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ABSTRACT The localization of Wireless sensor networks (WSNs) has been recognized as one of the
most challenging problems to overcome. Thus, much work has been given to solving this difficult problem.
In emergency services, navigational systems, civil/military surveillance etc., locating the signal source in a
WSN is essential. A novel approach for sensor node localization using range-based localizationmethodology
has been proposed to overcome this issue. The problem is expressed in the form of a maximum probability
distribution function. The use of an RSSI-based Time Difference of Arrival (TDOA) measurement model,
along with the Chan algorithm, is used to find the coordinates of unknown nodes has been proposed.
With the help of ultra-wideband, this research aims to develop new and precise localization algorithms for
wireless sensor networks (WSNs). This work offers localization using two-hybrid localization algorithms,
i.e., ELPSO (Ensemble learning particle swarm optimization) and PSO- BPNN (Back-propagation neural
network optimized by particle swarm optimization). Further, the error optimization accuracy has been
compared between those algorithms using simulations. The proposed techniques consistently offer a better
localization accuracy than the conventional algorithms available in the literature. The new localization meth-
ods with optimal techniques reduce the error value to a minimal distance. The distance value of localization
error is nearly2.7cms compared to other designs from the literature. It is noted as significantly less.

INDEX TERMS Chan algorithm, Kalman filter, PSO, range based, 3D-node localization.

I. INTRODUCTION
The utilization of wireless sensor networks (WSNs) in a range
of applications. In this paper, the use of hybrid algorithms for
anchor-based node localization in UWB indoor networks is
investigated. This technology has been created by several dif-
ferent researchers. It has become increasingly popular to use
GPS and maps to locate a person in recent years. Buildings
are a barrier to GPS location signals that becomesGPS unable
to function indoors. [1]. A number of indoor localization
methods have been created as a result of GPS location inaccu-
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racies [2]–[7]. These include infrared, Wi-Fi, Bluetooth and
ZigBee techniques as well as radio frequency (RFID)/ultra-
wideband technology. The use of UWB technology increases
the durability.

The use of UWB-enabled devices and the deployment of
UWB signals are still necessary. Sensor networks are one of
the most significant technological developments of modern
years. When it comes to satisfying sophisticated communica-
tion and computer technology needs and specifications,WSN
has shown to be a very reliable and practical technology.
Sensor nodes collect data, which is then communicated to the
central unit. Sensor nodes are typically created by a single
move that includes a specific number of sensors. There are
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numerous reasons why sensors fail to provide expected data
in a wireless sensor network (WSN). The presence of a sensor
node negatively influences the location or tracking system
since it does not give the required positional data. When
an absolute sensor becomes unavailable, a neural network
method can temporarily replace it using time-series predic-
tions. There’s a problem with the system’s fault mode opera-
tion. After learning and measuring RSSI, the neural network
calculates the X and Y coordinates of the objective.

A virtual sensor and a real one is theoretically equivalent,
thus this paper analysis their effects on the system when both
are active and when only the virtual sensor is active.

Low-accuracy narrowband transducers influence ultra-
sonic indoor positioning. There is no real-time location capa-
bility with RFID [6], and the positioning precision is just
about 5 meters. Unlike other wireless technologies, UWB
does not rely on a carrier network [7]. Ultra-wideband sig-
nals can be transmitted using nanosecond or nanosecond
signals, which allow the ultra-wideband signal to have a
high resolution and higher location precision while utilizing
less energy and having compact network systems. There-
fore, UWB technology is particularly well-suited for indoor
real-time location that is both dependable and accurate. Even
though UWB is convenient, it still has certain limitations
of accuracy, particularly when it comes to 3D indoor local-
ization [8], [9]. This challenge can be solved by improving
ranking algorithms or positioning algorithms in hardware.
There are still a number of challenges to overcome, such
as multipath fading and shadowing effects. Over time, the
cost of network development and equipment installation will
likewise rise substantially as a result of these changes.

PSO is a well-known optimization method that is based on
conventional instinctive networks, that is why it has become
so successful. An entire swarm of particles flies and searches
in a limited area at a given pace, attempting to locate the
ideal location in pattern [10], [11]. Simple implementation
and high performance have made PSO a popular tool for
solving real-time scheduling and engineering challenges.
Although most UWB indoor localization systems use only
one PSO algorithm, our technique attempts a better solution
by integrating multiple PSO algorithms. As a result of our
observations, we believe that it is difficult to attain flawless
performance using present communication techniques alone.
In conventional UWB localization methods, the system con-
troller uses various localization techniques to estimate the
present positions of the users. The accuracy of conventional
approaches is dependent on the type of localization algorithm
and controller configuration. The indoor positioning accuracy
of UWB localization was improved in this work by introduc-
ing hybrid algorithms to optimize after TDOAmeasurements
were used.

There is a wide gap between the measured and actual
targets due to the limitations of hard equipment and envi-
ronmental obstacles. This study aims to bridge the gap by
enhancing in phases following a communication measure.
The distance between the beacon and the target nodes is cur-

rently assumed utilizing TDOA parameters in the localization
process. Further, target nodes’ 2D and 3D coordinates are
calculated using an improved Chan algorithm. After that, the
estimated position of target nodes is optimized using ELPSO,
BPNN.

II. LITERATURE SURVEY
Using indoor navigation techniques, the major purpose is to
locate people or things in indoor environments, viz., public
buildings, coal mines, tunnels etc. Creating and maintaining
accurate maps is challenging, and there is a lack of technol-
ogy for localization as well as the calibration of equipment
to gather enough measurements samples in real time sce-
narios. Various infrastructure-dependent and infrastructure-
independent approaches to indoor localization currently exist.
As an example of current network, Wi-Fi and the Global
System for Mobile Communications (GSMC).

Sumitra et al. [8] A global positioning system (GPS) is
not a frame structure on WSN nodes because of power con-
cerns. Nodes in a network can be located based on radio
channel characteristics. The method uses received signal
strength (RSS) from dispersed environmental nodes, notably
within the building, to determine the location of sensor nodes.
In addition, the authors evaluated another weight centre-
location-based algorithm (WCL) used. Jain et al. [10] A new
process of investigating the mechanism by which all sensor
nodes in a WLAN network can be located. A new method
of investigating the mechanism by which all sensor nodes
in a WLAN network can be located. A complete analysis
was provided to minimize the collinear issue and localization
error, with a shorter path and location time, on numerous
localization methodologies and route management mecha-
nisms for themobile beacon node.Moravek et al. [11] specify
the correlation between perceived value and place of source
data is crucial for location’s objectives. Various findings
demonstrate that the suggested trajectory has less errors in
location than the present trajectory used in the study.

