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ABSTRACT The number of biomedical literature on new biomedical concepts is rapidly increasing, which
necessitates a reliable biomedical named entity recognition (BioNER) model for identifying new and unseen
entity mentions. However, it is questionable whether existing models can effectively handle them. In this
work, we systematically analyze the three types of recognition abilities of BioNER models: memorization,
synonym generalization, and concept generalization.We find that although current best models achieve state-
of-the-art performance on benchmarks based on overall performance, they have limitations in identifying
synonyms and new biomedical concepts, indicating they are overestimated in terms of their generalization
abilities. We also investigate failure cases of models and identify several difficulties in recognizing unseen
mentions in biomedical literature as follows: (1) models tend to exploit dataset biases, which hinders the
models’ abilities to generalize, and (2) several biomedical names have novel morphological patterns with
weak name regularity, and models fail to recognize them. We apply a statistics-based debiasing method to
our problem as a simple remedy and show the improvement in generalization to unseen mentions. We hope
that our analyses and findings would be able to facilitate further research into the generalization capabilities
of NER models in a domain where their reliability is of utmost importance.

INDEX TERMS Bioinformatics (in engineering in medicine and biology), natural language processing, text
mining.

I. INTRODUCTION
Recently, more than 3,000 biomedical papers are being
published per day on average [1], [2]. Searching these
documents efficiently or extracting useful information from
them would be of great help to researchers and practitioners
in the field. Biomedical named entity recognition (BioNER),
which involves identifying biomedical named entities in
unstructured text, is a core task to do so since entities
extracted by BioNER systems are utilized as important
features in many downstream tasks such as drug-drug
interaction extraction [3].

One important desideratum of BioNER models is to
be able to generalize to unseen entity mentions. This
generalization capability is of paramount importance in the
biomedical domain due to the following reasons. First,
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various expressions for a biomedical entity (i.e., synonyms)
continue to be made. For instance, pharmaceutical companies
come up with marketing-appropriate names such as Gleevec
to replace old names (usually identifiers) such as CGP-
57148B and STI-571, whereas entities in other domains
such as countries and companies are relatively unchanged.
Second, new biomedical entities and concepts such as
the novel coronavirus disease 2019 (COVID-19) constantly
emerge, which can have a direct impact on human life
and health.

In contrast to the importance of generalizing to new entities
in the biomedical literature, there has been little systematic
analysis of the generalizability of BioNER models. While
recent works have made great efforts to push the state-of-the-
art (SOTA) on various benchmarks [4]–[7], it is questionable
whether a high overall performance on a benchmark indicates
true generalization. We conducted a pilot study to check
if current BioNER models are reliable in identifying new
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entities. Specifically, we trained BioBERT [7] on the NCBI
corpus [8], and then tested how many spans containing
the novel entity COVID-19 the model can extract from
PubMed sentences. As a result, the model extracted only
45.7% of all the spans, although it achieved high overall
performance on NCBI (90.5% in recall). From this, we con-
clude that existing BioNER models may have limitations in
identifying unseen entities, and their generalizability should
be explored in a more systematic way beyond measuring
overall performance.

In this work, we analyze howwell existing BioNERmodels
generalize to unseen mentions. First, we define three types of
recognition abilities that BioNER models should possess:
• Memorization: The most basic ability is to identify the
entity mentions that were seen during training. We call
this type of mention memorizable mention. If there is
no label inconsistency, even a simple rule-based model
would recognize memorizable mentions easily.

• Synonym generalization: Biomedical names are
expressed in various forms, even when they refer to
the same biomedical concepts. For instance, Motrin and
Ibuprofen are the same entity, but their surface forms are
highly different [9]. A BioNER model should be robust
to these morphological variations (i.e., synonyms).

• Concept generalization: While synonym generaliza-
tion deals with recognizing new surface forms of
existing entities, concept generalization refers to the
generalization to novel entities or concepts that did not
exist before. New biomedical concepts such as COVID-
19 sometimes are very different from conventional
entities in terms of their surface forms and the context in
which they appear, which makes it difficult to identify.

In terms of the three recognition types that we define,
we partition the entity mentions in the test sets (or validation
sets) into three splits based on mention and CUI (Concept
Unique Identifier) overlaps with the training sets, as shown
in Table 1. This gives us several advantages. First, we can
compare models’ generalization abilities in detail. For
instance, we find that the gap in performance between
BioBERT and BERT [10] is mainly from synonym and
concept generalization, not memorization (Section III). Also,
our classification is simple and can be easily adopted to
other datasets and other downstream tasks in the biomedical
domain such as relation extraction and normalization.
We focus on two popular BioNER benchmark in this work:
NCBI-disease [8] and BC5CDR [11].

