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ABSTRACT As big data mining technology penetrates into various fields, cross-domain topics driven by
data predictive analysis have become important entry points for solving traditional problems. Due to the
complex changes of the pressure sensor and the interaction of different grouped trains during the train braking
process, the mechanism modeling is difficult, the data is highly temporalized, and the data distribution is not
stable. Facing the development trend of long-grouped-heavy-duty train captains, if the braking analysis of
the train by temporal data mining of small groups can be used for predictive analysis, it will make innovative
progress in the entire train braking field. This paper focuses on combining latest technology such as machine
learning, transfer learning and lifelong learning to construct the first predictive analysis research framework
in the field of train braking systems. Based on the principle of train braking process and temporal data
collected from intelligent experiment platform, a baseline has firstly been built to solve fixed-grouped and
multi-grouped temporal prediction problems. Then a predictive algorithm for model verification and update
for lifelong learning is established to automatically update model parameters over time. Finally, relying on
the parameter transfer in transfer learning, a multi-grouped temporal data prediction analysis is performed.
Through comparing the training results of the ‘‘pre-trained’’ model on the general domain, the ‘‘tuned’’
model on both general domain and the target domain, and the ‘‘target only’’ model on the target domain
separately, multi-domain tuning results show their applicable scope and transfer conditions. In summary, this
work can contribute to intelligently upgrading the semi-physical intelligent test platform for long-grouped-
heavy-duty trains.

INDEX TERMS Train braking system, temporal data mining, lifelong learning, transfer learning.

I. INTRODUCTION
With the deepening of freight logistics cooperation all around
the world, systematic and efficient research testing and onsite
experiments have become the core steps in the development
of all heavy-duty transportation technologies. Considering
the developing and testing costs of new brakes, the research
and development of an intelligent test platform for train
braking systems based on the rapid upgrading of computer
technology has been greatly improved in recent years. Almost
all the research on simulation of heavy-duty train braking
systems are concentrated on the analysis and calculation
methods of fluid mechanics, then the modeling and pre-
dictive simulation of air braking systems are carried out.
Classic studies include: the simulation prediction of the train
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braking system characteristics of ABDW series valves in the
United States [1], [2], performance prediction and param-
eter research based on vacuum brake system in India [3],
and calculation method for solving the gas flow equation of
the braking system considering actual thermal effects from
Poland [4].

From 2000 to 2004, a research route that made outstanding
contributions came from Wei Wei etl. from Dalian Railway
Institute in China. This research combines the gas flow the-
ory and the principle of 120-type braking valve to establish
a train braking performance analysis simulation software
which could predict any group within 150 trains [5]–[7].
In 2007, it further realized the calculation of real-time
dynamic properties of the braking system, and used the sys-
tem to predict braking characteristics of a 20,000-ton com-
bined train [8]. As of 2012, the simulation system based
on the basic theory of gas flow could already be combined
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with the air brake system for joint simulation, which has a
significant impact on the simulation research of long and
heavy trains [9]. Another analysis method focuses on the
use of mature fluid simulation software AMESim, it uses
graphic modeling to have good versatility. In 2015, the cal-
culation model of jetting gas extinguishing agent from gas
extinguisher vessel was constructed with AMESim and the
jet performance of gas extinguishing agent was simulated by
using the two-phase flow model [10].

Although the above research routes have achieved some
results, they are currently unable to adapt to future replace-
ment of braking valves and the ultra-long group of heavy-duty
trains. On the one hand, there are errors between air-flow-
theory-based modeling and actual circuit tests. And because
of long research and development cycle, researchers are
required to master the physical mechanical structure of air
control valves. On the other hand, this kind of system sim-
ulation platform lacks the versatility and portability, which
cannot adapt to the rapidly updated braking system hard-
ware. Therefore, researchers in the field of train braking
systems are paying attention to another kind of intelligent test
technology——hardware-in-the-loop simulation (HILS) or
semi-physical technology, which has been rapidly developed
and applied in various fields of industry since the 1960s.

However, The HILS platforms all over the world come
from large companies. These companies have already had a
certain international monopoly in the corresponding appli-
cation fields. For most researchers, whether implement-
ing rapid control prototyping or semi-physical simulation,
platforms such as the dSPACE real-time simulation sys-
tem cooperated by German dSPACE company and Ameri-
can MathWorks company, the RT-LAB launched by Canada
Opal-RT Technologies and real-time LabVIEW-RT devel-
oped by US National Instruments, have become their first
choice. The above HILS technology inevitably has the prob-
lems of extremely high cost, poor versatility, and poor porta-
bility. Large companies have increased the generalization
performance of their simulation systems due to their business
breadth, so these platforms are difficult to use in some profes-
sional fields, especially the semi-physical simulation analysis
of train braking systems that involves safety performance
issues.