Zwirello et al. [13]. In their study, the technology configu-
ration, including the UWB transceiver and time measurement
module, a system simulation is used to analyse how this con-
tributed to the rise in the data transfer rate. Simulations and
measurements are used to investigate the system’s contribut-
ing factors of error. In addition, techniques for improving
the average accuracy of 9cm are being investigated. Posi-
tioning error prediction using scenario geometry is provided
along with the positioning method. Finally, an analysis of
the data is presented. Hua and Seo [14] The precision of
a localization system for blue tooth applications is critical.
We’ve developed a method for selecting the trilateration tar-
get inside the hexagonal primary unit distance that maximizes
accuracy. However, we found that the approaches suggested
here were not sufficient to deliver effective services since
they did not give a suitable degree of accuracy. Implementing
the current research work resulted in an accuracy of 74%
with a 1 m standard deviation. About % of the locations
were far from their actual areas. If the machine can anticipate
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locations more correctly, the accuracy can increase to 88%.
Kawai et al. [15] An enhanced Kalman filter-based multi-
layer perceptron (MLP) was presented to process BLE RSSI
data. Lee et al. [16] proposed a new technique where signals
at a specific frequency were sent by Waveguide, it included
RF and audio signals. Distance and trilateration are deter-
mined using the TDOA method, and they concluded that
TDOAmethod is more reliable than other methods like AOA.
Sheikh et al. [18] proposed a technique called Visible Light
Communication (VLC) to determine an object’s position with
minimum localization error, while a signal flows via an opti-
cal channel. Uradzinski et al. [19] The balanced K-nearest
neighbours method and the Bayesian algorithm have been
developed for a novel data filtering solution with an average
accuracy of 0.81m or less. Numerousmethods are available to
determine the target’s location depending on the technology
utilized, including signal metrics like the received signal
intensity indication, channel status information and finger-
printing analysis. Due to its inexpensive cost and absence of
extra equipment, RSSI is a widely used technique today.

Wang et al. [20] proposed a work to accommodate the
skewed Time of Flight (TOF) result, but in a Concurrent
Time Difference of Arrival C-TDOA approach, this doesn’t
work. The approximate TOF anchor estimate is utilized to
remove the offset clock in the C-TDOA technique on the
other side. Mazraani et al. [21] discussed the issue that local-
ization is based on the range. This classifies and matches
the most popular range-based optimization strategies so that
network designers may select the approaches/algorithms that
are appropriate for their applications.

Mekelleche and Haffaf [22]. These methods, on the other
hand, are more exact, but they also require more resources.
Aruna et al. [23] a novel approach that mobile beacon is
believed to be transported on an equilateral triangle path,
containing signal location information on a regular basismen-
tioned in the study. Han et al. [24] proposed that localization
describes a categorization method with levels where local-
ization strategies are characterized as centralized, distributed,
or centralized localization algorithms produce superior posi-
tion estimations than centralized and distributed techniques.

Kulaib et al. [25] In addition, it’s suggested that a grid
scan of the entire sensor field be used for path planning.
Classification is dependent on distance between nodes in
order to increase the position consistency. Iterative multi
lateralization technique and algorithm start conditions are
also provided to avoid loss of localization accuracy during
the iterative phase, according to the study. Zhang et al. [26]
suggested a numerous localization technique using the TDOA
has provided information for UWB MIMO cognitive radar.
If there are many targets, different correlation peaks show the
TDAs of those targets. Estimate the mapping link between
TDOA’s and the relevant objectives. Vandersmissen et.al [27]
proposed Chan algorithm and the Taylor algorithm are two
regular approaches for solving nonlinear positioning equa-
tions for radiolocation in a two-dimensional (2-D) space. As a
result, Chan approach has a low computational complexity

and good accuracy in high signal-to-noise ratio (SNR) and
Gaussian noise environments improved accuracy of node
localization due to algorithm hybridization and discussed var-
ious methods for recognizing indoor human activity involved
a combination of video-camera and radar sensors combined
with a convolutional neural network. Rao et al. [28], pro-
posed a novel approach that a resource based RSSI was
used to calculate the location estimate, and critical resources
had to be eliminated. This was done before any validation
sets were extracted from the complete and online training
phase. During the experiment, the product performed well.
As compiled by Qin and co-authors. Using radio sensors for
fingerprint-based device-free Wi-Fi indoor identification that
can cope with noisy channel status information is presented.
Convolutional neural networks (CNN) and interference auto
encoders are used in this system. Cai et al. [30] discussed
ELPSO, a particle swarm optimization technique, is reported
to be composed of three variations of PSO under super opti-
mum control, concluded in this study that particles learn
not just from their own experience, but also from that of
their neighbors. If you’re interested in optimizing indoor
localization, anyone may benefit from this unique system of
education. For UWB indoor localization, this method is used
in both the 2D and 3D versions of the technology. Due to
this, both 2D and 3D UWB indoor localization are affected.
A well-used benchmark, CEC2005, was utilized to assess
ELPSO’s performance. Two- and three-dimensional ELPSO
variants have been tested for UWB indoor localization and
have proven that it outperforms the existing PSO algorithms
in most tests it is known that ANN has a similarity with
the human neurological system. Samantha et al. [31]. As a
result, it can learn and adapt, and this capability of ANN has
been used in this research. Numerous ANNmodels have been
developed based on the connection of neurons. Themultilayer
perceptron is supervised trained using the back-propagation
network learning algorithm. The maximum data rate Bm of
110 kbps was employed with a length of 1024 symbols.

Gharghan et al. [32] Current systems are compared
with those that use sensor-based fall detection algorithm
(S-BFDA), clustering error using ANN technique, and sim-
ulation energy consumption using DDA. NN and DDA beat
earlier systems in high accuracy, MAE, and battery life.
For fall detection, our results show that we can rely on the
proposed system’s accuracy, which is roughly 49 cm.

III. PROPOSED METHODOLOGY
As a part of the initial work, distance calculation using
TDOA measures have been taken from the literature. Sim-
ulation has been carried out for 2D and 3D scenarios with
improved Chan algorithm to determine the coordinates of
specific nodes. The implemented energy disturbances are
cleared by using Kalman filter. Further, two optimization
techniques, i.e., ELPSO and BPNN along with least square
(LS) & TD (tetrahedron) have been proposed to optimize the
calculated target node positions, shown in Fig 1 and Fig 2.
Ultra-wideband (UWB) is themost promising indoor location
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FIGURE 1. (a,b). Anchor node deployment in range-based scenarios using
least square method (1 represents the mobile node).

tracking technology among existing wireless technologies.
UWB protects against multipath fading. While significant
spread spectrum resolvability does not eliminate the negative
implications of NLOS and multipath propagating, it does
improve. It is easy for NLOS and multipath propagation to
cause meters of UWB range error indoors. Indoor location
monitoring data can decrease, mainly as a result. An NLOS
detection approach using recursive tree structure is proposed
provided. UWB channel quality metrics helped us change our
model’s Gini index and priors splitting criterion.