On the three test splits, we investigate the generalizability
of existing BioNER models. Despite their SOTA perfor-
mance on the benchmarks, they have limitations in their
generalizability. Specifically, the models perform well on
memorizable mentions, but find it difficult to identify unseen
mentions. For the disease mentions in the BC5CDR corpus,
BioBERT achieved a recall of 93.3% on memorizable men-
tions, but 74.9% and 73.7% on synonyms and new concepts,
respectively. Also, the models cannot recognize the newly
emerging biomedical concept COVID-19 well. Surprisingly,

BioBERT recognized only 3.4% spans containing COVID-
19 when trained on BC5CDR. From these observations,
we conclude that existing BioNER models achieved high
performance on benchmarks, but they are overestimated in
terms of their generalizability.

Also, we identify several difficulties in recognizing unseen
mentions. First, through a qualitative analysis of error cases
on Syn and Con splits, we find BioNER models can rely
on the class distributions of each word in the training set,
reducing the models’ abilities to generalize. Since BioNER
datasets is relatively small for training large neural networks,
models may be sensitive to such dataset bias. Second, after
examining the failure for COVID-19, we conclude models
are not robust to new entities when they do not follow
conventional surface patterns. This is an important issue
to be addressed since many biomedical entities have rare
morphologies (See Table 8 for examples), and such entities
will continue to appear in biomedical literature.

The two difficulties can be viewed as models’ biases on
statistical cues and surface patterns. In order to show they
are addressable, we apply a simple statistics-based debiasing
method [12]. Specifically, we use the class distributions of
words in the training set as bias prior distributions. This
reduces the training signals from words whose surface forms
are very likely to be entities (or non-entities), mitigating
models’ bias on class distributions and name regularity.
In experiments, we demonstrate our debiasing method
consistently improves the generalization to synonyms, new
concepts, and entities with unique forms including COVID-
19.

To sum up, we make the following contributions:1

• We first define memorization, synonym generalization,
and concept generalization and systematically investi-
gate existing BioNER models in this regard.

• We raise the overestimation issue in terms of BioNER
models’ generalizability to unseenmentions and provide
empirical evidence to support our claim.

• We identify two types of bias as the main difficulty
in generalization in BioNER and show that they are
addressable using a current debiasing method.

II. DATA PREPARATION
A. PARTITIONING BENCHMARKS
We describe how we partition benchmarks. Several BioNER
datasets provide entity mentions and also CUIs that link the
entity mentions to their corresponding biomedical concepts
in databases. We utilize overlaps in mentions and CUIs
between training and test sets in the partitioning process. Let
(xn, en, cn) be the n-th data example of a total of N examples
in a test set. xn is the n-th sentence, en = [e(n,1), . . . , e(n,Tn)]
is a list of entity mentions, and cn = [c(n,1), . . . , c(n,Tn)] is a
list of CUIs where Tn is the number of the entity mentions (or
CUIs) in the sentence. We partition all mentions e(n,t) in the

1Code and datasets are available at https://github.com/dmis-lab/bioner-
generalization.
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TABLE 1. The number of mentions in the Mem, Syn, and Con splits of benchmarks. Each split (i.e., Mem, Syn, and Con) corresponds to each recognition type
(i.e., memorization, synonym generalization, and concept generalization). The table shows that current BioNER benchmarks are overrepresented by the
mentions in the Mem splits (i.e., memorizable mentions).

original test set into three splits as follows:

· Mem :=
{
e(n,t) : e(n,t) ∈ Etrain, c(n,t) ∈ Ctrain

}
· Syn :=

{
e(n,t) : e(n,t) /∈ Etrain, c(n,t) ∈ Ctrain

}
· Con :=

{
e(n,t) : e(n,t) /∈ Etrain, c(n,t) /∈ Ctrain

}
where Etrain is the set of all entity mentions in the training set,
andCtrain is the set of all CUIs in the training set. We describe
the partitioning process in detail in the Appendix.

B. DATASETS
We use two popular BioNER benchmarks with CUIs to
systematically investigate models’ memorization, synonym
generalization, and concept generalization abilities. Addi-
tionally, we automatically construct a dataset consisting of
the novel entity COVID-19.

1) NCBI-DISEASE
The NCBI-disease corpus [8] is a collection of 793 PubMed
articles with manually annotated disease mentions and
the corresponding concepts in Medical Subject Head-
ings (MeSH) or Online Mendelian Inheritance in Man
(OMIM).

