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ABSTRACT This paper tackles the issue of real-time parametric estimation of a wide class of probability
density functions from limited datasets. This type of estimation addresses recent applications that require
joint sensing and actuation. The suggested estimator operates in the nonlinear subspace that the parameter
space of the distribution creates in the measurement sample space. This enables the estimator to embed a
priori available information about the distribution in the computations to produce parameter estimates that
are induced by signal components belonging only to the correct class of density functions being considered.
It also enables it to nullify the effect of those components that do not belong to this class on the estimation
process. The estimator can, with high accuracy, compute quickly the parameters of a wide class of probability
density functions from short data records. The approach is developed and basic proofs of correctness are
carried-out for the Rayleigh distribution, which is used to characterize wireless communication channels
experiencing fast fading in heavily cluttered environments. Simulation results demonstrate the capabilities of
the suggested procedure and the clear advantages it has over conventional norm-based estimation techniques.
The results also show the ability of the suggested approach to estimate other density functions including the
two-parameter lognormal distribution used to characterize shadowing in wireless communication.

INDEX TERMS Probability density estimation, subspace methods, wireless communication.

SYMBOLS
PDF: Probability density function
N-D: N-Dimensional
RV: Random Variables
PX(x, ξ ): Parameterized PDF
ξ : A vector containing L parameters of the PDF
9(ξ ): A vector constructed from N samples of the

model PDF
9̂x: A vector containing the histogram at the

same sample location as 9(ξ )
K: Number of random variable samples used to

construct 9̂x
N: Number of PDF/Histogram samples
3: Parameter space
S: Sample space
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S3: Subspace which is formed in S as the image
9x Correct measurement due to the actual PDF

of the random variable,
9et Error component that belongs (tangent) to S3
9e Error component that does not belong

(normal) to S3
D(ξ ) A distance vector between the measurement

and the estimate PDF
Jξ Jacobian matrix with respect to the parameters

of the PDF
Dt Component of D that is tangent to S3
V(ξ ) Lyapunov function constructed from D
V̇(ξ ) Time derivative of V(ξ )
4 Set of points at which V̇(ξ ) is zero
�: The minimum invariance set
1: Set of equilibrium points of the dynamical

system acting on ξ
MS Measure of the sample space S
MS3 Measure of the subspace (S3)
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I. INTRODUCTION
Rich and accurate signal characterization is important for
efficient utilization of processes. For example, wireless chan-
nel characteristics is a key factor in designing encoders for
controlling the quality of data communication [1], [2]. Prop-
erly actuating a valve to control the flow in a pipe requires
characterizing the flow in that pipe to make actions coalesce
with objectives.

It is common practice to characterize Signals using their
measures. However, there are applications that require rich
description of a process. A flow in a pipe is not just a number,
which a metering device record. It’s a random process that
has a probability distribution whose parameters need to be
estimated to better understand and predict the underlying
phenomenon. Moreover, recent applications intertwine rich
signal characterization and process actuation in a manner that
most probably causes a change in the state of the process and
the characteristics of the signal representing it. This requires
timely and accurate update of the estimates.

The probability distribution function (PDF) of a signal is
a strong characterizer that is able to produce many signal
measures. Several techniques were suggested for the esti-
mation of PDFs [3], [4]. These techniques may be divided
into two types: parametric estimators [5], [6] and nonpara-
metric estimators [7], [8]. In many practical situations, the
phenomenon concerned is well-examined and the type of
PDF that describes it is accurately characterized up to a
parameter ambiguity. The PDFs describing different types
of communication channels are known beforehand [9], [10].
A communication channel in a heavily-cluttered environment
experience fast fading that is best described by a Rayleigh
PDF [11], [12].