An Ultra-Wideband-based wireless sensor network com-
munication and location tracking system is the primary
objective of this study. Furthermore, system-level evaluation
considers objective mobility, functional design, information
distribution, and position update delay when assessing dis-
tance estimate and tracking approaches. The full 10m× 10m
top floors of an office building served as a reference environ-
ment for the simulations and measurements. Figure 1 shows
the location of the beacons in the cabins.

Data from the real world with variable degrees of multipath
effects and range errors is necessary to build a good NLOS
detection model. LOS and NLOS data sets from the EWINE
UWB LOS and NLOS datasets were used in this study to
construct the model. UWB channels Cn number 2 with a
central frequency of Fc 3.9936 GHz and a bandwidth of B
499.2 MHz were used to collect this data set. As a result, the
first-path signal detection average accuracy was improved by
preamble lengths of up to 4096.

LIMITATIONS
Wireless Sensor Networks have been investigated uti-
lizing a UWB-based communication and monitoring
technology.

Various strategies are presented to deal with latency and
resource constraints.
The number of slots utilised to locate a target should be
fixed to finalise the target position inside a limited range

A. METHODOLOGY FOR PROPOSED SYSTEM
The relevant distance between the beacon and target node can
be calculated through TDOA (Time Difference of Arrival)
implementation. The multiple TDOA based positioning sys-
tem with estimated position is optimized by using the Chan
algorithm. The positioning system further checked with
Kalman filter. Optimization defines minimizes the variance
of the estimation error. PSO is a well-known algorithm for
optimization. In this work, the algorithm hybridized with
ensemble learning and back propagation of neural networks.
Multiple anchors were placed in the selected indoor environ-
ment to get high accurate positioning of the moving target
node. The Fig 3 depicts the Implementation flow of node
localization.

1) TDOA MEASUREMENT
In addition to being more adaptable than ToA, time difference
of arrival (TDOA) is the second most commonly utilized
range approach. Time of reception and speed are all that
are required for this strategy. Neither the target’s broadcast
time nor the receiver’s time of transmission are necessary.
Using the difference in arrival times, equation 1 can be used
to determine the distance between both variables and the
objective.

1d = c∗ (1t) (1)

where c is the speed of light and1t is the difference in arrival
times at each reference point. The distance calculation can be
done by equation 2.

1d =
√
((X2−X)2−(Y2−Y)2−(X1−X)2−(Y1−Y)2)

(2)

Which corresponds to the known positions of the beacons
(X1, Y1) and (X2, Y2). A hyperbolic equation can be created
by converting this equation to a nonlinear regression equation
using nonlinear regression.

2) LEAST SQUARE AND METHOD OF ESTIMATION
The 2D objective localization based on TDOA measurement
is shown in a non-line of sight condition. Four base stations
i.e.BS1 to BS4 has been considered as anchor nodes. The
source is sending the signal (t) to the nearest BS.
The source is sending the signal (t) to the nearest BS. For

i=1,2,3, 4,5 . . . . N iterations, BS (i) receives the N+1 signal
whereas Yi (t) is the time of positioned anchors.
The received signals are given by equation 3

yi (t) = ais (t − Ti)+ ei (t) , i = 1, 2, 3 . . . .n (3)

an undefined transmitter and unknown receiver, which have
their respective positions in space as shown in the Fig below.
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FIGURE 2. (a,b). Implementation flow of node localization.

FIGURE 3. Anchor node deployment in range-based scenarios using least
square method.

Utilizing the n-least-squares framework with GPS, it is con-
ceivable to estimate the TOA- i and (x, y). When there is no
established reference, a pairwise comparison of the received
signals can be employed. Using a correlation function, pair-
wise estimation may be done by the equation 4 where τ is
the arrival time coordinate from base station i,j represents
distance representatives of x and y axis.

1d(i,j) = ν(τi − τj), 1 ≤ i < j ≤ n (4)

where v represents the terminal velocity, light, and liquid
motions. N in this case stands for the number of receivers,
whereas i and j are an enumeration of all K receiver pair
configurations, where K is the number of receivers and given
by the matrix equation 5.

k = (
n
2
) (5)

A Wave form consists of locations (x, y) along a 1d(i,j) line.
Start by assuming both of the receivers are in the same line
of sight, with their respective positions being equal to d2.
Then1d can be simplified with the co-ordinate values of x,y,
the respective distance value added to x differential as D/2.
Therefore, the hyperbolic function can be calculated by using
equations 6 and 7.

d2 =
√
y2 + (x + D/2)2 (6)

d1 = −
√
y2 + (x − D/2)2 (7)

Then the 1d calculated with the equation 8 where the h
differential D also includes

1d = d2 − d1 = h(x, y,D) (8)

By simplifying and rewriting the equation 8 and 9, the average
distance value 1d is written by the equation 10.
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The hyperbolic function in global coordinates is thus given
by 1d(i,j) = h(x, y,D) in (8), with differential in diagonal
distance can be written using equation 9.

D =
√
(Yi − Yj)2 + (Xi − Xj)2 (9)

1d =
√
y2 + (x + D/2)2 −

√
y2 + (x − D/2)2 (10)

The equation 11 can be written to simplify for hyperbola
centroid will be

x2

a
−
y2

b
=

x2

1d2/4
−

y2

D2

4 −
1d2
4

= 1 (11)

Simple translation of the hyperbolic function (5) between
local to global coordinates is required for a general receiver
position in matrix a simple trigonometric function for x and
y coordinates using sin and cos represents for opposite and
adjacent coordinate values where α is the angle of moment
written in equation 12.(

X
Y

)
=

(
XO
YO

)
+

(
Cos (α) −Sin (α)
Sin (α) Cos (α)

)(
x
y

)
(12)

Here, X0 = (Xi+(Yi+(Xj)/2)/2 is the center of the receiver
pair, while y0 = (yi+ (Yj)/2 is its equivalent.
There are N (N > 3) sensor nodes, the coordinates of

the sensor nodes are known, which are Si = (ai,bi)T, i ∈
{1, 2, . . . ,N}, where [i]t denotes the matrix transpose. It is
p(x, y)T for the target. If the sensor can be attached to two
anchors, the formula will be as follows if it doesn’t fall within
the above-mentioned number of instances. Considering the
measuring distances as (ai, bi) represents to x and y coordinate
with difference matrix (12), the equation can be rewritten as
13,

aiϕi ≈ bi (13)

With the error verification ϕi equation 14 written for the ith
coordinate as

ai =
[
xi1 yi1 1
xi2 yi2 1

]
(14)

From the above matrix, the equation 15 written for bi for
sensor coordinate as

bi =
(
r2i1 − x

2
i1

)2
.
− y2i1 + r

2
i2 − x

2
i2 − y

2
i2).