2) BC5CDR
The BC5CDR corpus [11] is proposed for disease name
recognition and chemical-induced disease (CID) relation
extraction tasks. The corpus consists of 1,500manually anno-
tated disease and chemical mentions and the corresponding
concepts in MeSH. We denote the disease-type dataset as
BC5CDRdis and the chemical-type dataset as BC5CDRchem.

3) COVID-19
We construct a dataset to see if a model trained on current
benchmarks can identify the newly emerging biomedical
concept COVID-19. We sampled 5,000 sentences containing
‘‘COVID-19’’ from the entire PubMed abstracts through
March 2021 and annotated all COVID-19 occurrences in
the sentences, which results in 5,237 labels. Note that only
the exact term ‘‘COVID-19’’ was considered, and synonyms
for COVID-19 were not considered in this dataset creation
process.

C. SPLIT STATISTICS
Table 1 shows the statistics of the splits of the benchmarks.
We found that a significant portion of the benchmarks cor-
respond to Mem, implying that current BioNER benchmarks
are highly skewed to memorizable mentions. In Section III,
we discuss the overestimation problem that such overrepre-
sentation of memorizable mentions may cause.

III. GENERALIZABILITY OF BIONER MODELS
This section describes baselinemodels and evaluationmetrics
and analyzes the three recognition abilities of the models.

A. BASELINE MODELS
We use four current best neural net-based models and two
traditional dictionary-based models as our baseline models.
See the Appendix for implementation details.

1) NEURAL MODELS
We use BioBERT [7], BlueBERT [14], and PubMed-
BERT [13]. The models are all pretrained language mod-
els (PLMs) for the biomedical domain, with similar archi-
tectures. They are different in their vocabularies, weight
initialization, and training corpora. See the Appendix for
more details. Also, we use BERT [10] to compare general and
domain-specific PLMs in terms of generalization in BioNER.

2) DICTIONARY MODELS
Traditional approaches in the field of BioNER are based on
pre-defined dictionaries [15]. To compare the generalization
abilities of traditional and recent approaches, we set two types
of simple dictionary-based extractors as baseline models.
DICTtrain uses all the entity mentions in a training set (i.e.,
Etrain) as a dictionary and classifies text spans as entities when
the dictionary includes the spans. If candidate spans overlap,
the longest one is selected. DICTsyn expands the dictionary
to use entity mentions in the training set as well as their
synonyms, which are pre-defined in biomedical databases.

B. METRICS
Following conventional evaluation metrics in BioNER,
we use the precision (P), recall (R), and F1 score (F1) at an
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TABLE 2. Performance of current BioNER models on NCBI-disease, BC5CDRdis, and BC5CDRchem. The best scores are highlighted in bold, and the second
best scores are underlined.

entity level to measure overall performance [16]. We only
use recall when evaluating three recognition abilities (i.e.,
Mem, Syn, and Con) since it is impossible to classify false
positives into each recognition type. For COVID-19, we use
a relaxed version of recall: if ‘‘COVID-19’’ is contained in the
predicted spans, we classify this prediction as a true positive.

C. RESULTS
1) OVERALL RESULTS
Table 2 shows the performance of the baseline models.
BioBERT outperforms other baseline models on NCBI-
disease based on overall performance. For the BC5CDR cor-
pus, PubMedBERT is the best performing model. BERT
performs less than domain-specific PLMs, but far superior to
dictionary models. DICTsyn outperforms DICTtrain in recall
due to its larger biomedical dictionary, but the precision
scores decrease in general. Note that the performance
of DICTsyn on Mem is lower than that of DICTtrain as
there exists annotation inconsistency between benchmarks
and biomedical databases. We elaborate on this in
the Appendix.

Memorization can be easily obtained compared to the other
two abilities. Although the dictionary models are the simplest
types of BioNER models without learnable parameters, they
work well on Mem. The degree of difficulty in recognizing
synonyms and new concepts varies from data to data. The
models’ performances on Syn is lower than that on Con of
BC5CDRdis, but vice-versa on BC5CDRchem.

2) OVERESTIMATION OF MODELS
The neural models perform well on Mem, but they achieved
relatively low performance on Syn and Con across all
benchmarks. For instance, BioBERT achieved 93.3% recall
on Mem, but only 74.9% and 73.7% recall on Syn and
Con, respectively. Also, the neural models perform poorly on
COVID-19 despite their high F1 scores. BioBERT performed
the best, but the score is only 45.7% recall. Even more
surprisingly, all the models hardly identify COVID-19 when
trained on BC5CDRdis. To sum up, current BioNER models
have limitations in their generalizability.

