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ABSTRACT Recognizing foot gestures can be useful for subtle inputs to appliances and machines in
everyday life, but for a system to be useful, it must allow users to assume various postures and work in
different spaces. Camera-based and pressure-based systems have limitations in these areas. In this paper,
we introduce AnkleSens, a novel ankle-worn foot sensing device that estimates a variety of foot postures
using photo reflective sensors. Since our device is not placed between the foot and the floor, it can predict
foot posture, even if we keep the foot floating in the air. We developed a band prototype with 16 sensors
that can be wrapped around the leg above the ankle. To evaluate the performance of the proposed method,
we used eight foot postures and four foot states as preliminary classes. After assessing a test dataset with
the preliminary classes, we integrated the eight foot postures into five. Finally, we classified the dataset with
five postures in four foot states. For the resulting 20 classes, the average classification accuracy with our
proposed method was 79.57% with user-dependent training. This study showed the potential of foot posture
sensing as a new subtle input method in daily life.

INDEX TERMS Photo reflective sensor, wearable device, machine learning, foot posture prediction.

I. INTRODUCTION
Foot posture and gesture recognition is an important field
for understanding human behavior, and we can apply it to
various human–computer interactions (HCI). Foot gestures
can be unobtrusive, and they can be used for subtle, everyday
interactions. Fukahori et al. define foot gestures suitable for
media and cell phone operation, and propose a recognition
method using pressure sensors [3]. Foot gestures have also
been used to control wearable robotic arms because they
are a hands-free input method [13]. Foot gestures have their
merits, and if we can measure them with a method that is not
restricted by situation or posture, we can enable a variety of
inputs in daily life and expand the range of applications such
as for people with upper limb amputations.

There are threemainmethods for recognizing foot postures
and gestures. Pressure-sensitive devices, such as pressure-
sensitive floors, are a traditional method for estimating foot
states in human sensing. Using an RGB camera [1] or a depth
camera [2] is another useful foot sensing method. A third
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notable method is the use of a sensor device integrated into
shoes or socks [3]–[5]. Floor-based sensing systems are very
accurate, and camera-based methods are easy to set up, but
these methods must be in a specific sensing area. Embedded
shoes or socks can be used in different areas, but it is diffi-
cult to capture barefoot postures and gestures. In addition,
foot sensors in the sole of the shoe or on the floor would
not work if the user did not place their feet on the floor
because there is no significant pressure distribution. These
limitations can be problems in everyday scenarios where
the user frequently changes his or her foot position and
posture.

To overcome these problems, we propose an ankle-worn
foot posture detection device with photo reflective sensors
(Fig. 1). The device detects foot posture based on skin defor-
mation at the ankle. Therefore, the ankle-worn approach can
capture foot posture while the user keeps their feet in the
air, even without shoes or socks, and without being limited
to a specific sensing field. The main contributions of the
ankle-worn sensing approach are as follows:
• We propose a novel foot posture-sensing device worn on
the ankle and using embedded optical sensors.
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• We validate the feasibility of the approach, which allows
us to estimate foot posture evenwhen the user is barefoot
and does not place their foot on the groundwithout space
constraint.

• We evaluate the classification accuracy with the actual
implementation.

II. RELATED WORK
A. FOOT SENSING AND INTERACTION
One of the most common methods of foot sensing is a
pressure-based approach. Fukahori et al. developed pressure
sensors in socks for foot-based interactions. They installed
eight pressure sensors with force-sensing resistance in a pair
of socks [3]. Saunders et al. attached force-dependent resis-
tors to the end of each insole. They synchronized these sen-
sors with depth data from Kinect to detect foot gestures [4].
Shi et al. used a smart insole with three pressure sensors
for virtual locomotion [5]. Ismail et al. analyzed fluctuations
in gait and posture using force plates and an accelerom-
eter [6]. Furthermore, optical fiber-based sensor technol-
ogy can be used to monitor in-shoe pressures during the
gait [7], [8]. These pressure-based foot interaction methods
are easy to use, and they have high classification accuracy,
but they cannot be used when users do not place their feet on
the ground. External camera-based interaction methods also
have been developed. For example, Yousaf et al. proposed
a camera-based approach for a user interface in automo-
biles [1]. A depth camera has also been used to estimate foot
gestures. Simeone et al. investigated the use of foot motion
to support basic 3D interaction using Microsoft Kinect [2].
Müller et al. used an external IR camera to capture foot
gestures [9]. Arami et al. evaluated a system with IR sensors
and an inertial measurement unit using an IR-based motion
capture system [10]. These systems are very accurate, but
they require multiple IR cameras to capture motion, and the
user must stay within the cameras’ field of view. Inertial
sensors can be used for gait analysis [11]; they are sensitive to
foot movement, but they have limited ability to classify foot
postures. These sensing methods do not allow use with float-
ing or bare feet, and they do not recognize foot gestures that
consider the state of the fingertips. Therefore, the situations
in which these sensing methods can be used are limited.