II. BACKGROUND AND PRELIMINARY
A. INTELLIGENT EXPERIMENT PLATFORM OF TRAIN
BRAKING SYSTEM
In the field of rail transportation, research based on the
concept of HILS has developed to a certain extent and
has obtained corresponding research results.The Chinese
Academy of Railway Sciences established the main circuit
model of the auxiliary converter of the CRH3 EMU through
MATLAB/Simulink [11]. In 2017, a semi-physical simu-
lation test rig of urban EMU network control was tested,
which could simulate actual train operation [12]. In 2019,
a research was dedicated to the development and validation
of a HILS test bench for virtual real-time testing of the GAZ

Group light commercial vehicles equipped with Electronic
Stability Control(ESC) systems [13]. Though the application
of modern real-time simulation technologies based on HILS
allows to decrease the number of onsite tests, most of them
are all focused on high-speed EMU.

For the vacancy of HILS technology research and devel-
opment in the field of heavy-duty train braking system,
a research project cooperated by Tongji University and China
CRRC Qiqihar aims to solve this cutting-edge problem.
By 2017, this research has finished modelling freight train
brakes in various stages of braking process based on the fluid
balance equation [14], and a semi-physical intelligent exper-
iment platform of freight train braking system was initially
established with respect to this model [15]. By 2019, a more
detailed design and implementation of simulation modelling
and interface parameter provided an important basis for the
control part of entire semi-physical braking intelligent test
system [16]. At the same time, a scheme for obtaining the
braking performance of large-grouped trains by intelligent
control of small-grouped trains was proposed [17]. In this
work, the neural network algorithm is used to predict the
data online and the train is corrected with the predicted value.
Figure 1 illustrates the topology and on-site platform of the
whole semi-physical intelligent system.

However, this semi-physical system still has some draw-
backs. On the one hand, the modeling process based on fluid
mechanics is not scalable and versatile, it is limited by the
error between numerical and actual solution. On the other
hand, although Back Propagation(BP) neural network has
been used for performance prediction, it is only the predictive
fitting of the abstract parameter of throttling coefficient. Test
data of a small grouped train is not enough to ensure the
generalization of this prediction method for long and large
groups. Moreover, test data of train braking process is not
independent. Considering different groups, it has an insepa-
rable relationship with the position and time of the sensor.
Classic neural network cannot achieve a good predictive
model. Thus, it is necessary to combine diverse methods to
analyze large temporal data collected from this intelligent
system and help improve the control strategy in return.

B. RELATED RESEARCHES AND TEMPORAL
PREDICTION PROBLEMS
At present, the development of temporal data mining tech-
nology in the industrial field is still in its infancy, and the
research methods for industrial sensor time-series prediction
can be mainly divided into two categories. One is based
on the classic models of statistics [18], such as the moving
average model, exponential smoothing model, Autoregres-
sive Integrated Moving Average (ARIMA) model and state
space model, etc.. Because statistical models rely too much
on assumptions of stability and so on, the data cannot always
be suitable. The other is prediction model based on machine
learning, such as K-Nearest Neighbor (KNN), Support Vector
Machines (SVM) [19], BP neural network [20], [21] and
Deep Neural Network (DNN). Among them, KNN, SVM,
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FIGURE 1. Semi-physical intelligent experiment platform of train braking
system.

BP neural network have simple structures and stable perfor-
mance, but the prediction accuracy is limited.With the advent
of the era of cloud computing and big data, the improvement
of computing ability and the substantial increase of training
data provide support for deep learning [22], and deep net-
works represented by Recurrent Neural Network (RNN) [23].
With its advantages of strong versatility and high predic-
tion accuracy, time-series prediction has gradually become
a popular research direction. In practical applications, the
sensor data rules are mostly related to long-distance time-
series data, and the gradient explosion or gradient dispersion
of ordinary RNN as the cycle progresses makes the model
only learn the short-term dependence [24]. To solve this prob-
lem, Long Short-Term Memory Neural Network (LSTM) is
introduced [25]. The long-term and short-term memory unit
of LSTM can control the accumulative speed of information,
and shows superior prediction ability in predicting long-
distance dependent time-series data, which is also the theo-
retical basis of the core network construction of this study.
By 2021, some improved models for industrial application
based on LSTM have been presented. A multi-output sequen-
tial learning model is proposed for Heating and Cooling load
prediction [26]. The DB-Net incorporating a dilated con-
volutional neural network (DCNN) with bidirectional long

short-term memory (BiLSTM) to predict power consump-
tion in integrated local energy systems [27]. The AB-Net
incorporating an autoencoder (AE) with BiLSTM for Renew-
able Energy (RE) generation forecasting [28]. A comparative
analysis of a variety of deep features with several sequential
learning models is presented to select the optimized hybrid
architecture for energy consumption prediction [29].