As shown in Table 1, a large number of entity mentions
in existing BioNER benchmarks are included in Mem. This
overrepresentation of memorizable mentions can lead to
an overestimation of the generalization abilities of models.
We believe our model has high generalization ability due
to high performance on benchmarks, but the model may be
highly fit to memorizable mentions. Taking these results into
account, we would like to emphasize that researchers should
be wary of falling into the trap of overall performance and
misinterpreting a model’s high performance with generaliza-
tion ability at the validation and inference time.

3) EFFECT OF DOMAIN-SPECIFIC PRETRAINING
Domain-specific PLMs constantly outperform BERT on
Syn andCon. These results show that pretraining on domain-
specific corpora mostly affects synonym generalization and
concept generalization. On the other hand, BERT and

31516 VOLUME 10, 2022



H. Kim, J. Kang: How Do Your Biomedical Named Entity Recognition Models Generalize to Novel Entities?

TABLE 3. Performance of neural models on the abbreviations in the
Con splits. 32.7% of mentions are abbreviations in Con of NCBI-disease,
while BC5CDRdis has only 7.2% abbreviations. The best scores are
highlighted in bold.

domain-specific PLMs achieve similar performance on
Mem because memorization does not require much domain-
specific knowledge and the models have the same architec-
ture and capacity.

In particular, we find the gap in performance between
BERT and domain-specific PLMs is drastic in the general-
ization ability to abbreviations. Table 3 shows that neural
models’ performances on abbreviations on the Con splits
of NCBI-disease and BC5CDRdis.2 On NCBI-disease,
BioBERT is very robust to abbreviations, and the gap in
performance between BioBERT and BERT is 24.4% in recall.
BioBERT also significantly outperforms the other domain-
specific PLMs, resulting in high performance on Con of
NCBI-disease. On the other hand, PubMedBERT is the best
on the BC5CDRdis, outperforming BERT by a recall of
19.7%.

IV. ANALYSIS
In this section, we analyze which factors make the generaliza-
tion to unseen biomedical names difficult based on failures of
models on (1) Syn and Con splits, and (2) COVID-19. For
simplicity, we will focus on only BERT and BioBERT.

A. DATASET BIAS
We qualitatively analyze the error cases of BioBERT by
sampling a total of 100 incorrect predictions from the
Syn and Con splits of BC5CDRdis. As a result, we found
36% of the error cases occur because the model tends to rely
on statistical cues in the dataset and make biased predictions.
Table 4 shows the examples of the biased predictions.

In the first example, the model failed to extract the
whole phrase ‘‘acute encephalopathy.’’ All the words
‘‘encephalopathy’’ in the training set are labeled as ‘‘B,’’3

so the model classified the word as ‘‘B,’’ resulting in an
incorrect prediction. In the second example, there are four
entity mentions: two mentions are full names ‘‘anterior
infarction’’ and ‘‘inferior infarction,’’ and the others are their
corresponding abbreviations ‘‘ANT-MI’’ and ‘‘INF-MI.’’

2Note that BC5CDRchem is excluded in this experiment since it is not
easy to distinguish between abbreviations and other chemical entities such
as identifiers and formula due to their similar forms.

3Beginning in the BIO tagging scheme [16], [17].

TABLE 4. Examples of biased predictions of BioBERT. Entity mentions
(ground-truth labels) are displayed in blue. Model predictions are
highlighted with yellow boxes.

As the abbreviations are enclosed in parentheses after the
full names, it should be easy for a model to identify the
abbreviations in general if the model can extract the full
names. Interestingly, although BioBERT correctly predicted
the full names in the example, it failed to recognize their
abbreviations. This is because ‘‘MI’’ is only labeled as ‘‘B’’ in
the training set, and so the model was convinced that ‘‘MI’’ is
only associated with the label ‘‘B.’’ In the last example, about
73% of the words ‘‘defects’’ are labeled as ‘‘I’’ in the training
set as components of entity mentions such as birth defects
and atrial septal defects. However, the word ‘‘epithelial’’ is
only labeled as ‘‘O,’’ so the model did not predict the phrase
‘‘epithelial defects’’ as an entity.

From these observations, we hypothesize that BioNER
models are biased to class distributions in datasets. Specif-
ically, models tend to over-rely on the class distributions of
each word in the training set, causing the models to fail when
the class distribution shifts in the test set.