Communication-aware mobility is an important and fairly
recent area in wireless communication [13]–[15] that requires
on-line characterization of the PDF describing a wireless
channel. In this area, a scout, first responder mobile agent
that is equipped with a Tx/Rx antenna is required to access a
confined highly cluttered space and wirelessly relay sensory
data to a base station. The agent also receives motion servo
data from that station. The nature of the situation causes
considerable fading and shadowing effect (figure-1) in the
wireless signal. This could, in addition to interrupting the
data-feed to and from the base station, cause instability of
motion [20]. The agent needs to online estimate the condi-
tions of the wireless channel and make servo-level actuation
decisions so that it will not lose stability or needlessly waste
bandwidth. In such situations, a mobile agent has to wire-
lessly exchange causality packets with the network controller
every few microseconds [16]. A causality packet contains a
sensing action, a planning action, an actuation action and an
estimation action. This leaves little time and little data for the
computation of the channel PDF.

The Rayleigh distribution has long been considered to
have important applications in many fields such as reliability
theory, survival analysis, and, in particular, communication
engineering [21], [22]. A large number of techniques exist

FIGURE 1. Wireless channel nature in cluttered confined environments.

for the estimation of the parameter of this PDF. An unbiased
closed form estimate of the Rayleigh parameter that utilizes
the maximum likelihood approach is reported in [23]. The
work in [24] derives closed form, Bayes-based parameter esti-
mates that use Precautionary loss function, Entropy loss func-
tion and Loss function-L1. In [22] the best-unbiased closed
form estimate in the Blackwell-Rao sense of the parameter is
suggested. The authors in [28] provide a closed form value of
the parameter estimate that is based on the moment method.
There are also non-closed form estimators of the Rayleigh
parameter that use Monte Carlo Expectation Maximization
(MCEM) [25] and fuzzy logic [26]. Work is ongoing to
develop generalizations of the Rayleigh distribution in order
to enhance its utility. Examples of these generalizations are:
the weighted Rayleigh distribution [27], the two-parameter
Rayleigh distribution [28], [29] and the generalized Rayleigh
distribution [30].

Applications that employ joint actuation and estimation
place stringent requirements on PDF computation. The esti-
mation method should be able to cope with a variety of
PDFs in a unified manner. While the Rayleigh distribution is
of significant importance in wireless communication, other
artifacts such as shadowing [31] and slow fading [32], which
are best described by the lognormal distribution, may appear
in the channel. Joint actuation and estimation also requires
the estimators to be able to produce reliable and accurate
estimates in real-time from small record of data. To the best
of our knowledge, existing techniques for PDF estimation
cannot simultaneously support all these requirements.

This paper suggests a novel parametric PDF estimation
procedure that addresses effectively the issues of flexibil-
ity, speed and accuracy required by applications utilizing
joint estimation and actuation. The estimation method uses

26896 VOLUME 10, 2022



A. A. Masoud: Nonlinear Subspace Approach for Parametric Estimation of PDFs

model-based nonlinear subspace–restricted computations to
filter noise from rough PDF estimates. These estimates are
constructed from the histogram of the acquired random vari-
able samples. Embedding information of the PDF model
into the estimation process via a nonlinear subspace and
restricting the estimates to lie in that subspace by using action
reflection from parameter space to signal space enables the
estimation process to resist high level of noise without the
need to know the statistical nature of that noise. The generated
estimate is optimum in the senses:

1- it guarantees that the estimate is extracted from data
that is in strict conformity with the available a priori
information that comes in the form of the PDF being
considered

2- it nullifies the effect of invalid data that does not con-
form to the available model on the estimation process

3- it minimizes the error between themeasurement and the
set of all possible candidates that belong to the correct
of PDF being estimated.

The proposed information-based constrained estimation sig-
nificantly differs from the conventional norm-based estima-
tion methods. These methods attempt direct minimization,
in signal space, of an error norm representing the difference
between the parameterized model PDF and the histogram-
based measurement. As this paper demonstrates, obtaining
parameter estimates in this manner can be problematic and
highly unreliable when small data records of random vari-
ables are used.

This paper is organized as follows: section II develops
the suggested nonlinear subspace estimator and explains its
principle of operation. A realization of the estimator is pro-
vided in section III. The section also provides conditions
for convergence and a proof that the Rayleigh PDF satis-
fies these conditions. Section IV demonstrates by simulation
the capabilities of the estimator to compute the parameter
of the Rayleigh PDF. It compares its performance to lead-
ing Rayleigh parameter estimators. It also demonstrates the
impracticality of attempting to estimate the parameter by
direct norm minimization. Section V discusses the funda-
mental differences between parameter estimation using direct
norm minimization and estimation using the suggested non-
linear subspacemethod. Conclusions are placed in sectionVI.