Based on the prediction and analysis of industrial sensor
time series, the introduction of spatial location is the indus-
trial application of temporal datamining. At present, the latest
research related to industrial temporal data basically focuses
on operation monitoring or equipment failure detection, and
is rarely used for modelling and updating of working process.
This is why most industrial applications only mention time
series rather than temporal data. To apply data mining tech-
nology and train braking process in this study, we should con-
sider sensors located in different numbers of trains, different
groups and different positions in the same train. A research
from JD Financial City Computing Business Department at
the 2018 IJCAI Conference provide the basic solution for
the problem [30]. It is oriented to urban computing and
has realized the temporal sequence prediction of geographic
sensors based on the multi-layer attention mechanism neural
network. Recently, a multisource adaptation diagnosis net-
work (MADN) method is proposed to transfer the diagnostic
knowledge existed in multiple sources to the target [31].

Relying on the above research background and the latest
progress, this work focuses on the current industry bottle-
necks of train braking systems and the application of temporal
data mining technology in this field, mainly to solve the
following four problems:

1) How to collect braking data based on the intelligent
train braking system with multi-sensors and construct
a temporal data set suitable for temporal prediction
analysis?

2) How to accurately predict and analyse a single fixed
train group based on the temporal data of the train
braking system and output the predictive model?

3) How to design a lifelong learning-oriented predictive
model in the field of train braking according to the
update of data set to achieve continuous model updat-
ing and stability verification?

4) How to carry out the transfer training of the model
under variable condition of train groups, that is, multi-
groups, and discuss the suitable application range of
transfer learning?

Relying on the experimental platform to build data set to solve
Problem 1), a basic model based on LSTMnetwork [32] and a
more complicated model [33] have been established to solve
Problem 2). The simulation results show that the extended
model can predict the following time series data in accor-
dancewith the experimental results with high accuracy, which
means that the model has good predictive performance in
long-grouped train braking problems. With this preliminary,
instead of improving the modelling process, this work keeps
more focus on solving Problem 3) and 4).
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III. MODEL UPDATE AND VERIFICATION OF TEMPORAL
PREDICTION BASED ON LIFELONG LEARNING
A. NOTATIONS AND PROBLEM STATEMENT
Formal Problem I: Multi-sensor time series prediction in
a single train

In fixed-grouped situations, given n time series col-
lected from input sensors X = (x1, x2, · · · , xn)T =

(x1, x2, · · · , xT ) ∈ Rn×T , where T is the length of time
window size. We can use xk = (xk1 , x

k
2 , · · · , x

k
T )
T
∈ RT

to represent an input series of length T and employ xt =
(x1t , x

2
t , · · · , x

n
t )
T
∈ Rn to denote a vector of n exoge-

nous input series at time t . Thus, given the previous val-
ues of the target series (y1, y2, · · · , yT−1) with yt ∈ R,
as well as the present and past values of n exogenous series
(x1, x2, · · · , x)T with xt ∈ Rn, the predictive model aims
to learn a nonlinear mapping F(·) to the current value of the
target series

ŷT = F(y1, y2, · · · , yT−1, x1, x2, · · · , xT ) (1)
Formal Problem II: Multi-sensor temporal prediction

in long-grouped trains
In fixed-grouped situations, suppose there are Gg trains,

each of which generates Gl kinds of time series to con-
struct individual temporal data set. Among them, one kind
of time series is specified as target series for making pre-
dictions, while others are features. Given a time window
of length T , we use Y = (y1, y2, . . . , yGg ) ∈ RGg×T to
denote the readings of all target series during past T hours,
where yi ∈ RT belongs to ith train. We can use X i =
(xi,1, xi,2, · · · , xi,Gl )T = (xi1, x

i
2, · · · , x

i
T ) ∈ RGl×T to repre-

sent inner features of train i. Among them, x i,k ∈ RT denotes
the time series collected from k th sensor in this train. Hence,
xit = (xi,1t , x

i,2
t , · · · , x

i,Gl
t )T ∈ RGl represents all temporal

data of ith train at time t . Therefore, this prediction problem
can be stated as predicting the temporal data of ith train after τ
time given the data of all sensors of each train. The predictive
model aims to learn a nonlinear mapping F(·) to make:

ŷi = (ŷiT+1, ŷ
i
T+2, · · · , ŷ

i
T+τ )

T
∈ Rτ

= F(Y ,X1,X2, · · · ,XGg ) (2)

B. BASELINE FOR TRAIN BRAKING PREDICTION
To improve and generalize the network in [32], [33] to build
a baseline for further research. A two-layer LSTM-based
model with an input attention layer added is established, the
structure is shown in Figure 2. Given the input sequence of
k th external feature as xk = (xk1 , x

k
2 , · · · , x

k
T )
T
∈ RT , that

is, the sensor input feature of the previous trains. We can
construct the input attention mechanism through the deter-
ministic attention model, namely multilayer perceptron. The
method is to use formula (3) and formula (4) to encode the
previously hidden state ht−1 and cell state Ct−1 into the first
layer of LSTM cell unit.

ekt = vTe tanh(We · [ht−1;Ct−1]+ Uexk ) (3)

αkt =
exp(ekt )∑n
i=1 exp(e

i
t )

(4)

FIGURE 2. Predictive network with input attention mechanism added.

A classic LSTM cell unit is composed of three gates, forget
gate ft can be illustrated by formula (5), input gate it is
shown by formula (6) to (8), output gate ot is shown by
formula (9) to (10). If ht ∈ Rm, ve ∈ RT , then We ∈ RT×2m

and Ue ∈ RT×T are all trainable parameters. For more
conciseness, the bias term in (3) can be ignored. αkt is the
attention weight which is used to measure the importance
of the input sequence of k th external feature at time t . The
Softmax function applied after ekt is to ensure that the sum of
all attention weights is 1.

ft = σ (Wf · [ht−1, xt ]+ bf ) (5)

it = σ (Wi · [ht−1, xt ]+ bi) (6)

C̃t = tanh(WC · [ht−1, xt ]+ bC ) (7)

Ct = ft ∗ Ct−1 + it ∗ C̃t (8)

ot = σ (Wo · [ht−1, xt ]+ bo) (9)

ht = ot ∗ tanh(Ct ) (10)

The input attentionmechanism is a feed-forward network that
can be jointly trained with other structural cells evolved from
RNN. With these attention weights, we can use formula (11)
to automatically extract the features of external time series.
Then the state of the hidden layer at time t can be updated
with the cell state by formula (12).

x̃t = (α1t x
1
t , α

2
t x

2
t , · · · , α

n
t x

n
t )
T (11)

ht = f1(ht−1, x̃t ) (12)

where f1 is an LSTM cell unit operating according to (5)
to (10), except that xt is replaced with x̃t . Through this input
attention mechanism, the encoder can selectively focus on
certain external input feature sequences without having to
treat all input features equally.

C. LIFELONG LEARNING BASED ON DATA SET UPDATE
Lifelong machine learning [34]–[36] (or lifelong learning,
LML) is to imitate the learning process and ability of humans.
Since the affairs around us are closely related and inter-
connected, this way of learning is very natural. There are
three basic elements of lifelong learning: retention of learned
knowledge, selective transfer of previous knowledge when
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learning new tasks, and systematic methods to ensure the
effectiveness of retention and transfer of knowledge. It is
through these three elements that lifelong machine learn-
ing has demonstrated a powerful model update effect and
self-learning ability. Since lifelong machine learning is a
continuous learning, compared to tuning through a single
model, the core is to continuously update the learned model
and to overcome ‘‘catastrophic forgetting’’ at the same time.
Considering all data sets collected from the same system, the
stability of data source and application for the same formal
problem ensure that it is not a lifelong learning scenario that
easily leads to catastrophic forgetting. In the actual problem,
the input data set isDS in a certain time period, and the current
learned model isM , then the output is the updated prediction
model M ′. If the data set collected in an experiment is DS1,
there is a function F(·) such that

M (DS1,F(·)) = Y1 (13)

Then, keeping the test conditions unchanged and collecting
another data setDS2. There is another function F(·) such that

M ′(DS2,F ′(·)) = Y2 (14)