B. WEAK NAME REGULARITY
Name regularity refers to patterns in the surface forms
of entities [18], [19]. For example, many disease names
have patterns such as ‘‘ disease’’ and ‘‘ syndrome.’’
These patterns are regarded as useful features for identifying
unseen mentions and are often implemented in NER systems
after being handcrafted. However, little analysis has been
done on the difficulties a model can face when extracting
novel entities that do not have common name patterns
such as COVID-19. In this section, we hypothesize that the
cause of models’ failure to recognize COVID-19 is its rare
morphology and perform detailed analyses to support the
hypothesis.

1) CAUSE OF FAILING TO RECOGNIZE COVID-19
We have already confirmed in Table 2 that models fail to
recognize COVID-19. To see if the cause of this failure is
due to the rare surface form of COVID-19, we replace all
occurrences of ‘‘COVID-19’’ in the COVID-19 dataset with
more disease-like mentions ‘‘COVID,’’ while maintaining
context. Interestingly, BioBERT can recognize the entity well
after the replacement, as shown in Table 5.

Next, we train models with entity mentions having
similar surface forms to COVID-19 and see how the
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TABLE 5. Performance of BioBERT on COVID-19 and synthetically
generated mention ‘‘COVID.’’

TABLE 6. Performance of BioBERT on the COVID-19 dataset when trained
with name patterns similar to COVID-19.

performance changes on COVID-19. First, we randomly
generate 3-5 capital letters and 1-3 numbers. We then
combine the generated letters and numbers using the pattern
‘‘Abbreviation-Number’’ and create pseudo entities such as
IST-5, CHF-113, and SRS-3517. We randomly select 1 or
10 entity mentions in the training set that are abbreviations
and replace them with different pseudo entities. We then
trained BioBERT on the modified training set and test the
model how well it recognizes COVID-19. As shown in
Table 6, augmenting COVID-19-like name patterns improves
the ability to recognize COVID-19.

Note that low performance on COVID-19 is not due to
lack of sufficient context. Models fail even if there is enough
information in the context to determine whether COVID-19
is a disease, e.g., ‘‘treatment of COVID-19 patients with
hypoxia’’ and ‘‘The 2019 novel coronavirus pneumonia
(COVID-19) is an ongoing global pandemic with a worldwide
death toll.’’ Also, the small number of training data is
not the cause for the failure. We trained BioBERT on the
MedMentions corpus [20], which contains several times
more disease mentions than NCBI-disease and BC5CDRdis,
but the model extracted only 12.7% of COVID-19. From
these observations, we conclude that the biggest difficulty
in recognizing COVID-19 is the generalization to a novel
surface form.

2) COMPARISON OF NCBI-DISEASE AND BC5CDR
When trained on NCBI-disease and BC5CDRdis, the gap
in performance between the models on COVID-19 is
remarkable. This can be caused by three factors. First, the
BC5CDR corpus contains a number of chemical mentions
with the pattern ‘‘{Abbreviation}-{Number}’’ such as ‘‘MK-
486’’ and ‘‘FLA-63,’’ thus models can misunderstand the
pattern must be the chemical type, not a disease type. Second,
NCBI-disease contains several times more abbreviations
than BC5CDRdis in the training set, which could help
generalization to COVID-19 that is also an abbreviation.
Lastly, NCBI-disease has the entity ‘‘EA-2’’ in the training set

TABLE 7. Performance of BioBERT and BERT with/without our debiasing
method on NCBI-disease, BC5CDRdis, and BC5CDRchem. ↑ and ↓ indicate
performance increases and decreases when using the method,
respectively. The best scores are highlighted in bold.

with a similar pattern to COVID-19, while BC5CDRdis does
not have any disease entity with the pattern. Replacing
‘‘EA-2’’ with ‘‘EA’’ significantly reduces the performance of
BioBERT dramatically decreases from 45.7 to 11.2, which
supports our claim.

C. DEBIASING METHOD
We hypothesize BioNER models tend to rely on class dis-
tributions and name regularity experienced during training,
making it difficult to generalize unseen entities, especially,
entities with rare patterns (e.g., COVID-19). To support our
hypothesis and see if such bias can be handled, we adopt
a bias product method [21], which is a kind of debiasing
method effective in alleviating dataset biases in various NLP
tasks such as visual question answering and natural language
inference.