T
. (15)

The diagonal distance transpose matrix for sensor to node
location written in the equation 16 as

ϕi =
[
ϕTi ϕTi ϕi

]T
. (16)

There are four intersection points with the anchor, least-
squares developed with all the near Anchors to check the
position where (xi, yi) become the least distance. Numeric
values can be generated using a basic positioning geometrical
technique done using a formula. The line that connects the
two locations is originally discovered in this case. When it

FIGURE 4. Distance calculation between anchor and moving target nodes.

comes to findving the x-coordinate, the equation 17 expressed
as

x =
−γ ±

√
γ 2 − 4a

2a
. (17)

Suppose when we have to determine the equation of line of
best fit for the given data, the equation of least square line
is given by y = a + bx, where the equations (18) for a is∑
y = na+ b

∑
x and for b it is∑
xy = a

∑
x + b

∑
x2 (18)

In order to calculate the covariances, sensors need to
exchange their current position predictions with those of their
neighbors and the distance between them. The sensor that
will receive several estimates can be positioned for better
combination among that low distance will be considered.
Consider the position known as i the values of covariance,
and the error can be estimated and positioned as i1. Among
all the error deviations, the slightest error e1 finalize with the
combination and shown as Fig 4.

3) TETRAHEDRON 3D METHOD FOR ESTIMATION
The unknown node receives the signal of all the anchor nodes
in the communication range, record their RSSI value, and set
up a set of RSSI values in the order from big to small, then
take the RSSI value of the larger anchor nodes.

Anchor nodes are selected from the network and then com-
municated with through radio and unknown nodes to capture
the RSSI value. It’s possible to create a tetrahedral network by
manually selecting a number of anchor nodes that have been
received by the reference nodes. As shown in Fig 5, A1, A2,
A3, A4 is the four known-mark of anchor node, it is easy to
calculate the distance of A1, A2, A1A3, A1A4, A2A3, A2A4,
A3A4. Further the distances, i.e., MA1, MA2, MA3, MA4 are
calculated.

Calculate the volume of A1, A2, A3, A4, MA1A2A3,
MA1A2A4, MA1A3A4, MA2A3A4, the volume value V is as
V1, V2, V3, V4, respectively. If ( (V1+V2+V3+V4 >V),
you can determine the M in the outside of the tetrahedral
A1A2A3A4, discard the modified tetrahedral. The average
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FIGURE 5. Structure of 3D- tetrahedron with- 4 anchor nodes.

distance taken in to consideration where N become number of
measurements an R(i) is distance between anchor and target
nodes. Finally, the arithmetic mean of the N RSSI values of
the unknown node to the same anchor node is considered as
the final RSSI value of the anchor node.

The Cartesian coordinates of the four vertices are, (x1, y1,
z1), (x2, y2, z2), (x3, y3, z3), (y4, x4, z4), rij is the distance
between the vertices I and j. Then the formula for the calcu-
lation of its volume is as follows:

RSSI =
n∑
i=1

R (i) /N (19)

Then the calculation of its volume is as derived by the matrix
equation (20)

V =
1
6
=

∣∣∣∣∣∣∣∣
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣
=

1
6

∣∣∣∣∣∣
x2 − x1 y2 − y1 z2 − z1
x3 − x2 y3 − y2 z2 − z1
x4 − X3 y4 − y3 z4 − z3

∣∣∣∣∣∣ (20)

A set of centroid coordinates then one group per 4, composed
of new tetrahedral set, if the group is not divisible by 4,
then the rest of the centroid coordinates into the next round
of the tetrahedron of reference centroid iteration calculation.
We can repeat the above process many times until we get four
centroid coordinates to remain. Only two or three centroid

coordinates are remaining. These can be used as the final node
estimations. Consider 50 unknown nodes, a communication
distance of 10m, and a random pick of 4 anchor nodes con-
sisting of the tetrahedral shape to see if there are any unknown
nodes to filter out position errors. The probability of a non-
localized node having a nearest neighbor is high, resulting in
a high localization ratio.

The localization ratio (LR) is measured by equation 21,
where Nl is the number of localized nodes andNt is the total
number of non-localized nodes.

LR = Nl/Nt (21)

It’s possible to do this by keeping an array next [0. N-1] so
that next [p] represents the index of another node within that
same tetrahedron (or −1 in case there is no such node). This
point is placed in a mesh data structure with the tetrahedron
as the first point in the list of points.

The localization error per localized node is calculated by
equation 22.

Lerror =
∑Nl

i=1

√
(ui − xi)2 + (vi − yi)2 + (wi − zi)2/NL

(22)

There are NL localized nodes in the network, and their coor-
dinates are (ui,vi,wi) in actual space; however, their estimated
co-ordinates (xi,yi,zi) in virtual space. The algorithmic flow
of target flow node localization is given in Algorithm1

Algorithm 1 Target Node location
1. Input: define objective function (LS/ Tetrahedron)
2. Output: Localization data
3. Initialize: anchor placement-P
4. Number of targeted nodes-N
5. Define localization measured co-ordinates (xi, yi)

(xi,yi,zi)
6. Activate sensor nodes (anchors)
7. For i= least co-ordinate
8. For anchor Pi ≈ check the least value of target
9. If P<Pi, then fix the value.

10. If not repeat steps 5,6,7
11. Run for the least coordinate Pi
12. End if
13. Evaluate
14. Update for measured values
15. End for
16. End.