If F(·) = F ′(·), the model remains unchanged; if F(·) 6=
F ′(·), the model needs to be updated through design judge-
ment conditions. If it needs to be updated, let M = M ′.
Based on the above basic mathematical problems, the key
lies in determining whether the model needs to be updated
through the new data set. In normal circumstances, judging
method mostly adopts loss function. Considering the contin-
uous accumulation of experimental data in the future, the con-
struction of a lifelong learning-oriented prediction method
based on the similarity measurement and loss function of the
data. Since this research focuses on the long-term regularity
between trains and is limited by experimental conditions, it is
not suitable for directly using the method of updating the data
stream, so the overall mode of the data set is updating the
whole data set. The lifelong learning prediction framework
based on data set updating is shown in Figure 3. The updating
model is divided into two steps in detail. One is the similarity
measurement, which evaluates the degree of change between
two data sets. The other is the prediction loss deviation, that
is, by designing the loss rate function to determine whether
to keep, discard or update the model. Firstly, since the data
in this study are all numerical, the similarity measurement
method uses the similarity coefficient, and the formula uses
the Pearson Correlation Coefficient for calculation. However,
considering that the data sets obtained under the same test
conditions at different times have a certain degree of simi-
larity, the standard Pearson Correlation Coefficient is taken
as the absolute value to ignore the positive and negative
correlations. The calculation formula is as (15).

sim(DS1,DS2) = |
cov(DS1,DS2)
σDS1σDS2

|

= |
E(DS1− µDS1,DS2− µDS2)

σDS1σDS2
| (15)

By setting the similarity threshold SIM , when the calculated
similarity is less than the threshold, the prediction loss devi-
ation is calculated and evaluated. The value range of SIM is
(0, 1). For the predicted loss deviation, it is mainly to judge
whether the knowledge base is updated or discarded, and the
evaluation method of formula (16) is usually adopted.

θ∗ = argmin
1
N

N∑
i=1

L(yi, f (xi; θi))+ λ8(θ) (16)

In this model, L is the loss function and 8(θ ) is the penalty
function. For the problem of train braking process as con-
tinuous air pressure prediction, Mean Square Error(MSE)
or Mean Absolute Percentage Error(MAPE) shown in equa-
tion (17) or (18) can be directly used for evaluation.

MSE =
1

Total

Total∑
t=1

(obst − pret )2 (17)

MAPE =
1

Total

Total∑
t=1

|
obst − pret

obst
| × 100% (18)

A percentage of predicted loss Lp is defined here to deter-
mine whether the knowledge base is updated and discarded.
If the prediction loss of the current model M is LM , and the
loss obtained by training the new data set is LM ′ , then

Lp = |
LM − LM ′

LM
| (19)

Two thresholds are set here as Llow and Lhigh, when Lp < Llow,
the original model is kept, when Lp > Lhigh, the model is
discarded, when Llow < Lp < Lhigh, the model is updated.

IV. MULTI-GROUED TEMPORAL PREDICTION
BASED ON TRANSFER LEARNING
A. NOTATIONS AND PROBLEM STATEMENT
According to the most authoritative transfer learning review
article written by the team of Professor Yang Qiang of the
Hong Kong University of Science and Technology [37],
transfer learning methods can be divided into four categories
according to the learning method: Instance based Transfer
Learning, Feature based Transfer Learning, Model based
Transfer Learning, Relation based Transfer Learning. The
focus here is mainly on the third type of Model-based trans-
fer method, which is also called Parameter based Trans-
fer Learning, which refers to the method of finding the
parameter information shared between them from the source
domain and the target domain to realize the transfer. The
assumption required by this method is that the data in source
domain and target domain can share some model parameters.
Representative workmainly includes [38], [39]. An algorithm
known as TransEMDT (Transfer learning EMbedded Deci-
sion Tree) integrates a decision tree and the k-means clus-
tering algorithm for personalized activity-recognition model
adaptation [38]. A new dimensionality reduction method is
proposed to find a latent space, which minimizes the dis-
tance between distributions of the data in different domains
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FIGURE 3. The framework and flow chart of lifelong learning prediction
based on data set updating.

in a latent space [39]. By 2021, analyzing related operat-
ing parameters and designing MLP’s structure adjustment
strategies can help knowledge transfer among domains for
predicting the energy consumption of industrial robots [40].