II. THE SUGGESTED ESTIMATOR
Consider a random variable x with PDF PX(x, ξ ) where ξ is
a vector containing the parameters of the distribution (ξ =[
ξ1 .. ξL

]T). Assume that the PDF is represented using its
values at a set of samples {xi, i=1,..N}. Those samples are
selected in conformity with the sampling theorem so that
the continuous PDF is uniquely determined from its discrete
representation. The samples of the PDF are used to construct
the parameterized N-D vector function (1)

9(ξ ) =

 PX(x1, ξ )
:

PX(xN, ξ )

. (1)

The suggested estimator treats the entries in this function
as the coordinates of a sample space S. The components of
the parameter vector are also treated as the coordinates of the
parameter space 3. A subspace (S3) is formed in S as the
image of 3 under the vector transformation 9(ξ ) (figure-2).

Let 9̂X be a measurement of the PDF at the sample
points {xi, i=1,..N}. This measurement consists of three
components (2)

9̂X = 9X +9et +9en (2)

where 9 x is the correct measurement due to the actual
PDF of the random variable, 9et is the error component that
belongs (tangent) to S3 (i.e. it belongs to the same type of
PDFs being considered) and 9en is the error component that
is orthogonal to S3. If the estimation process is restricted to
operate from within the parameter space with an equivalent
effect that propagates to sample space, the effect of 9en
on the process is nullified and 9et will be the only source
of error. Blind estimation cannot eliminate this error since
it represents a valid PDF. Only the use of side information
will help in reducing the effect of this error on the estimate.
Therefore, an optimal, blind processor will select the set of
parameters that minimize the distance between the image of
the PDF parameters’ in sample space and the measurement
which in our case translates to minimizing the projection of
that distance on S3.

min
ξ
|D(ξ )|

D(ξ ) = 9̂ −9(ξ ) (3)

III. ESTIMATOR REALIZATION
This section provides a realization of the above estimator.
In principle, the above approach can estimate any PDF pro-
vided that the distribution satisfies certain conditions. How-
ever, the focus here is on the Rayleigh PDF.

The measurement PDF (9̂X) may be obtained from the
histogram of the samples of the random variable. Histograms
can accurately compute PDFs [17], [18] provided a large
record of RV samples is available. Since real time operation
is required, 9̂X is constructed using the largest sample record
the situation permits. This will cause the measurement to be
considerably noisy.

Theminimization of D can only be carried-out byminimiz-
ing the component that belongs to S3 (Dt). This component
results from the dot product between D and a complete set of
vectors (Jξ ) that are tangent to S3

Jξ =
∂ 9(ξ )
∂ξ

=


∂PX(x1, ξ )

∂ξ1
..

∂PX(x1, ξ )
∂ξL

: .. :
∂PX(xN, ξ )

∂ξ1
..

∂PX(xN, ξ )
∂ξL


Dt = JTξ (ξ )D(ξ ) (4)

By choosing Dt as the action that controls the evolution
of ξ , Dt will converge to zero and ξ will converge to
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a value that minimizes D

ξ̇ = JTξ (ξ ) D(ξ ) (5)

Figure-2 illustrates the estimation procedure.

FIGURE 2. The nonlinear subspace estimator.

Ideally (i.e. the histogram measurement is noise-free), the
first order dynamical system in (5) will globally asymptoti-
cally converge to the true value of the Rayleigh PDF param-
eter. The proposition below uses the LaSalle [19] invariance
principle to prove the above.
Proposition 1: Consider a Rayleigh distributed random

variable (6) with parameter σo.