1) FORMULATION
Bias product [21] trains an original model using a biased
model such that the original model does not learn much from
spurious cues. Let p(n,i) ∈ RK be the probability distribution
over K target classes of the original model at the i-th word
in the n-th sentence, and b(n,i) ∈ RK be that of the biased
model. We add log(p(n,i)) and log(b(n,i)) element-wise, and
then calculate a new probability distribution p̂(n,i) ∈ RK by
applying the softmax function over K classes as follows:

p̂(n,i) = softmax(log(p(n,i))+ log(b(n,i))). (1)

We minimize the negative log-likelihood between the
combined probability distribution p̂(n,i) and the ground-truth
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TABLE 8. Disease entities with rare surface forms and the performance of BioBERT with/without our debiasing method.

label. This assigns low training signals to words with highly
skewed class distributions. As a result, it prevents the original
model from being biased towards statistical cues in datasets.
Note that only the original model is updated, and the biased
model is fixed during training. At inference, we use only the
probability distribution of the original model, p(n,i).
In previous works, biased models are usually pre-

trained neural networks using hand-crafted features as input
[21]–[24]. On the other hand, [12] used data statistics as
the probability distributions of the biased model, which
is computationally efficient and performs well. Similarly,
we calculate the class distribution of each word using training
sets, and then use the statistics. The probability that our biased
model predicts k-th class is defined as follows:

bk(n,i) =

∑N
m=1

∑Lm
j=1 1|x(m,j)=x(n,i)∧yk(m,j)=1|∑N

m=1
∑Lm

j=1 1|x(m,j)=x(n,i)|
, (2)

where N is the number of sentences in the training set, Lm is
the length of the m-th sentence, and x(n,i) is the i-th word in
the n-th sentence. If the ground-truth label of the word x(n,i)
is the k-th class, yk(n,i) = 1, otherwise 0.

2) EFFECT OF DEBIASING
We explore how the debiasing method affects models’
generalization abilities. Table 7 shows models’ performance
changes after applying the debiasing method. The method
decrease the memorization because it debiases models’ bias
towards memorizable mentions and their class distributions.
On the other hand, the method constantly improves the
performance on Syn and Con on the benchmarks. Debi-
asing methods usually decrease overall performance on
benchmarks [22], [24], which is consistent with our results.
With recent efforts to reduce bias while maintaining overall
performance [24], our debiasing method could be improved
in future work. Also, the debiasing method changes the
model’s behavior and corrects the errors in the first and third
examples in Table 4.

We also see if our debiasing method can improve the
generalizability to entities with weak name regularity. Before
testing the method, we crawled a list of rare diseases and
their descriptions from the NORD (National Organization for
Rare Disorders) database4 based on our hypothesis that rare
diseases tend to have more unique surface forms than
common diseases. Disease names were filtered if BioBERT

4https://rarediseases.org/rare-diseases

TABLE 9. Side effects of debiasing. Entity mentions (ground-truth labels)
are displayed in blue. Model predictions are highlighted with yellow
boxes.

trained on NCBI-disease successfully extracted them based
on the descriptions. Since descriptions provide sufficient
context to recognize entities, e.g., ‘‘African iron overload is
a rare disorder characterized abnormally elevated levels of
iron in the body,’’ an entity’s surface form would be rare if
a model fails to recognize the entity from the description.
Thus, we assumed that the remaining diseases after filtering
have weak name regularity. Finally, we obtained 8 diseases
from the database and collected PubMed abstracts in which
the diseases appear. Table 8 shows the list of diseases and
their frequency of occurrence. All diseases are different from
conventional patterns, and their CUIs are unseen based on the
NCBI-disease training data. We tested our debiasing model
on the diseases along with COVID-19 using the same relaxed
version of recall as the same as for COVID-19. As a result, our
debiasing method consistently improved the generalization to
rare patterns as shown in Table 8.

3) SIDE EFFECTS OF DEBIASING
Our debiasing method prevents models from overtrusting the
class distributions and surface forms of mentions, making
the models sometimes predict spans of text as entities,
which have never appeared in the training set. Although this
exploration of debiased models helps find unseen mentions
as shown Table 7 and Table 8, they have some side effects
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at the expense of the exploration. To analyze this, we sample
100 cases from the test set of BC5CDRdis that an original
BioBERT model predicted correctly, but a debiased one
failed.