Foot-based interaction can be observed in the HCI field and
in interactions with robots. Velloso et al. analyzed foot-based
interactions between users and systems [12]. Sasaki et al.
developed a system to control a wearable robotic arm with
a device to capture foot gestures [13]. We believe that more
applications and interactions will become possible with our
device.

B. WRIST-WORN DEVICE FOR HAND POSE ESTIMATION
Hand pose estimation methods have been proposed using an
IR camera, an RGB camera, a depth camera, etc. For example,
one of the best-known commercially available devices is Leap
Motion [16], which consists of two cameras and three IR

LEDs. These camera-based methods, however, are limited to
the detection range.

To overcome this limitation, wrist-worn devices have
been proposed. These devices attach electromyography sen-
sors, accelerometers, and barometric pressure sensors to the
user’s wrist to estimate hand gestures and finger movements
[14], [15]. These wrist-worn devices are not limited to the
sensing area. They can also be attached to the user’s ankle.
That allows for the estimation of foot gestures and postures.
Lv et al. proposed another method using electromyography
and an accelerometer [14]. Their method allows the detection
of finger gestures and the estimation of force based on a
wrist-worn device. Shull et al. proposed another method for
estimating hand posture based on a wrist-worn device that
uses barometric pressure sensors to detect hand gestures and
estimate finger angles [15]. In addition, a photo reflective
sensor array was used to detect hand posture with a simple
machine learning technique [17] or with a tomographic imag-
ing technique [18]. Such wrist-worn hand posture detection
devices inspire our ankle-worn method.

C. WEARABLE PHOTO REFLECTIVE SENSING DEVICES
A photo reflective sensor is a tiny module that is widely used
with HCI. It can be used not only for hand pose estimation
(as mentioned in the previous section) but also for various
human states, such as facial expression [19]. Yamashita et al.
installed 20 photo reflective sensors on a head-mounted dis-
play (HMD) and detected the deformation of the cheek [20].
EarTouch enables users to interact with computing devices by
the ear [21]. Kasahara et al. developed a wrist-worn device
that recognizes four hand shapes and 14 wrist-bending states
using photo reflective sensors [22]. Sugiura et al. proposed a
device to recognize hand gestures by measuring skin defor-
mation on the back of the hand [23]. SenShoe is a gait pattern
recognition device that uses a photo reflective sensor attached
to shoes [24]. FirstVR is a hand gesture input device that
uses photo reflective sensors [25]. These methods mainly use
such sensors to measure the change in skin deformation in
response to the target human movement. We believe that it
would be possible to measure the change in skin deformation
corresponding to the movement of the ankle. We exploit this
feature to develop a novel device for detecting foot posture.

III. METHOD
In this section, we describe the configuration of the device
and the foot states and postures targeted in our experiment.
AnkleSens detects various gestures by measuring the skin
deformation of the ankle with photo reflective sensors. It can
be worn barefoot, and detects gestures in the air. The system
workflow of AnkleSens is shown in Fig. 2.

A. PHOTO REFLECTIVE SENSOR
A photo reflective sensor consists of an infrared (IR) trans-
mitter and a receiver (Fig. 3a). It detects a reflection and
works as a proximity sensor. This sensor module is suitable
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FIGURE 1. Concept of AnkleSens.

FIGURE 2. The system workflow of AnkleSens. Based on the training
dataset, we train classifiers to identify the foot states and postures.

for wearable applications because it is tiny, easy to install, and
has low processing costs.