PX(x, σo) =
x
σ 2
o
· exp(−

x2

2 · σ 2
o
) x ≥ 0 (6)

If the measurement vector is constructed from properly cho-
sen samples (7)

9̂ =
[
PX(x1, σo) . . . PX(xN, σo)

]T (7)

then the dynamical system in (5) will converge to the true
estimate from any initial choice of the parameter.

lim
t→∞

ξ (t) = σo ∀ξ (0) (8)

Proof: consider the norm (Lyapunov Function)

V(ξ ) =
1
2
DT(ξ ) D(ξ ) (9)

V is always positive and will equal zero if and only if D is
zero. Since 9̂ uniquely identifies the PDF, the convergence
of D to zero implies the convergence of ξ to σo. The time
derivative of V is:

V̇(ξ ) = −DT(ξ ) J(ξ ) ξ̇ (10)

If the derivative is selected as in (5) we have

V̇(ξ ) = −DT(ξ ) J(ξ ) JT(ξ ) D(ξ ) (11)

The product of a matrix by its transpose, if not positive
definite, is at least, positive semi-definite. In other words, the
time derivative of the norm is negative semi-definite

V̇(ξ ) ≤ 0. (12)

The set of ξ ’s for which V̇(ξ ) = 0 must include among others
the true value of the parameter (13)

ξ ∈ 4 = {σo ∪
i
ξ i , i = 1, ..J}. (13)

According to the LaSalle invariance principle, the dynam-
ical system (5) will converge to the minimum invariance
set (�). To compute this set, first the set (1) of ξ for which
system (5) is at equilibrium needs to be computed

1 = {ξ : JTξ (ξ ) D(ξ ) = 0} (14)

For the Rayleigh distribution, the following approximation
may be used

JTξ (ξ ) D(ξ ) ≈ α ·
∫
∞

0
(
d
dξ

(
x

ξ2
· exp(−

x2

2 · ξ2
))(

x
σ 2
o

· exp(−
x2

2 · σ 2
0

−
x

ξ2
· exp(−

x2

2 · ξ2
)) dx

(15)

where α is a nonzero constant. By analyzing the above func-
tion one can show (figure-3) that (15) can only be zero at ξ
equal to σo (1 = {σo}). The minimum invariance set which
ξ will converge to may be computed as

� = 4 ∩1 = {σo}. (16)

FIGURE 3. The dynamical system in (5) has one equilibrium point at the
true estimate.

While convergence, in the ideal case is globally asymp-
totic, the presence of noise in the PDF measurement (his-
togram) causes the convergence to be local and to a finite
set (17)

lim
t→∞

ξ (t) ∈ |ξ − σo| < ε σmn < ξ (0) < σmx (17)
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where 0 < ε � 1. As shown in the next section, the zone of
convergence is by no means restrictive. It can accommodate
an initial guess of the PDF parameter that is relatively far from
the true value.

Convergence to a non-zero measure set (instead of a point),
which is caused by noise, does not impose stringent limita-
tions on the estimator’s accuracy. The nature of the method
makes it possible to easily and practically control the quality
of the estimate. This may be concluded by considering two
features of the estimation method. First, the true component
of the PDF measurement maps with probability 1 to the
S3 space while noise maps to the space with probability δ
(figure-4). Since processing is carried-out fully in parameter
space, any noise component of the measurement that lies in
the space orthogonal to S3 will not affect the estimate.

The second issue has to do with the ability to control the
error probability δ. Let MS be a measure of the sample space
S and MS3 be a measure of the subspace (S3). Notice that
the dimensionality of S is equal to the number of histogram
sampleswhile the dimensionality of S3 is equal to the number
of parameters and does not change with changing the number
of histogram samples. As a result, MS increases exponentially
with the number of measurement (histogram) samples while
MS3 stays the same. It is obvious that the probability of noise
getting mapped into S3 and affecting the estimate consid-
erably diminishes with increase in the number of histogram
samples.

FIGURE 4. Mapping of the correct PDF and noise to the nonlinear
subspace.

The more random variables used in constructing a his-
togram, the less noisy is the histogram. The histogram noise is
measured by the variance of the mean of the random variables
used to construct a histogram sample. This variance is propor-
tional to the inverse of the number of random variables used
to construct a sample (K/N). If the number of random variable
samples used to construct the histogram is kept constant, the
histogram noise will increase with N.