4) IMPLEMENTATION OF CHAN ALGORITHM
The Chan algorithm could attain all TDOA by measuring
and obtaining a specific analytical solution; All nonlinear
equations are transformed into a set of linear equations before
TDOA’s known relevant data is used to determine the best
condition as soon as this is done, the second phase uses
a weighted least squares algorithm to estimate where the

32552 VOLUME 10, 2022



Y. Venkata Lakshmi et al.: Improved Chan Algorithm Based Optimum UWB Sensor Node Localization

nodes will be measured. In the improvement of the first least-
squares calculation of the Chan algorithm, the calculation
method of the 2D/3D Chan algorithm is used, and one of the
arithmetic formulas and the twomatrices are improved. In the
original Chan algorithm, only the point coordinates in the area
enclosed by each base station can be located, so the utility is
not high. In response to this problem, this paper proposes the
first least-squares measurement error discriminant method.
After the first weighted least squares solution of the Chan
algorithm,1 x,1 y, and1 z with positive and negative values
are obtained, and the positive and negative values of1 x,1 y,
and1 z are obtained according to the first time, respectively.
The related correspondence is obtained for the second time.
This method makes it possible to locate any mobile terminal
within the base station signal coverage.

The distance calculation formula of the base station and the
mobile terminal is improved by using the equation 23

ri =
√
(xi − x)2 + (yi − y)2 + (zi − H )2 (23)

H is the height of the mobile terminal measured by the air
pressure, and (xi, yi, zi) is the coordinate of the ith base station.
Since the TDOA is a 3D value, the height difference obtained
by the air pressure measurement is added when calculating
the distance. The distance considered as di, measurement
point is (x, y) and reference base station it is (xi, yi), the
distance between observed node and the standard base station
is then calculated by using the equation 24.

di2 = (xi − x)2 + (yi − y)2

= Ki − 2xix− 2yiy+ x2 + y2 (24)

where, Ki = x2 + y2, di1 is represents the difference in
distance between the label and the ith base station.

When i = 3, two measurements can be performed, two
equations of two variables can be produced using equation
transformation, and the assumed location of the target may
be solved.

When i ≥ 4, let R2
= x2 + y2, When the true location of

Za0 is determined to be (x 0, y 0, R0), the error vector (ϕ) for
the variables can be established. There are no known targets
in the equation 25, which is written as

ϕ = H-GaZa (25)

where the H becomes the height calculation of the node in
3D space and Ga is the node coordinates the distance matrix
written as following equation:

H =


d2i − K1
d22 K2
3 .

1 .

2 2
d2n− Kn

, Ga =


−2x1 −2y1 1
−2x2 −2y2 1
. . .

. . .

. . .

−2xn −2yn 1

,

Za =

 x
y
R

 (26)

Let the measurement error of each reference node be Iδ, then
error value of ith node calculated by using the equation 27.

ϕi=di2−(di0)2= (di0+δi)2−(di0)2=2di0δi+δ2i (27)

The reference node’s real value, is represented by di0.
By using the weighted least squares (WLS) method, get an
initial estimate of Za. Where the time of arrival expressed as
T, for each Ga it can be expressed and the equation 28 written
as

Za = (Ga
Tø−1Ga)−1Ga

Tø−1H (28)

Instead of 26, the identity matrix can be utilized in the initial
estimation because it is unknown. To check the estimated
value of Za the equation 29 can be simplify to

Za = (Ga
TGa)−1Ga

TH (29)

In this approach, it is now possible to express the link between
the estimated and the real value of the object:

Za1 = x0 + e1
Za2 = y0 + e1
Za3 = R0 + e1

where e1, e2, e3 are estimation errors the expression written
to error value of the target by using equation 30.Where e1, e2,
e3 are estimation errors the expression written to error value
of the target by using equation 30.

Let ϕ1 = 2xe1 + e21 ≈ 2xe1, ϕ2 = 2ye2 + e22 ≈ 2ye2,

ϕ3 = e3.. (30)

then for N number of node error deviation finalized and
rewritten in equation 31:

ϕ’ = H’−Ga’ZP (31)

The transpose matrix with time differential error vector Zp
written for equation 32

where, H1
=

 Ẑ2
a1
Ẑ2
a2
Ẑ2
a3

, Ga1 =

 1 0
0 1
1 1

,
Zp =

(
x2

y2

)
, ϕ1 =

[
ϕ′1, ϕ

′

2, ϕ
′

3
]T (32)

T ϕI = ϕ1ϕ2ϕ3 is the error vector of Zp. The estimated value
of Zp is calculated using the equation 33 as improvement.

Zp = (Ga’Tø’−1Ga’)−1Ga’Tø’−1H’ (33)

The location result obtained by the two WLS calculation
referred to the equation 34:

Z = ±
√
Zp (34)

There should be no difference in the sign of the selected (x,
y, z) in Zp and in the Zp selected inside the placement region
as a solution to a problem.
Filtration: Kalman filtering is a two-stage process that

begins with prediction and ends with upgradation Variables
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will be estimated during the prediction process. On the other
hand, the update step involves updating information based on
current situations. The Kalman filter’s process is as follows.

In order to determine the mobile node’s range signal,
N beacon nodes are placed in the field at various times. For
example, if you want to know where the nth beacon node is,
you need to know (Xn,Yn), where n = 1,. . . , N. In a 2D-
plane, the mobile node moves randomly, with state vector
x(k)= [x(k) y(k)]. A mobile node’s position and velocity can
be described by the expression T at each time step of time
step, where time step k is equal to 1, 2, 3, 4, etc. As a result
of the change in x(k) at iteration interval. A beacon node’s
(xm, ym) coordinates are (m = 1),. . . , (m =M), where M is
the number of beacon nodes in the network. With state vector
x(k), the mobile node moves randomly in a 2-dimensional
plane. Amobile node’s position and velocity can be expressed
as (x(k)/y (x(k)) at each time step, k = 1,. . . , K. According
to equation 35, X(k) changes at time step k to describe its
movement.

k, x̂k = Fkxk−1 + Bkuk (35)

where In this example, the correlation coefficient l (T, H) is
the correlation coefficient between the temperature of the ith

hour (ti) and humidity (hi) of the ith hour (ti). T and H rep-
resent the arithmetic mean of humidity levels, respectively.
The position of the node represented by using the equation
36. where Pk is the post estimate error covariance and the
filtration can be written in the equation 37. Filtering the
temperature and humidity along x vector the equation written
as 38 where H relates the state Xk to the measurement Zk

Pk = FkPk−1FTk + Qk (36)

K ′ =
PkHT

k

HkPkHT
k + Rk

(37)

xk = x̂k + K ′
(
zk − Hk x̂k

)
(38)

The position node can calculate after filtration by using the
simplified equation 39

Pk = Pk
(
1− K ′Hk

)
(39)

Accuracy checked with TP as temperature at node with TN
number of nodes in with filtered value and filtered nodes can
be calculated using the equation 40 and precision, re verifi-
cation with the equations 41 and 42. The algorithmic flow of
localization with filtration is given in Algorithm 2.