To estimate hand posture, measuring skin deformation
associated with wrist tendons is a well-known approach.
In this study, we use a similar approach to detect foot posture.
When people move their toes or change their foot position,
the movement deforms their ankles. Therefore, by measuring
the skin deformation related to the tendons and muscle move-
ments of the ankle with photo reflective sensors, we should
be able to estimate foot posture.

We anticipate that this type of ankle-based sensing can
be used to predict foot posture in various situations, even
when the person is barefoot (e.g., daily indoor activities,
gymnastics, ballet, kendo, judo), since the sensors do not need
to be attached to the shoes, socks, or floor.

To place the sensor in the detection position and shut out
the external light, we used a 3D printer tomake sensor holders
(Fig. 3b). Then, we installed the sensors on the holders and
attached them to an ankle strap. We recorded a supervised
learning dataset with preliminary classes and analyzed the
classification accuracy by predicting the classes.

B. DEVICE: AnkleSens
We installed photo reflective sensors in the sensor holders of
a band and attached them to a user’s ankle. The band is 45mm

FIGURE 3. A view of a photo reflective sensor and holder.

FIGURE 4. AnkleSens, our novel device for detecting foot posture.
We attached 16 sensors to the band in two rows of eight at nearly equal
intervals. The band is 45 mm wide and 450 mm long. These sensors are
connected to the multiplexer, and the Arduino Pro Mini controls this
multiplexer and receives sensor values from the sensors.

wide and 450 mm long. We placed 16 sensors in two rows of
eight, each at nearly equal distances on the band (as shown
in Fig. 4). The sensors were placed between the upper part
of the ankle and the lower part of the shin. A snapshot of the
device is shown in Fig. 5. These sensors were connected to
a multiplexer. We used the Arduino Pro Mini to control the
multiplexer and obtained values from the sensors.

FIGURE 5. A snapshot of the device. We have placed AnkleSens between
the upper part of the ankle and the shin.

We used Kodenshi SG-105 as a photo reflective sensors
with a 3mm-6mm sensitivity to the skin. To keep the sensor
within the sensitive distance from the skin, a custom sensor
holder was fabricated with a 3D printer in a cylindrical shape
(Fig. 3). The holder had a diameter of 18 mm and a height of
10 mm. This holder blocks the ambient light, which can be a
disturbing factor for our purpose.
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FIGURE 6. Four foot states.

FIGURE 7. Eight foot posture classes for data collection process.

We recorded a supervised learning dataset with preliminary
classes and analyzed the classification accuracy by predicting
the classes.

C. FOOT STATES AND POSTURES
1) FOOT STATES
We defined four foot states (Fig. 6) to cover the conditions
in which the foot is standing on the ground or floating, and
whether person is sitting or standing.

2) FOOT POSTURES
Our device is designed to classify foot postures in which
users keep their feet on the ground and lift their feet off the
ground. To analyze the performance of the device, we defined

eight preliminary classes of foot postures as shown in Fig. 7.
neutral is the initial posture fromwhich users adopt other pos-
tures during data collection. In three postures, users change
their toe movements, and in the others, they swing their feet.
extend, hold, and big toe up are toe movements. hold requires
users to flex their toes as if they were holding something.
extend involves lifting the toes and creating gaps between
them. big toe up requires users to lift only their big toe and
lower the other toes. Toe left, toe right, heel left and heel
right are foot-swinging postures derived from toe rotation and
foot rotation defined by Scott et al. [26] and referred to by
Eduardo et al. [12] in their survey. In toe left and toe right,
the user pivots the foot around the heel. In heel left and heel
right, the user pivots the foot around the toe. Users perform
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FIGURE 8. An example of the instruction. Participants imitate the figure
shown on the right side of the display. We ask them to maintain the
target postures while the figure is shown on the display.

these postures by placing their feet on the ground and lifting
them off the ground.

D. CLASSIFICATION
We used a support vector machine (SVM) to predict the target
states and postures. We labeled four foot states and eight
foot postures during data collection. We used Python and
scikit-learn to calculate the classification accuracy using the
5-hold cross-validation method.