The increase in noise caused by fixing the value of K
and increasing N will be counteracted by an enhanced noise
rejection capability of the subspace. Unless K is very small,
the impact of noise on the quality of the estimate can be
effectively managed by increasing N. The simulation results
in the next section clearly demonstrate this behavior. Future
work will focus on exploring this feature of the estimator
mathematically.

TABLE 1. (a) Parameters of the estimator. (b) Estimator results
corresponding to parameters in table-1a.

IV. RESULTS
This section demonstrates the capabilities of the suggested
estimator. It examines the effect of the number of histogram
samples and the number of random variable samples on the
quality of the estimate. It also examines the sensitivity of the
method to the value of the PDF’s parameter, the convergence
interval and the number of iterations needed for convergence.
The convergence interval, which the initial condition of the
parameter must lie in (ξ (0) ∈ {σmn, σmx}), is determined
experimentally.

The discrete realization of the nonlinear dynamical system
in (5) does have a strong effect on the speed at which the
estimate may be obtained and on its quality. Although an
involved investigation of the dual statistical-dynamical nature
of the estimator is needed in order to clearly understand its
behavior, numerical investigation provides strong indicators
about the estimator’s capabilities.

In the first example a low number of random variable
samples is used (K=50). The measurement of the PDF is
constructed using 15 histogram samples only (N=15) and
a low value for the parameter is selected (σo = 1). The
parameters of the trial are shown in table-1a. The estimator
is initialized with three values, two close to the boundary of
the convergence interval and one close to the true value.

The results are shown in table-1b. The Rayleigh random
variables and the measurement and base-truth PDFs are
shown in figure-5. The ability of the subspace approach to
suppress large amount of noise is clear from the measured
and base-truth PDF samples. The evolution traces for the
estimates from all the initial values are shown in figure-6.
All traces converged, using small number of iterations, to the
same estimate. It is worth noting that changing the initial
guess of the parameter has onlymarginal effect on the number
of interactions needed to compute the estimate. Despite the
low number of random variable samples used, the accuracy
of the estimate is high.

The following example is similar to the previous one except
for an increase in the value of the true parameter of the
PDF (table-2a). As can be seen from the results (Table-2b,
Figures-7,8), the characteristics of the estimator did not
change, except that the speed of convergence and the accuracy
deteriorated a little.

To demonstrate the significant improvement in the behav-
ior of the estimator that results from increasing the data
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FIGURE 5. RV samples, estimate and base-truth PDFs, table-1a.

FIGURE 6. Estimate evolution, table-1a.

record size, the two previous examples are repeated for
σo = 1 (Table-3a,b, Figure-9,10) and σo = 4 (Table-4a,b,
Figure-11,12) with the number of random variable sam-
ples increased to K=500. The general behavior of the esti-
mator remained the same, the accuracy of the estimate
increased, especially for higher value of the PDF param-
eter, and the number of iterations remained practically
unaffected.

In figure-13 the effect of the number of random variable
samples on estimate accuracy is tested for the case N=15

TABLE 2. (a) Parameters of the estimator. (b) Estimator results
corresponding to parameters in table-2a.

FIGURE 7. RV samples, estimate and base-truth PDFs, table-2a.

TABLE 3. (a) Parameters of the estimator. (b) Estimator results
corresponding to parameters in table-3a.

and σo = 4. Rapid convergence to the correct estimate is
observed as a function of K with no noticeable improvement
in accuracy for K>100.
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FIGURE 8. Estimate evolution due to different initial conditions, table-2a.

FIGURE 9. RV samples, estimate and base-truth PDFs, table-3a.

Figure-14 shows the measurement and base-truth PDFs
for K=40, N=50 and σo = 4, the high distortion in the
measurement of the PDF is obvious. In figure-15 the effect
of keeping K constant and varying N is tested for both
K=50 and 500. It is interesting to notice the flat profile
of the estimate as a function of K for both low and high
number of RVs As mentioned, increasing N while keeping
K constant increases the noise in the measurement. Although
the fluctuation (variance) in estimate is relatively high for

FIGURE 10. Estimate evolution, table-3a.