Accuracy :
TP+ TN

TP+ TN + FP+ FN
(40)

Precision :
TP

TP+ TN
(41)

Recall :
TP

TP+ FN
(42)

IoU =
X ∩ Y
X ∪ Y

(43)

Algorithm 2 Localization With Filtration
1. Input: Measured target co-ordinate
2. Output: Measured data deviation
3. Initialize: Update anchor node list, Checking Pi, trans-

mission
1(a). Checking the node ID

4. Sending feedback signals 3. Establishing relevant
matrices
3(a). Establishing the estimation matrix
3(b). Establishing the distance matrix

5. Constructing the approximation matrix
6. Repeating the preceding steps until all matrices are

formed
Output Position of the non-anchor node
(1. Picking up the hop range from the anchor node list
2. Calculating the final distance matrix via Ls = Tsp.
3. Positioning the transmission node.
4. Filtration)

7. Return the position information of the target sensor
node as the outcome

8. end if
9. evaluate the position

10. update best position Pi
11. end for.
12. End.

IV. OPTIMIZATION WITH ELPSO
Improved PSO has been implemented in the place of tra-
ditional PSO with Ensemble learning, the re calculation of
measurement for node localization shown in figure-6.

The Basic PSO method consists of a population of ran-
domly distributed particles inside the parameter space. Par-
ticles in the parameter space reflect alternative solutions to
the design optimization problem because of their positioning.
As each particle goes across parameter space, it has a velocity.
Some of the advantages of the PSO approach include fewer
parameters, faster convergence, and low requirement for gra-
dient information. As part of the algorithm 3, the mass-less
particle swarm is used to find the optimal location.

The improved PSO algorithm employs a set of feasible
solutions within the search space, called a swarm of parti-
cles with random initial locations. Our proposed algorithm
reduced the initial search space by using a bounding box
method.

In addition, thousands of iterations require massive energy
consumption, which will significantly shorten the service
period of sensor nodes. In summary, because of the short-
comings of the above localization algorithms, a two-stage
PSO algorithm for wireless sensor node localization in the
concave region is proposed in this paper. The first stage:
based on the similar path and intersecting ratio to determine
whether the shortest path between nodes is affected by the
concave boundary, then calculate the distances between target
unknown nodes and beacon nodes, finally, using the least
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Algorithm 3 Optimization Using PSO
1. %% Output: the initial calculated value of the target

position (x,y,z)
2. For 1 ≤ i ≤ N Do %% i is each particle
3. Initialization of particles
4. End
5. Do
6. For 1 ≤ i ≤ N Do
7. If fitness (Xi) > p-best i Then p-best-i = Xi;
8. End
9. If %%p-best-i is the best position of i−th particle

10. End
11. For g-besti = opti{p bestii1 ≤ i ≤ N}%% optimum

value
12. For 1 ≤ i ≤ N Do
13. If fitness (Xi) > p-best i Then p-best-i = Xi;
14. Update particle velocity and position according to the

equation-9
15. If pbest i > gbest i
16. Then g best i = p best i;
17. End if
18. End for
19. End.

PSO Implementation
1.While (not timeout) {
2. Listen for and collect anchor nodes’ information
3. if (discover 3 or more anchor nodes in its neighborhood)
{//MODE 1
4.CALL procedure LOCALIZATION
5. }
6.}
7 //MODE 2
8. Get original anchor nodes’ information from the packet
broadcast by the closest neighbor anchors
9. if (discover 3 or more anchor nodes) {
10. CALL procedure LOCALIZATION
11.} else {
12. Set as an orphan node
13.}
14.
15 Procedure LOCALIZATION
16. {
17. Use PSO to estimate the location and become an updated
anchor node
18. Broadcast the estimated location and the location data of
original anchor nodes
19. Localization complete and exit
20. }

square method to complete nodes localization. The second
stage uses the improved PSO method to optimize the coordi-
nates calculated in the previous step.

FIGURE 6. ELPSO based optimization with TDOA node localization 2D &
3D.

FIGURE 7. Network process of TDOA in BPNN for real optimal values.

FIGURE 8. Optimal path flow chart by using BPNN.

The present work uses the PSO algorithm in the second
stage to inter-relatively optimize the results obtained in the
first stage. The aim is to decrease the impact of distance error
on the results and improve localization accuracy. The location
of beacon nodes are: a1(x1, y1) · · · ai(xi, yi) · · · an(xn, yn),
According to the first-stage ranging algorithm, the distances
from beacon nodes to u are: d1u · · · diu · · · dnu.
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FIGURE 9. Flow chart for BPNN- PSO implementation for optimal error
variance.

Assuming m particles are searching for the best solution
in D-dimensional space using PSO, the location of the ith
particle in the swarm is determined as Xi = (Xi1,Zi2, · · · · ··
XiD). The correctness of the particle’s positions is evaluated
using the objective function at each possible location.

The optimal location that the particle passed is: Pbest(i) =
(Pi1, Pi2, · · · · · · PiD), record the optimal coordinate currently
searched in the entire particle swarm as: Gbest = (Pg1, Pg2,
· · · · · · PgD).

A. OPTIMIZATION USING ELPSO
To improve the generalization of a single learner’s learning,
ensemble methods integrate a large number of individual
learners. Subsets of original dataset are substituted by random
sampling to create subsets, and then individuals are trained on
these subsets before integrating them via a vote mechanism.
The Fig 6 shows the ELPSO based optimization with TDOA
node localization 2D & 3D.

There are two ways in which you can represent particle
i’s position in N-dimensional space: by using the vectors
[Xi1] and [Xi2] and by using vectors Vi = [Vi1, Vi2, Vi3,
Vi4]. The evaluation function and the particle’s personal best
position (pbest) and current location (Xi) provide each particle
a fitness value based on its experience. We also kept track of
the best position (gbest) for each particle, which is based on

FIGURE 10. Localization pattern from anchor to dynamic nodes in Indoor
network in 3D environment.

FIGURE 11. Regular deployment of nodes localization.

other peers’ experiences. By using its own or other particles’
best experience to calculate its future movement, the particle
updates the corresponding velocity and location. Pbest is the
nearest best position Pbest value that classifies the data as a
result of the optimized technique. The relativemajority voting
method is a frequent strategy for classifier combination in
algorithms. The prediction output of ensemble learningH1(x)
can be obtained as follows: where i, j refers to the position
co-ordinates of best X.