Through the investigation of existing work, it can be found
that most of current model-based transfer learning meth-
ods are combined with deep neural networks. By taking
advantages of both deep learning and optimal two-sample
matching, a unified deep adaptation framework for jointly
learning transferable representation and classifier is proposed
to enable scalable domain adaptation [41]. The joint adap-
tation networks(JAN), which learn a transfer network by
aligning the joint distributions of multiple domain-specific
layers across domains based on a joint maximum mean dis-
crepancy (JMMD) criterion, is presented in [42]. A new
CNN architecture in [43] is to exploit unlabeled and sparsely

labeled target domain data. These methods modify some
existing neural network structures, add a domain adaptation
layer to the network, and then conduct joint training. There-
fore, these methods can also be regarded as a combination of
methods based on models and features. A standard transfer
learning process based on the baseline in Section III.B can
be realized by parameter transfer and model fine-tuning. The
model training of the data set grouped byG′ can be assisted by
the learned model grouped byG through the parameter trans-
fer under two different groups. However, it should be noted
that the two domains transferred by transfer learning will not
have a direct and continuous relationship with each other,
which is different from the concept of model verification and
update for lifelong learning in Section III.B. Now formalize
the temporal prediction problem of multiple groups, and set
the time series length as t . G is a group variable. If there
are m kinds of groups, then G ∈ {G1,G2, · · · ,Gm}. Suppose
N is the number of train number variables under this group,
there are n number variables in total and n ≤ m, N ∈
N1,N2, · · · ,Nn. Let P be the total number of sensor variables
in the train number of the group, P ∈ {P1,P2, · · · ,Pp}.
dGN ,P ∈ Rt denotes the Pth sensor data sequence collected
by the N th train when the group variable takes G. Since the
number of sensors is fixed during actual collection, it can
be simplified by omitting the variable P, then dGN ∈ Rp×t

denotes the temporal data sequence collected by the N th train
when the group variable takes G. All train data sequences dGN
under this grouping can form dG ∈ Rl×p×t . Furthermore, all
the groupings finally constitute the cross-grouping temporal
data set DG ∈ Rm×l×p×t . According to the definition of the
transfer learning domain, a data set DG with this nature is a
domain. Such a data domain can be arbitrarily used as the
source domain Ds or the target domain Dt . Given another
definition: When a domain is superimposed as the union of
the source domain Ds and the target domain Dt , it is called a
general domain, denoted by DGen.

B. TEMPORAL DATA MINING BASED ON
PARAMETER TRANSFER
According to the formal problem in Section IV.A, the entire
model/parameter-based braking prediction transfer method is
designed. The goal is to clarify the help degree of transfer
learning for training process and training result performance.
The overall comparison design can be divided into two steps.

Step 1:Build a model on the source data set Ds (as the
source domain), and then transfer the weight parameters
after training to be used as the initialization parameters
(standard transfer learning) of the model to be trained on
the target data set Dt (target domain).
Step 2:Based on the combined data from two sources
(source domain Ds and target domain Dt ), build the
model into a general domain DGen, and pre-train the
model built on the source data set Ds in the general
domain data. The transfer model of a general domain
is defined as the ‘‘Pre-tuned Model.’’ Then put it on
the target domain Dt to obtain tuning, and the output
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FIGURE 4. The comparative design of transfer methods based on
parameter transfer.

multi-domain transfer model is defined as the ‘‘Tuned
Model.’’ The performance of the two models obtained
in this way is compared with the performance of the
‘‘Target-only’’ Model trained only on the target data Dt .

Figure 4 is the comparative design of the entire model/
parameter-based transfer method for this problem. In cross-
train transfer training, different target domains are the data
domains of different trains in the same group, such as trans-
ferring the predicted parameters of the 1st train to the 8th car
in the 8-grouped. In cross-group transfer training, different
target domains are the data domains of the same train in
different groups, such as transferring from the prediction
parameters of the 1st train in the 8-grouped to that in the 1st
train in the 20-grouped. For a specific problem, loss functions
are caluated to evaulate which is the optimal trasfer model.

V. EXPERIMENTS AND RESULTS
A. DATA SETS
Table 1 lists all variables related to the train braking system
in the process of multi-sensor data collection. These vari-
ables are the basis for the construction of temporal prediction
experiments. According to the analysis of train braking prin-
ciple and braking conditions in Table 1. There are a total of
10 values for the working condition variable S. The specific
input and output characteristics are shown in Table 2. In actual
test process, there could be mixed working conditions. For
multi-working mixed data analysis, S itself is only used for
working condition explanation without participating in the
predicting process. Table 3 lists part of the data sets collected
by multi-sensors of the train braking system. The data sets
gather all the characteristics of the data collected by the
intelligent test platform, so they are also the main objects for
mining and analyzing in this research. All data dimensions
and volumes in the characteristic parameters come from the

original raw data. Most of the dimensions here refer to the
number of sensor groups. Since there are 5 air pressure sen-
sors on a train, the data dimension is generally the number
of Groups× 5. The specific prediction problem also involves
the relevant variables in Table 1.