Among all cases, we find 23 abnormal predictions of the
debiased model and classify them into three categories as
shown in Table 9. The most frequent type is predicting spans
that are not noun phrases. As shown in the first example
in the table, although ‘‘Loss of’’ is an incomplete phrase,
the model predicted it. Also, the model predicted the word
‘‘infarcted’’ as an entity although the word is an adjective
and is only labeled as ‘‘O’’ in the training set. Also, the
second type is related to name regularity. We found that
the model sometimes excluded strong patterns from their
predictions. For instance, as shown in Table 9, the model
predicted entities without ‘‘syndrome’’ and ‘‘injury’’. When
using the debiasing method, there can be a trade-off between
performance for entities with weak name regularity and those
with strong name regularity. Lastly, the model occasionally
predicts special symbols. As shown in the last row of the
table, the model predicted the word ‘‘sarcomas’’ with a
comma. The model also recognized parentheses as entities.
From these results, we conclude that the debiasing method
can lead to abnormal predictions by encouraging models to
predict rare (or never appeared) classes of words and spans
during training.

V. RELATED WORK
A. BIONER MODELS
In recent years, BioNER has received significant attention
for its potential applicability to various downstream tasks
in biomedical information extraction. Traditional methods
in BioNER are based on hand-crafted rules [25]–[27] or
biomedical dictionaries [28], [29]. However, these methods
require the knowledge and labour of domain experts and
are also vulnerable to unseen entity mentions. With the
development of deep learning and the advent of large
training data, researchers shifted their attention to neural
models [4], [30], which are based on recurrent neural net-
works (RNNs) with conditional random fields (CRFs) [31].
These models automatically learn useful features in datasets
without the need of human labour and achieve competent
performance in BioNER. The performance of BioNER
models has been further improved with the introduction
of multi-task learning on multiple biomedical corpora [5],
[6], [32]. Several works demonstrated the effectiveness of
jointly learning the BioNER task and other biomedical NLP
tasks [33]–[36]. Recently, pretrained language models such
as BioBERT achieved SOTA results in many tasks such
as relation extraction and question answering, and also in
BioNER [7], [13], [14].

B. GENERALIZATION TO UNSEEN MENTIONS
Generalization to unseen mentions has been an important
research topic in the field of NER [37]–[39]. Despite recent

attempts to analyze the generalization of NER models in
the general domain [18], [40]–[42], there are few studies
in the biomedical domain. Several studies investigated
transferability of BioNER models across datasets [43], [44].
On the other hand, we study the generalization to new and
unseen mentions based on our new data partitioning method.
Note that they did not split benchmarks and evaluated models
based on overall performance, so our method can be applied
to their experimental setups in future work.

C. DATASET BIAS
While many recent studies pointed out dataset bias problems
in various NLP tasks such as sentence classification [45]–[47]
and visual question answering [48], neither works raise
bias problems regarding BioNER benchmarks. Our work
is the first to deal with dataset bias in BioNER and to
demonstrate the effectiveness of the debiasing method.
Recent works found that low label consistency (the degree
of label agreement of an entity on the training set) decreases
the performance of models on general NER benchmarks
[40], [41]. In this work, we show that high label consistency
also can harm the generalization when the label distribution
of the test set is different from that of the training set.

VI. CONCLUSION
In this work, we thoroughly explored the memorization,
synonym generalization, and concept generalization abilities
of existing BioNER models. We found current best NER
models are overestimated, tend to rely on dataset biases,
and have difficulty recognizing entities with novel surface
patterns. Finally, we showed that the generalizability can be
improved using a current debiasing method. We hope that our
work can provide insight into the generalization abilities of
BioNER models and new directions for future work.

APPENDIX I. DETAILS IN PARTITIONING BENCHMARKS
We classify the set of mentions {e(n,t): e(n,t) ∈ Etrain,
c(n,t) /∈ Ctrain} into Mem for single-type datasets (e.g.,
NCBI-disease and CDR). If a dataset is multi-type (e.g.,
MedMentions), we classify the mentions into Con. Since
there are entity mentions that are mapped to more than one
CUI, c(n,t) does not have to be a single CUI and may be a list
of CUIs. In this case, we classify the mentions into Con if
all CUIs in the list are not included in Ctrain and otherwise
as Syn. We classify mentions with the unknown CUI ‘‘−1’’
into Con because unknown concepts in the training and test
sets are usually different. We lowercase mentions and remove
punctuation in them when partitioning benchmarks.

APPENDIX II. MODEL COMPARISON
Our neural baseline models (i.e., BERT, BioBERT, Blue-
BERT, and PubMedBERT) have the samemodel architecture,
which are Transformer-based encoders [49] with a linear
classifier. They differ in vocabulary, initialization method,
and training corpus during pre-training, as summarized
in Table 10. First, BERT is trained on Wikipedia and the
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TABLE 10. Differences between pretrained language models. Vocab. and
Init. indicate vocabulary and initialization.