TABLE 4. (a) Parameters of the estimator. (b) Estimator results
corresponding to parameters in table-4a.

FIGURE 11. RV samples, estimate and base-truth PDFs, table-4a.

low number of RVs and is low for a high number of RVs,
both estimate are observed to be around a constant that is
equal to the true value of the estimate. This behavior could
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FIGURE 12. Estimate evolution, table-4a.

FIGURE 13. Estimate convergence versus number of RV samples.

be qualitatively understood using the argument at the end of
section III.

FIGURE 14. Estimate and base-truth PDFs for K=50 and N=40.

The following example clearly demonstrates the difference
between obtaining the parameter estimate using the suggested
nonlinear subspace method and obtaining it by direct norm
minimization. In this example, 10000 records of Rayleigh

FIGURE 15. Estimate versus number of histogram samples (N) for
constant K (K=50, K=500).

TABLE 5. Rayleigh parameter estimates using the suggested subspace
method and by direct norm minimization (N=15).

random variables with parameter σ = 1 are generated. Sets of
different data record lengths were used and the PDFmeasure-
ments were constructed using a 15 sample histogram (N=15).
Each data record was processed using the suggested method
and by selecting the value of the parameter that minimizes the
L2 norm:

L2(σ ) =

√√√√ N∑
i=1

(9̂(xi)−
xi
σ 2 exp(−

x2i
2σ 2 ))

2. (18)

For the trials that belong to the same record length, the mean
of the estimates is computed to give an indication about the
estimator’s bias. The variance is also computed to give an idea
about the level of confidence in an estimate from a single trial
representing the expected value that the estimator computes.

As can be seen from table-5 the suggested estimator out-
performs direct norm minimization for all record sizes large
and small. The expected value for the estimate obtained using
the subspace approach remained almost constant at the true
parameter value for all record size. Its variance decayed
rapidly with record size. The estimates using direct norm
minimization show high bias for small record size as well as
high variance.

For small record size, the estimates obtained by direct
norm minimization are practically useless. Figures 16 and 17
show the estimates from 1000 consecutive trials with record
size K=30 for the direct norm minimization and subspace
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FIGURE 16. Consecutive trials of Rayleigh parameter estimates using
direct norm minimization, K=30.

FIGURE 17. Consecutive trials of Rayleigh parameter estimates using the
suggested subspace approach, K=30.

TABLE 6. Parameter estimate from the data records in table-5 using MLE,
Bayes and Moment methods (N=15).

approach respectively. The estimates from the direct norm
minimization experience rapid and large fluctuations in value.
They are virtually uncorrelated with no significant influence
of the expected value on the estimate. On the other hand, the
estimates from the subspace method fluctuated in a narrow
band around the expected value.

In the following, the subspace method is compared to other
Rayleigh parameter estimators both closed form and non-
closed form. The closed form parametric estimators used are:

the maximum likelihood estimator (MLE) in [23]

σ̂ =
4K · K!(K-1)!

√
K

(2K)!
√
π

√√√√ 1
2K

K∑
i=1

x2i (19)

the Bayes estimator in [24]

σ̂ =

√
K ·

0(K+ 0.5)
0(K+ 1.5)

√√√√ 1
2K

K∑
i=1

x2i (20)

and the Moment estimator in [28]

σ̂ =

√√√√√ 1
K−1

K∑
i=1

(xi −
1
K

K∑
i=1

xi)2

1− 02(1.5)
. (21)

The non-closed formMCEM estimator in [25] is also used in
the comparison.

The random variable records from the previous example
in table-5 are processed using equations 19, 20 and 21 to
obtain the MLE, Bayes and Moment parameter estimates.
For each sample record length, the mean and the variance of
the estimates from the 10000 trials are recorded in table-6.
As can be seen the estimate from the suggested method
almost matches the MLE and Bayes estimator and performs
better than the Moment estimator.

