets, and the system can be extended to pro-
vide researchers with more convenient tools.

THE FORMULA OF APPENDIX
(1)

I (x, z) =
∫∫

p (x, z) log
p (x, z)
p (x) p (z)

dxdz

=

∫∫
p (z | x) p̌ (x) log

p (z|x)
p (z)

dxdz

= Dkl[p(z|x)p̌(x)||p(z)p̌(x)]

(4)

p (z | x) = MIN {Dkl[qφ(z|x)||p(x|z)]− I (x, z)}

= MIN {
∫∫

qφ (z | x)p̌ (x) log
qφ (z | x)
p (z|x)

dxdz

−

∫∫
p (z | x) p̌ (x) log

p (z|x)
p (z)

dxdz}

= MIN {
∫∫

p̌ (x)[qφ (z | x) log
qφ(z|x)
p (z|x)

− p (z | x) log
p (z|x)
p (z)

]dxdz}

(7)

Dkl[qφ(z|x)||p(z|x)]

=

∑
qφ (z | x) log

[
qφ (z | x)
p (z|x)

]
= E[logqφ(z|x)−logp(z)−logpθ (x|z)+logp(x)+logp(z)]

= logp(x)+ E[logqφ(z|x)− logp(z)− logpθ (x|z)]
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(18)

Lc = KL(P||Q)

= −H (Q)+ H (Q;P)

=

n∑
i=1

k∑
j=1

pij log pij−
n∑
i=1

k∑
j=1

pij log qij

=

n∑
i=1

k∑
j=1

pij log
pij
qij
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