IV. DATA COLLECTION
This section describes the data collection protocol to validate
the effectiveness of the device. We collected datasets with
13 subjects (12 males, 1 female) in 32 postures (7 postures
and neutral in 4 states) 10 times each. The duration of each
posture was recorded as 100 frames at 75 frames per second
(FPS). This 100-frame data was used to classify the states and
postures.

A. DATA ACQUISITION PROTOCOL
We collected seven types of postures using the following
protocol for one trial, at 75 frames per second.

1) Put the foot in the neutral posture in the starting posi-
tion (Fig. 7a).

2) Change the body position to the target posture (75
frames).

3) Maintain the target posture (100 frames).
4) Return to the neutral posture (50 frames).
5) Maintain the neutral posture (50 frames).

Before data collection, we provided instructions about data
collection. First, we showed each target posture (as in Fig. 8)
and asked them to imitate the posture. Then, we explained
the data collection procedure. After these instructions,
we attached AnkleSens to the participant and began the pro-
cedure. The target postures and states were indicated during

data collection by both illustrations and text on display on the
desk.

During data collection, we randomized the order of all the
postures and collected data in one state. After we obtained
the data, the trial was repeated five times in each state.
After obtaining a dataset with all four states, we repeated the
data collection one more time. We collected 7 postures ×
5 times × 4 states × 2 sessions = 280 trials. Each trial
contained 100 frames of target posture data and 50 frames
of neutral data. In total, we had 42,000 frames per participant
available for analysis.

This study was conducted with signed consent forms from
participants under an experimental protocol approved by the
ethical committee of the faculty of science and technology,
Keio University.

V. ANALYSIS
Based on the collected data, we tested whether gestures and
postures could be classified using our device. Fig. 9 shows the
distribution of sensor values of each posture in the four states.
The Fig. 9 shows the difference between the average sensor
value of neutral and each posture. In the following analysis,
we trained an individual classifier using all the data from the
seven postures and one-fifth of the data from neutral.

A. ANALYSIS ON FOUR FOOT STATE
First, we analyzed the classification accuracy of the four
foot states shown in Fig. 6. Then, using these state labels,
we calculated the classification accuracy of the state.We have
7,700 frames in each state, and we calculated the accuracy
using the 5-hold cross-validation method for each participant.
The parameters of the SVM are shown in Table 1.
The average classification accuracy for the foot states was

94.21% for all participants. The highest rate was 99.02%,
and the lowest was 88.53%. The foot state classification
confusion matrix is shown in Fig. 10.

B. ANALYSIS OF PRELIMINARY EIGHT FOOT
POSTURES IN EACH STATE
We analyzed the classification accuracy of posture in each
state (Fig. 11). These classifiers were trained for each partic-
ipant and each state. The parameters of SVM were the same
as for state classification (Table 1), except that we changed
C = 10 in this evaluation. We also calculated the classi-
fication accuracy using the 5-hold cross-validation method
(Table 2). The average classification accuracy was 73.28%.
The classification accuracy of sit floatwas the highest among
the four states. The classification accuracy was 80.20% in sit
float state, and the lowest accuracy was 65.86% in stand float
state.

C. ANALYSIS ON 32 CLASSES (PRELIMINARY EIGHT
FOOT POSTURES IN FOUR STATES)
We had eight foot postures in the four foot states, yield-
ing 32 foot classes for classifying both postures and states.
Fig. 12 shows the confusion matrix of the 32 classes.
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FIGURE 9. An example of the averaged sensor values in each foot state and posture class. The horizontal axis indicates the sensor IDs (0-15) and the
vertical axis indicates relative sensor values to ones in the neutral posture. The error bar in each sensor indicates the standard deviation.

FIGURE 10. Confusion matrix of foot state classification.

We calculated the classification accuracy using the 5-hold
cross-validation method. The average classification accuracy
of all classes was 69.71%. As with the classification of indi-
vidual states (section V-B), three pairs of postures were mis-
classified. However, fewer misclassifications were observed
across states than misclassifications among postures in each
state.