B. PERFORMANCE OF IMPROVED BASELINE
FOR EXPERIMENTS
As illustrated in Section III, A two-layer LSTM-based
model with an input attention layer added is the improved
baseline. To compare the result with the model in [33],
they are trained with the same hyper-parameters. The set-
ting of hyper-parameters can be referred to [33]. Table 4
shows the comparative results,where Learning Rate initial-
ized as 0.002 with Adam algorithm, Dropout = 0.5, Time
Step(T) = 50, Iteration = 1000, Batch Size = 128,
Unit = 32, Epoch = 10.

Compared with the model in [33], the evaluation parame-
ters MSE and MAPE of the improved model perform better.
MAPE can be increased by 77.87%, and the training time
does not increase much.

C. EXPERIMENT I: MODEL UPDATE AND VERIFICATION
1) MODEL UPDATE TUNING FOR FORMAL PROBLEM I
The lifelong learning prediction framework based on the data
set update has two main parameters, which are the similarity
coefficient and the percentage of prediction loss. The choice
of which will affect the stability of the entire prediction.
When optimizing similarity for industrial big data, too high
or too low thresholds of these two parameters will affect
the update result of the model. When performing predictive
analysis based on temporal data sets DS1 (Single Train)
and DS2 (5-grouped), a better-performing baseline with an
attention mechanism is used here. The data sets of different
working conditions under the model are divided separately,
and the similar threshold test of multi-sensor in a single train
is oriented to the lifelong learning framework through exper-
iments. We first fix Llow = 0.4 and Lhigh = 1 (simplified
as 0.4/1), and set the similarity threshold to 0.3, 0.5, and
0.7 for experimentation. Set a flag parameter FLAG here to
display the update status of the model. When FLAG = 1,
the model is updated, when FLAG = 0, the model remains.
As shown in Figure 5, the test results show that when the
similarity threshold SIM = 0.5, the update of the model is
relatively stable. When SIM = 0.3, the algorithm update
frequency is low, and when SIM = 0.7, it is too high.
Therefore, SIM = 0.5 is selected.
After determining the similarity threshold, further exper-

iments are carried out on the threshold of the predicted
loss percentage, which are respectively set to 0.4/1, 0.4/0.9,
0.4/0.8, 0.3/0.8, 0.3/0.9, 0.3/1. At this time, the flag parameter
FLAG has three values. When FLAG = 2, the model is
discarded. When FLAG = 1, the model is updated. When
FLAG = 0, the model remains. As shown in the experi-
mental results of Figure 6, when the predicted loss threshold
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TABLE 1. Related variables of train braking system.

TABLE 2. Different input features and labels for different working situations.

TABLE 3. The characteristic parameters of the data sets collected by the train braking system.

TABLE 4. Comparative results of improved baseline and [33].

is 0.3/0.8, the overall update frequency is relatively stable.
Based on the above experimental results, when SIM = 0.5,
Llow = 0.3 and Lhigh = 0.8, the lifelong learning model
update framework combined with the multi-sensor model in
a single train can be relatively fixed.

2) MODEL VERIFICATION FOR FORMAL PROBLEM II
Although the prediction network with the input attention
mechanism can be used to optimize the prediction of Formal
Problem I and Formal Problem II, the actual test data between
long trains is not as large as the data collected in a single
train. Here we use DS4 (10-grouped) and DS5 (15-grouped)
to verify the baseline model. Table 5 shows the changes in
the loss functions MSE and MAPE. The results show that
under the average of 10 Epochs, because the data volume
of DS3 and DS5 are equivalent, the MSE of DS5 on the
baseline is relatively stable, and the MAPE and training time
are smaller, indicating that the model has better robustness
under the same test conditions.

D. EXPERIMENT II: STANDARD TRANSFER OF
CROSS-TRAIN TRANSFER LEARNING
During themigration training test, three data sets weremainly
analyzed, namely DS3 (8-grouped), DS6 (20-grouped I:
all working conditions mixed except braking) And DS7
(20-grouped II: all working conditions mixed except emer-
gency braking). It should be noted here that although both
DS6 andDS7 are 20-grouped temporal data sets, their are col-
lected under two completely different test conditions. The two
sets of temporal data show different temporal characteristics.
The working conditions of mixed trains are also different,
so it is valuable to do comparative research. However, they
both come from the same set of sensor acquisition system,
so they meet the universal conditions of transfer learning. The
following types of independent tests are carried out on the
basis of a learned model. Firstly, a source data domain DS1
(G = 8, N = 1, 7-stage braking) is defined:

1) Set a target domain DS1 (G = 8, N = 5, 7-stage
braking), train 2 models (with and without transfer
learning) on last Q data points of part of the target
domain, and predict certain advance value.