The work in [25] reports mean estimates of the parameter
for K=50 and K=100 as σ̂ = 1.0938 and σ̂ = 1.03506
respectively. As can be seen, the suggested estimator provides
considerably more accurate estimates.

The following examples demonstrate the generic nature of
the estimator and the ability to use the procedure for esti-
mating PDFs other than the Rayleigh distribution. Although
applying the subspace estimator to a PDF requires studying
the properties of the nonlinear dynamical system that results,
the estimator in its current form can handle a variety of PDF
types with reasonable efficiency.

The first example (figure-18) estimates a zero-mean
normally-distributed RV with σ = 1 (22) from a record of
100 samples (K=100) that are used to construct a 15 sample
histogram (N=15). The procedure yielded a parameter esti-
mate σ = 1.01053 in less than 200 iterations (figure-19).

PX(x) =
1

σ
√
2π

exp(−
x2

2σ 2 ) (22)

The second example (figure-20) attempt to estimate the two
parameters of a lognormal RV with σ = 1 and µ = 2 (23)
from a record of 100 samples (K=100) that are used to con-
struct a 15 sample histogram (N=15). The procedure yielded
the parameter estimates σ = 1.013 and µ = 1.96 in less than
50 iterations (figure-22).

PX(x) =
1

xσ
√
2π

exp(−
(ln(x)− µ)2

2σ 2 ) (23)
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FIGURE 18. Normally-distributed random variables, their histogram and
estimated PDF.

FIGURE 19. The evolution of normal PDF parameter estimate.

V. A NOTE ON THE ESTIMATOR
The function of the nonlinear subspace is to embed the
a priori available information about the PDF in the esti-
mation process. This embedding restricts the candidates on
which the error norm is minimized to only those that belong
to the correct type of PDF being estimated. However, the

FIGURE 20. Lognormal random variables, their histogram and
estimated PDF.

FIGURE 21. The evolution of the lognormal PDF parameter estimates.

difference between the suggested nonlinear subspace esti-
mation approach and conventional norm-based estimation
techniques is more fundamental than conditional constrained
estimation. It transcends that to the nature of processing being
used in computing the optimum constrained estimate.

Norm-based methods (figure-22) attempt to reduce the
complexity of the estimation process. This complexity arises
from simultaneously considering the difference between the
observation and estimate at each sample as a parameterized
error channels whose content should be processed and used
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FIGURE 22. Structure of traditional norm-based estimators.

in adjusting the estimated parameters. Conventional norm-
based methods average the information in all these channels
to create one parameterized error whose content is to be
processed to obtain the estimate. In essence, this amounts
to the information-lossy process of using rough averages to
discern fine structures. Added to this loss is the fact that norm-
based methods ignore the sign of the error samples, which is
an important source of information.

FIGURE 23. Parallel-distributed structure of the subspace estimator.

The suggested nonlinear subspace method processes each
error sample individually. It enables the outcome of this
processing collaboratively and directly to form the value
of the estimate. Even a single error sample is capable of
producing an estimate. In essence, the subspace processor is
a complex dynamical system that employs massive parallel-
distributed processing in generating the estimate. Parallel-
distributed processors are hardware friendly and can perform
in real-time. Software implementation, as demonstrated by
simulation, is efficient. The number of multiplications and
additions needed to generate an estimate at an iteration is
linear in the number of samples and the number of parameters
(Number of additions=Number of Multiplications = N·L).

VI. CONCLUSION
This paper suggests a novel and efficient subspace-based
method for the parametric estimation of the Rayleigh PDF
from short data records. The principle on which the method
operates is developed, proof of its correctness is provided
along with simulation results to demonstrate its capabili-
ties. The method, in principle, may be used to estimate
any PDF. However, the emphasis here is on the Rayleigh
PDF whose estimation from short data record is important

in communication-aware mobility. The work also shows
that attempting to find parameter estimates by direct norm
minimization is, at least, not practical. The concept of
information-based constrained estimation produces more
reliable results.

Although future work will focus on theoretical analysis of
the estimator’s properties, the method, in its current form,
may be used in an efficient and practical manner in Rayleigh
PDF estimation.
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