H1(x) = C
argmax6L

i = 1hji (x)
J

(44)

After the classification of N no. of data points set in particle
swam, the recalculated position of P was verified for the
lowest nearby value of P (Xi, Yi). N particles are all included
in this space following a distance L from each particle to each
base station, and given the observed distance R from target to
target for the ith particle and jth target, we get the following
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TABLE 1. Co-ordinate values of localization of 2D positioning. TABLE 1. (Continued.) Co-ordinate values of localization of 2D
positioning.

fitness function:

f(pi) = (L iA − R
i
A)

2
+ (L iB − R

i
B)

2
+ (L iC − R

i
C )

2

+ (L iD − R
i
D)

2 (45)
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When f = 0, Pi achieved the optimal solution, i.e., Pi exactly
located in the position of target.

To find the mean and standard deviation of the solutions
in the appendices. When f3, f5, f6, f7, f8 and f13 are consid-
ered, the ELPSO achieves the best possible solution in these
functions.

B. BPNN-PSO OPTIMIZATION
As a result, classification is one of the most significant Neural
Network applications. Many hours are required to solve clas-
sification issues, as well as extensive research on all the static
patterns that may be used for classes. Hence, the initialization
of the swarm (neuron) is done by assigning it to any random
place and velocity, as well as the potential solutions that are
flown via hyperspace and it is depicted by Fig 7. Neuronal
networks are split into two modules in order to achieve high
accuracy using TDOA estimate propagation.

Input layer: majority are used in the training set and 20 per-
cent in the test set for each model’s input values.

Hidden layer: The number of nodes in a neural network
affects its performance on the hidden layer. More complex
a network’s architecture, the more accurate its output will
be, in general. The number of neurons in this research is
8 because of the training time and accuracy of the compro-
mise approach. The Tan(h)-Sigmoid activation function is
used to approach any non-linear precision function.

The output layer is composed of two places estimated
minimum for 2D and four positions estimated minimum for
3D estimations, respectively and is shown in Fig 8 and Fig 9.
Train BP neural network using anticipated values and its
actual position first, and then build a group of the new position
of unknown node to simulate.

For example, CM1 symbolizes line-of-sight residential
areas, while CM2 denotes environments that do not have line-
of-sight access. RMSE performance of the BP neural network
in CM1 and CM2 channels can be optimized by hybridizing
with PSO by using all of the SNR values.

Sample datasets of 300 were considered out of it 17% of
tested samples taken for the optimization of measuring values
considered to neurons in error prediction.

These are divided into two sets of 10 each for training and
validation. The investigation looks at three training scenarios:

1. Training measurements are collected in all reference
locations, and one model per anchor is learned (A=0).

2. Training measurements are collected in all reference
locations (M=0), and a single model is learned and
applied to all anchors (A=1).

3. Training measurements are collected in every second
reference location, and separate models for each anchor
is learned (A=0).

Step-1: This neural network functions as a virtual sensor
to simulate the information retrieved by a faulty sensor A1
during its failure considering its past data and current infor-
mation from sensor A2. The neural network is trained with
the same inputs as those that it needs for operating. The neural

FIGURE 12. Least square deployment of nodes localization.

FIGURE 13. Comparison of measured localization error with optimized
error in 2D scenario.

FIGURE 14. Error fitness deviation after repeatable test with dynamic
nodes.

network comprises an input layer, at least one inner layer (also
called a hidden layer), and one output layer. The input layer
receives the data and introduces them to the other neurons.
In this study case, the input layer needed four neurons to
work correctly, as there were four inputs besides the bias,
which was considered to have the value of 1. Thus, this neural
network received past positions (x(t− 1), y(t− 1)), (x(t− 2),
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FIGURE 15. Comparative analysis of various algorithms at various positions. (a) Fitness graph of beacon measurement at position 1.
(b) Fitness graph of beacon measurement at position 2. (c) Fitness graph of beacon measurement at position 3. (d) Fitness graph of beacon
measurement at position 4.

FIGURE 16. Error fitness deviation after repeatable test with dynamic
nodes.

y(t − 2)), current and past distances calculated from sensor
A2(r(t),r(t − 1),r(t − 2)).
Step-2: The output layer consisted of two neurons that

provide the estimations of the node’s position. Comparing
the last two positions allows the machine-learning algorithm

to estimate the movement’s speed and inertial tendency. The
outputs of the algorithm are coordinates in the X and Y
axes for each interaction step. The figure shows this neural
network.
Step-3: Time-series correlations were performed to eval-

uate the linear temporal relationships between X and Y
coordinates, the past time values of these variables, and the
measured distances of sensor r2. The steps were each of the
last discrete positions measured for each variable. The time
from one stage to another varied according to the individual
speed of the target.
Step-4: Comparing the mean error with the median reveals

that the statistical distribution of errors presents symmetrical
behaviour, maybe with a very short tail to the left, similar to
the behaviour of the X-axis.
Step-5: The virtual sensor could replace the actual sen-

sor for some time, provided that the past position/trajectory
was known and the calculated position is within the active
sensor radius. This replacement would work even if the
original sensor was already at a greater distance than the
one considered between the sensor nodes of the experi-
ments performed in this work, and one failed. From one
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TABLE 2. Co-ordinate values of localization of 3D positioning. TABLE 2. (Continued.) Co-ordinate values of localization of 3D
positioning.
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TABLE 2. (Continued.) Co-ordinate values of localization of 3D
positioning.

sensor with the corresponding measured position of the
other sensor through MATLAB function corr() that estab-
lishes the pairwise correlation coefficient between each pair
of vectors, which comprised the time series of the posi-
tions detected by each sensor. This correlation was found
by comparing the registered data for each of the measured
positions.

Back Propagation Neural Network Model with 20 neurons
in the hidden layer was trained with 100 data points’ dataset.
This network was tested with the test data set, from where a
root mean square error of 0.1040 m was calculated. After that
this network was trained with 300 data points’ dataset. This
was again tested with the same dataset, now it gave a root
mean square error of 0.0350 m. The actual position and the
estimated position of each node after simulation for both the

cases (100 data points training and 300 data points training).
Next a radial Basis Function networkmodel with 100 neurons
in the hidden layer was trained with the same 100 data points’
dataset and after testing it with the test dataset.

A framework for detecting external objects in a UWB sen-
sor network was developed using the BPNN method. Fig. 9
The performance of the localization approach compared with
the least-squares estimator. Backward error propagation and
weight correction. Neuron error gradients are computed in the
output layer:

A steady result is the objective of previous neural net-
works (e.g., the Multilayer Perception) P(d|x), a pdf of the
inter-node distance conditioned on the pre-processed feature
vector, has been extended from the traditional neural network
technique. Ex = (x1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , xn)T

[1, . . . , x∼M]T to get better output data.

xm = −1+
2(xm − xm,min)
xm,max − xm,min

m = 1, . . . . . . . . . ..,M (46)

The final m values that are gathered for fitness functions to
estimate the absolute localization coordinates fall into the
anchor environment.