2) Train 2 models (with and without transfer learning) on
the entire target domain, and predict a certain leading
value.

3) Switch to the next target domain DS1 (G = 8, N = 8,
7-stage braking) until all forward and reverse parameter
transfer in DS1 are completed.
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TABLE 5. Comparative verification test on different data sets of baseline.

FIGURE 5. Prediction Loss Tuning for Formal Problem I.

4) Switch to the next source data domain DS6 (G = 20,
N = 1, inflation and release), and repeat the above
process.

The above experimental design is mainly for two goals. One
is to test the impact of transfer learning on prediction perfor-
mance in the absence of data, and the other is to study how
parameter transfer is effective or better for cross-train transfer
training problem. Table 6 is a comparison of the Root Mean
Square Error(RMSE) results of all test loss functions that are
transferred across train parameters.

Analyzing Table 6, it can be seen that transfer learning
does not work in all situations. In general, for cross-train
parameter transfer training, the following conclusions can be
drawn from the RMSE comparison results:

1) Transfer learning is not suitable for parameter transfer
under mixed conditions of seven-level braking.

2) The inflatable release cascade test is suitable for reverse
parameter migration from N = 20.

3) In the case of the train charging release cascade and the
charging brake cascade, even if more than half of the

FIGURE 6. Prediction Loss Tuning for Formal Problem II.

data is missing, the parameter transfer can still greatly
improve the prediction performance.

E. EXPERIMENT III: MULTI-DOMAIN TUNING OF
CROSS-GROUP TRANSFER LEARNING
Based on the model/parameter transfer method design, fur-
ther multi-domain experiments are carried out. For the data
sets of DS1, DS6 and DS7 across different grouped trains,
a multi-domain tuning comparison experiment is carried
out by constructing a general domain. The ‘‘Pre-tuned’’
model, ‘‘Tuned’’ model and ‘‘Target only’’ model are trained
separately. In general, the Tuned model performs well in
cross-group transfer training, and the loss fluctuates relatively
stable under various test conditions. This model is especially
outstanding in data sets with similar transfer, as shown in
Table 7, Figure 7 and Figure 8.

F. RESULTS ANALYSIS
In order to concatenate and apply all the best fit experimental
results, we conclude and elaborate all models and quantifiable
analysis results as a methodology which lays foundation for
future work. Firstly, for multi-sensor time series prediction
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TABLE 6. Results comparison of RMSE for Cross-train transfer learning.

TABLE 7. Results comparison of RMSE for cross-group transfer learning.

FIGURE 7. Multi-domain tuning for DS6 + DS7(N = 20).

problem in long-grouped trains, a two-layer LSTM-based
model with an input attention layer added in Figure 2 can be a
baseline, where Learning Rate initialized as 0.002 with Adam

FIGURE 8. RMSE comparison chart of cross-group parameter transfer
experiments.

algorithm, Dropout = 0.5, Time Step(T) = 50, Iteration =
1000, Batch Size = 128, Unit = 32, Epoch = 10. Secondly,
the framework in Figure 3 can be applied to make full use of a
steady stream of experimental data, three core parameters are
set as SIM = 0.5, Llow = 0.3 and Lhigh = 0.8. Last but not the
least, as shown in Figure 4, parameter-based transfer learning
could be a good method to benefit training performance. The
multi-domain tuning of the ‘‘Tuned’’ model is more robust
in cross-group transfer training, and the ‘‘Pre-tuned’’ model
performs better on the head-end sensor.

VI. CONCLUSION
This work is the further study on the basis of an intelligent
experiment platform of train braking system which can pro-
vide large amount of temporal data. We design a lifelong
learning-oriented predictive model in the field of train brak-
ing according to the continuous model updating and stability
verification. In addition, due to the limitations of experimen-
tal conditions, we were unable to obtain enough data to carry
out the model updating test between long trains. However,
this work has clarified the feasibility of this research route.
Further study can be carried out in the following two aspects:
1) Lifelong learning prediction based on data set updating
between long trains; 2) Transfer learning prediction for life-
long learning.
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