TABLE 11. Best configurations of model hyperparameters.

BookCorpus [50] from scratch using the vocabulary within
the corpora. BioBERT and BlueBERT are initialized with
BERT’s weights and further trained on PubMed articles.
Additionally, BlueBERT is trained on the MIMIC-III corpus,
which consists of clinical notes. PubMedBERT is also trained
on the PubMed corpus, but it is trained from scratch and
trained with the PubMed vocabulary.

APPENDIX III. IMPLEMENTATION DETAILS
In the experiments, we used a public PyTorch implementation
provided by [7].5 We used the bert-base-cased model for
BERT,6 the biobert-base-cased-v1.1 model for BioBERT,7

the bluebert_pubmed_uncased_L-24_H-1024_A-16 model
for BlueBERT,8 and the BiomedNLP-PubMedBERT-base-
uncased-abstract model for PubMedBERT.9 The max length
of input sequence is set to 128. Sentences whose lengths
are over 128 are divided into multiple sentences at the
preprocessing stage. We trained and tested our models
on a single Quadro RTX 8000 GPU. For our synonym
dictionaries, we used the July 2012 version of MEDIC [51]

5https://github.com/dmis-lab/biobert-pytorch
6https://huggingface.co/bert-base-cased
7https://github.com/dmis-lab/biobert
8https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-24_H-

1024_A-16
9https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-

uncased-abstract

and the November 2019 version of CTD (Comparative
Toxicogenomics Database), provided by Sung et al. [9].

For all models, we used the batch size of 64 and searched
learning rate in the range of {1e-5, 3e-5, 5e-5}. For our
debiasing method, we smooth the probability distribution
of the biased model using temperature scaling [52] since
excessive penalties for bias can hinder the learning process.
We searched the scaled parameter in the range of {none, 1.1},
where none indicates that temperature scaling is not applied.
We chose the best hyperparameters based on the F1 score
on the development set. The selected hyperparameters are
described in Table 11. Note that all results are averaged over
5 runs using a randomly selected seed.

The original BioBERT model [7] was trained on not only
the training set, but also the development set, after the best
hyperparameters are chosen based on the development set.
This approach improves performance in general when the
number of training examples is insufficient and is commonly
used in many studies in BioNER. On the other hand, we did
not use the development set for training models, resulting in
lower performance of BERT and BioBERT compared to the
performance reported by Lee et al. [7].

APPENDIX IV. ANNOTATION INCONSISTENCY IN
BIOMEDICAL DATABASES
As shown in Table 2, the performance on Mem of DICTsyn is
lower than that of DICTtrain as there exists annotation incon-
sistency between benchmarks and biomedical databases. For
example, ‘‘seizures’’ and ‘‘generalized seizures’’ are entities
with the same concept in the databases, so the dictionary
of DICTsyn includes both ‘‘seizures’’ and ‘‘generalized
seizures.’’ However, in BC5CDRdis only ‘‘seizures’’ is
annotated. Since dictionary models predict the longest text
spans that are in their dictionaries, DICTsyn predicts ‘‘gener-
alized seizures,’’ resulting in incorrect prediction. Also, the
dictionary models cannot generalize to new concepts, but
DICTsyn achieved recall of 1.4 on Con of BC5CDRdis due
to annotation inconsistency, i.e., there are mentions with the
same surface forms, but different CUIs.

APPENDIX V. TOKENIZATION ISSUE
Following Lee et al. [7], we split words into subwords based
on punctuations. For example, ‘‘COVID-19’’ is splitted into
three words ‘‘COVID’’, ‘‘-,’’ and ‘‘19’’. This tokenization
makes it easy to deal with nested entities. If ‘‘SARS-CoV’’
is splitted into subwords, a model cannot detect ‘‘SARS’’ as
a disease. However, the tokenization is not an optimal way in
predicting the whole word ‘‘SARS-CoV’’ as a virus.

To see if dramatic low performance is due to the tokeniza-
tion issue, we preprocessed ‘‘COVID-19’’ as a single word
and tested BioBERT on them. As a result, the performance
of BioBERT has improved from 45.7 to 54.1, and from
3.4 to 15.4, when trained on NCBI-disease and BC5CDRdis,
respectively. Although the change in tokenization clearly
boosts performance, we have seen that the performance
improvement in Table 5 and Table 6, which is not explained
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by the tokenization issue alone. The main reason for
the failure in recognizing COVID-19 is that models are
vulnerable to unique name patterns.
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