D. ANALYSIS WITH 20 CLASSES (INTEGRATED FIVE
POSTURES BY FOUR STATES)
In the confusion matrix (Fig. 12) of the preliminary classes,
several postures had misclassified each other. Class design
is an essential parameter for machine learning. To assess the

TABLE 1. SVM parameters for state classification in scikit-learn SVC
function.

performance of a novel user interface in a previous study,
a follow-up analysis was performed that grouped existing
classes [29]. In this study, we also examined the accuracy of
an integrated posture class design. In the confusion matrix
of the preliminary classes (Fig. 12), several postures misclas-
sified each other. Fig. 13 shows the integrated foot posture
classes. Big toe up and extend are similar because of joint
coupling. When we float our foot, toe left and heel right
and toe right and heel left are essentially the same postures,
especially when we float our foot off the ground. Therefore,
we analyzed the classification accuracy of the integrated
classes of these foot postures. Fig. 13 shows the integrated
foot posture classes. After these changes, extend, toe left, and
toe right had twice the amount of data compared to the other
classes. We used all data sets in this analysis. We used the
5-hold cross-validation method, just as in the analysis of the
preliminary classes. Fig. 14 and Table 2 show the confusion
matrix and the accuracy of the classification result for the
five integrated postures in the four foot states. The average
classification accuracy of the 20 classes with user-dependent
trainingwas 79.57%.After these changes, extend, toe left, and
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FIGURE 11. Average classification accuracy in the preliminary eight postures in the four states.

toe right had twice the amount of data compared to the other
classes. We used all datasets in this analysis.

This change has improved the classification rate by about
10 points. It also reduced the number of cases of misclassi-
fication in certain postures. This indicates that the integrated
class can be used to classify the foot postures.

In this analysis, we calculated the classification speed.
It took about 3.5 seconds to train each subject’s data. Since
each frame can be classified in an average of 0.68 millisec-
onds, we can say that the system is sufficiently fast for some
real-time occasions.

VI. CASE TRIALS
A. SEQUENTIAL STATES AND POSTURES
AnkleSens was designed to predict foot states and postures in
daily situation. To this end, we collected time-series sensor
data in sequential foot states and postures from one user.
Fig. 15 shows the recorded situation and classification result,
where the user changed his states and postures, starting at sit
ground and following the order sit float, stand ground, stand
float. In each state, five postures (neutral, hold, extend, toe

left, and toe right) were performed in order. The Fig. 15 shows
the temporal transition of both postures and states.

B. POSTURE ESTIMATION WITH VARIETY OF FOOTWEAR
As a further trial on our method, we also conducted a case
trial with three types of footwear conditions (barefoot, indoor
shoes, and sandals). Since our device is worn on the ankle, it is
can to detect gestures while wearing shoes if the degree of
freedom of the ankle and toes does not change significantly.
Therefore, we investigated the possibility of classifying the
foot gestures of a user who was wearing sandals and indoor
shoes. The user performed five foot gestures in the following
order: barefoot, wearing indoor shoes, and wearing sandals.
The user repeated the procedure twice. After training the
SVM classifier with the collected data, we visualized the
results for the three types in Fig. 16.

VII. DISCUSSION
For the posture classification, the two sit states had higher
average classification rates than stand states. 90.34% in the
sit ground state and 87.68% in the sit float state. In contrast,
it was 79.62% in stand ground and 76.80% in stand float.
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FIGURE 12. Confusion matrix of 32 classes (the preliminary eight postures by the four states).

FIGURE 13. Integration of foot postures: We combined three pairs of
similar postures. As a result, we have five foot postures with four foot
states (20 classes in total).

In Sec. V, the results of the state classification were above
90.00% in all states. However, in the individual state and

TABLE 2. Average classification accuracy in the integrated eight/five
postures in each state.

posture classifications (Fig. 11), the accuracy rates were
about 80.00% in the sit state and 70.00% in the stand state.
In the classification of the postures, the two sit states had
higher average classification rates than the stand states—
90.34% in the sit ground state and 87.68% in the sit float
state. In contrast, it was 79.62% in stand ground and 76.80%
in stand float.
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FIGURE 14. Confusion matrix of 20 classes (the integrated five postures by the four states).