Data set- 100 points, test data- 50 nodes, Validate- 4 posi-
tions.Total collected data 200 × 4 = 800 values, accuracy-
95%, sensitivity- 86.5%, classifier- Nuero-Fuzzy,

Classes are sub-divided into four classes according to the
standard node distance.

V. RESULTS AND DISCUSSION
The search area is established on every measured target
in the preceding section’s standard UWB localization algo-
rithm. The proposed method can be implemented within the
Fusion Center’s existing hardware structure with very mod-
erate changes. The proposed algorithm ELPSO and BPNN,
application in UWB indoor localization, was tested in a 10 m
x 10 m square simulated area. Two estimators were used to
process the nonlinear equations that were generated.

This algorithm was determined to be superior to other
widely used algorithms because of its high accuracy and
low energy consumption. While this study does not establish
how the suggested sensor node localization algorithm works,
it demonstrates how it may be used as a viable basis for
locating WSNs 3D UWB indoor localization is an extension
of 2D. Similarly, suppose a cube region 10 m× 10 m× 10 m,
there are four base positions A (Xa, Ya, Za) = (0, 0, 10), B
(Xb, Yb, Zb) = (0, 10, 10), C (Xc, Yc, Zc) = (10, 10, 10), and
D (Xd, Yd, Zd) = (10, 0, 10) located in it in the same. The
configuration of 3D indoor localization is shown in Fig 10.
The 50 target positions (x, y, z) are uniformly distributed
during the test. For every target, the optimization step is
consistent with the two-dimensional case.

Velocity and mobilization of particles near to the anchors
and nearby sensors showing very less error when compared
with other target nodes in both the cases of measurement 2D
and 3D and the co-ordinate values of localization error values
are shown in table 1 and table 2.
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FIGURE 17. Comparative analysis of various algorithms at various
positions.

When we initially measure an object indoors, we create a
search space based on that target, similar to a 2D setup for
each target. Figs. 11 and 12 Nowwe have a three-dimensional
representation of the search space, represented by an object.
The swarm is triggered and distributed randomly in this
sphere.

The deployment of beacons has shown Fig. 14 in the
above fitness graphs 15 a,b,c,d. the momentum randomly
changed to check the localization error from all the 4 posi-
tions. A slight variation found in 3rd, 4th position in which the
beacons falls in to twomeasured positions with equi-distance.

The optimized error values of some nodes find in
figure 13 and 16 is very low, the mobilization time of beacon
respect to anchor node is near by the location of two anchor
nodes. Much variation not found in RMSE the moment near
to the wall.

The results Fig. 17 showing that there is significant
location error concerning anchor placement conditions; this
location optimized to minimize localization error. Dynamic
momentum of node will change randomly, with Chan algo-
rithmmeasurement and filtration, further swarm optimization
techniques implemented. All location errors find in cm at
dynamic conditions to finalize the exact measured value with
anchors. A set of unknown nodes perform localization by
estimating the distance from different three anchors. The
distance from the anchor to an unknown node is calculated
using Receive Strength Signal Indicator (RSSI). Generally,
PSO has converged earlier to find the optimal solution that
makes PSO trap into the local optimal problem.

The least values of error localization found in 3D with
back propagation neural network consideration compared
with others and shown in figure 18 and mentioned in table 3.
The values obtained were comparatively low after the pro-
posed method and showed a slightest variation of 1.02cm.
UWB network with indoor localization positioning with the
dynamic interpretation of measured value significantly given

TABLE 3. Co-ordinate values of Localization of 3D positioning.

good results in hybrid algorithms with 2D and 3D. In the
conducted simulations, the density of anchor nodes. A novel
method is implemented to decrease the localization error in
UWB environment in indoor network with different optimal
methods. The work presented in this paper show a consid-
erable improvement in RMSE for node localization, when
TDOA approach is used along with neural networks. This the
approach works best when the area involved is small and node
density is large. This paper presents a simple neural-network
orientation-dependent ranging-error model in 3D space. The
selected BPNN model required the measured distance and
the calculated orientation, elevation and azimuth, as an input.
The experimental data and the results when choosing the
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FIGURE 18. Comparison of localization error for all optimal techniques in
centimeters.

TABLE 4. Comparison of present state of art with another research.

BPNN model configuration are presented and discussed.
When testing a different number of neurons in the hidden
layer on training data, BPNN model error decreases with a
higher number of neurons. The Percentage of training data
is 97.5%, validating data-95.29% with accuracy-93.73% by
adopting BPNN for the present 3D scenario.

VI. CONCLUSION
The ELPSO algorithm presented in this study uses ultra-wide
band (UWB) signals for real-time indoor localization and
an entirely new approach to optimization. An optimization
problem can be used to solve the interior location problem.
Using the ensemble learning technique, a particle learns
from its own experience, the experience of its neighbors,
and the experience of other swarms. This new learning tech-
nique improves indoor location accuracy and helps particles
develop an even better and more promising search area.
With the current approach, both 2D and 3D UWB indoor
location methods using MATLAB can be used. A computa-

tional engine implemented in MATLAB can control both the
transmitter and receiver simultaneously. Sound waveforms
and related reception filters can be continuously optimized
to keep up with the ever-changing monitoring environment.
Since wireless sensor networks with many anchor nodes
are consistently not distributed, the Chan algorithm is more
suitable for rapid moving targets because of a less comput-
ing time and relatively stable performance. PSO-based opti-
mization uses hybrid algorithms with Ensemble learning and
Back-propagation neural network with localization algorithm
of Chan using Kalman filter. PSO with a Back propagation
neural network gave the most accurate localization results
among all the hybrid combinations. Results after simulation
showed PSO-BPNN with tetrahedron 3D given Constance
values compared with the other methods. The average inac-
curacy is 2.72 cm, which is significant. Compared to the
literature review of reference 13,33 and 34 on UWB net-
works, the minimum localization error is 9cm, and as our
optimization process decreases to 2.72 cm, quite a noticeable
result.

Comparing different optimizing techniques with meta-
heuristic algorithms, the localization error with TDOA
implementation in UWB indoor environment, error distance
decreased much with other methods like GBNN and NN
model with Fuzzy and the compared values are shown in
table 4. Research on more challenging situations requiring
real-time node location will focus on future work because of
this original study significance.
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