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ABSTRACT This paper presents the core concepts for the poST language — a process-oriented extension
of the IEC 61131-3 Structured Text (ST) language which intends to provide a conceptual consistency
of the PLC source code with technological description of the plant operating procedure. The poST can
be seamlessly used as a textual programming language for complex PLC software in the context of
IEC 61131-3 (3’ Edition). The language combines the advantages of FSM-based programming with the
conventional syntax of the ST language which would facilitate its adoption. The poST language assumes
that a poST-program is a set of weakly connected concurrent processes, structurally and functionally
corresponding to the technological description of the plant. Each process is specified by a sequential set of
states. The states are specified by a set of the ST constructs, extended by TIMEOUT operation, SET STATE
operation, and START / STOP / check state operations to communicate with other processes. The paper
describes the basic syntax of the poST language, demonstrates the usage of the poST language by developing
control software for an elevator, and compares the development in poST with pure Structured Text.

INDEX TERMS Computer languages, IEC 61131-3 standard, PLC software development, process-oriented

programming.

I. INTRODUCTION AND MOTIVATION

This work is motivated by the fact that software engineering
for industrial automation systems based on the IEC 61131-3
set of languages [1] gets increasingly complex while the soft-
ware development methods, in general, are evolving toward
concepts that offer a higher level of abstraction.

The IEC 61131-3 standard consists of five languages:
(1) the single register assembly language Instruction List (IL),
(2) The Pascal-like Structured Text language (ST), (3) Lad-
der Diagram (LD), based on a metaphor relays used for
automation in the pre-digital era, (4) the Function Block
Diagram (FBD) language, implementing dataflow program-
ming for continuous control, (5) the Sequential Function
Chart (SFC) language based on the Petri nets model.

Overall, the standard is consistent with the specific features
of industrial control. Industrial controllers are inherently open
(i. e. communicate with an external environment), reactive
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(have event-driven behaviour) and concurrent (have to pro-
cess multiple asynchronous events). These features call for
special languages to be used in development of control soft-
ware, e.g. the IEC 61131-3 languages [1] which are the most
popular in the PLC domain. However, the technology behind
IEC 61131-3 imposes several restrictions for the development
of reactive systems and especially of today’s complex and
safety-critical systems [2]-[4]. This motivates researchers
to enrich the IEC 61131-3 development model [5]-[8],
or develop alternative approaches, e. g. [9]-[13], [15].

A significant number of researchers believe that such
a development can be provided through the adaptation of
the Finite State Machine (FSM) concept by the standard.
This conclusion is supported by attempts to extend the
IEC languages with finite automata concepts, e.g., [16],
[17]. Furthermore, automata-based patterns are widely used
in PLC programming [18]-[25], and the domain of reac-
tive system programming (including PLC) has seen a long
history of utilizing and further developing automata-based
concepts.
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While the SFC aims at applications where sequen-
tial nature of processes imposes the corresponding pro-
gram structure, this is a graphical program representation.
Although diagrammatic visual models and languages are very
popular in industrial automation, nevertheless, there is a great
number of software developers who prefer textual program-
ming languages, for which reason the ST language has a
very significant share among the developers in many coun-
tries. However, its cyclic-scan-based PLC legacy does not
allow for an intuitive implementation of the state-machine-
based logic, requiring using such constructs as IF-THEN-
ELSE and CASE for implementation of the state transition
function. This complicates the code and makes its static
analysis harder. In this paper we propose a solution in the
form of the poST programming language which has dedicated
higher-level constructs for describing the state-based logic of
sequential processes.

The structure of this paper follows a classical pattern for
introducing novel formal languages as in e.g. [26], [27],
using samples of code in the proposed poST language to
illustrate its properties. In the following section, the related
concepts and works are analyzed. The main contribution is
presented in four parts. First, we describe the concept of
process-oriented programming and formulate the hypothesis
of the research (Section III). The second part contains the
basic syntax of the poST language (Section IV). In part
three we depict an Eclipse-based poST IDE (Section V). And
finally, we empirically demonstrate the poST features using
an example of a three-floor elevator controller (Section VI).
In the concluding section, we discuss the paper’s contribution
and outline possible development paths.