As described in the previous chapter, some pairs of pos-
tures were mixed with each other in the preliminary classes
because of similarity. Therefore, we also analyzed the classi-
fication rates of the integrated classes. We treated big toe up
as the same posture as extend. In the same way, we treated
heel right as the same posture as toe left and heel left as the
same posture as toe right. The average classification rate of
the five integrated postures in each state was 83.61%. The
average classification rate of 20 classes (5 postures in 4 states)
was 79.57%.

We also performed one-user-leave-out cross-validation to
check the generality of the device by learning between indi-
viduals using SVM. The accuracy of posture recognition was
35.32%, and that of state classification was 21.09%. This
implies that individual learning is necessary for the practi-
cal use of the device, and we would like to explore more
advanced algorithms in the future.

One reason for this result could be the reproducibility
of the foot postures. In the sit states, the participants held

their foot on a stable chair. In the stand states, they had to
maintain their body balance with their feet. Especially in the
stand float states, they maintained their balance with a single
foot. Therefore, this may be the reason that the stand float
states had the lowest average accuracy. Moreover, in the sit
states, they could view the instructions on display and control
their posture with visual feedback. In the stand states, some
participants looked at the instructions only on the display and
kept their feet in the target posture without paying attention
to their foot posture, which could be another cause for the
results.

Users with large changes in sensor values also tended to
have high identification rates. One possible reason for the
large change in sensor values is the high flexibility of the
ankle. On the other hand, one reason for the decrease in
the accuracy of gesture classification is that the position of
the sensor band shifts during repeated gestures. The sensor
holder used in this study was not soft, and it had a small
area that touched the ankle, so stability was an problem.
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FIGURE 15. State and posture classification results of sequential data.

FIGURE 16. Footwear and posture classification trial with sequential footwear changes.

In addition, the range of sensor values may vary depending
on the thickness of the ankle, but this can be normalized, and
the difference between men and women is not likely to have
a significant impact.

In Sec. VI-A, we tested our method with sequential pos-
tures and states. For most postures and states, a tempo-
ral transition can be seen. This suggests that our device
can classify both the postures and the states correctly.
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A few misclassifications in different states and postures were
observed. For example, toe right in stand ground was clas-
sified as neutral in sit ground and stand ground. In this
study, we used only the training dataset with five trials. If we
increase the number of trials, we can obtain a more diverse
training dataset to increase accuracy.

In Sec. VI-B, we show an experimental result of classifying
posture and footwear states. Because of the drift of sensor
values, the classification of the last condition of barefoot and
sandals was not accurate, whereas the classification accuracy
of posture states in each shoe class was high. Moreover, the
classification of the foot posture class was almost perfect in
this trial case.

VIII. FUTURE WORK AND LIMITATIONS
Based on the experimental results, we would like to consider
several ways to increase accuracy in future studies. For exam-
ple, it would be effective to make the device lighter so that
it can be stably fixed on the foot. This would optimize the
sensitivity and placement of the sensor. We would also like to
use machine learning or deep learning methods that take time
series information into account.

Our foot-sensing device can be used barefoot. Some
sports (gymnastics, judo, kendo, etc.) are performed barefoot.
From a kinematic point of view, toes play some roles [27].
We expect that we will analyze toe movements with the
help of AnkleSens. In the elderly, toe grasping strength is
associated with light daily physical activity [28]. Our device
may also be useful for training these people. As can be seen
from the results in section VI-B, the drift of sensor values
may be a problem if we use this approach for long-term
trials. Therefore, we would consider using an online learning
method for long-term use.

IX. CONCLUSION
We proposed a novel foot posture sensing device called
AnkleSens. This device can estimate users’ foot posture even
if they do not place their feet on the ground. In our analy-
sis, the prototype device showed remarkable accuracy. Four
states were classified at 94.21%, and 32 postures (4 states,
8 postures) were classified at 69.71%. We found that three
pairs of postures were similar when users lifted their feet
off the ground. Therefore, we combined the 32 classes into
20 (4 states, 5 postures). The average classification accuracy
of the 20 classes with user-dependent training was 79.57%.
In particular, our method showed significant classification
accuracy of posture in the sit ground state (90.34%) and the
sit float state (87.68%). This study introduced the possibility
of a new approach to foot posture sensing that uses photo
reflective sensors on a user’s ankle, and it investigated the
classification accuracy with the approach.
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