Il. RELATED WORKS

A. STATE MACHINE CONCEPTS FOR REACTIVE SYSTEMS
The use of the FSM-based programming paradigm in control
dates back at least to the late 1970s when the early implemen-
tations of Quickstep were developed [28]. In the beginning,
it was used without a strong mathematical foundation, which
was not perceived as necessary.

In [26] Harel introduced Statecharts notation for specifica-
tion of complex reactive systems. Statecharts is based on the
hierarchical state machine (HSM) model and presents a con-
trol system as a set of concurrently executing and interacting
nested automata.

To model the behavior of asynchronous reactive systems
the notion of timed Buchi automata (TBA) was proposed [29],
which is Buchi automata where events are coupled with
non-negative real numbers (time values). In [30] it has been
shown that TBA can be used for modeling and analyzing the
timing behavior of reactive software. The methods for check-
ing reactive software properties have been implemented in a
variety of tools, including the model checkers UPPAAL [31]
and Kronos [32]. However, despite 20 years of research, these
developments have not widely reached industrial attention.

Methods based on the FSM model are actively used in
formal verification of digital systems using model-checking
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(e.g. SPIN [33], COSPAN [34], SMV [35]). Of these lan-
guages, FSMs are most extensively used in SMV, which
provides case/switch constructs for low-level description of
finite automata [36]. It also provides the ability to create
networks of communicating state machines. The interaction
between automata is organized through input-output vari-
ables (signals) in a data-flow style [37].

Dierks in [18] introduces PLC-automata — an automata-
based formalism for simulation and static time analysis
of reactive systems. PLC-automaton enriches the classic
finite-state automaton with an upper bound for the cycle and
assigns to each state a set of delayed inputs and a delay
time for how long the delayed inputs should be ignored. The
authors specify a formal semantics for the PLC-automata and
suggest methods for translation into ST code. The formal
semantics make the formalism suitable for verification using
model checkers. PLC-automaton is presented as a language
for PLC systems specification, however, due to loose syntax
definition, the formalism seems hardly usable for practical
PLC programming. Though it can be used as a basis for
an actual programming language, such a language is not
described in the work.

Kaynar et al. in [38] define timed I/O automata. This model
combines typed variables, a system state composed of vari-
able values, external and internal actions, discrete transitions,
and trajectories. The model has enhanced expressiveness
compared to the model of Alur-Dill automata [29]. This work
reflects the demand for an automaton model equipped with
such concepts as variables, events, and time.

Sacha in [39] presents a finite state time machine (FSTM)
formalism that enhances the classic Moore automaton with
timer symbols and a timer function. This extension enables
defining state transitions depending, apart from the input
symbols, on the value of a timer, which is started upon
entering the state. Unlike in a Moore automaton, the response
of a finite state time machine depends on the time intervals
within the sequence of input symbols. The authors demon-
strate a development process using this model. The automaton
is specified using UML state diagrams which can then be
automatically translated into PLC-executable code in ladder
diagram notation.

Zyubin in [40] proposes the hyper-automaton model for
control algorithms. In this model, the classical FSM is
enhanced with inactive states, a time-in-state timer. This
enhanced FSM is called a process. The control system is
expressed with multiple concurrent processes. A process
state is defined by a set of events and reactions to the
events. An event denotes a superposition of changes in the
process states, time-in-state timer, and system input val-
ues. A reaction is defined as a superposition of operations
changing the process states, time-in-state timer, and sys-
tem output values. Unlike the Harel statecharts, the pro-
cesses have no nested states, yet system hierarchy can still
be expressed via inter-process communication. Execution
semantics of the hyper-automation vary depending on the
concrete implementation. In the simplest case, the processes
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execute consequently and cyclically in a cooperative con-
currency. In [41] Rozov and Zyubin presented an extension
of the model with multiple hyper-automata executing with
interrupt-driven preemption.

Encapsulation of state machines into IEC 61499 function
blocks for implementing both controllers and models of the
plant has been demonstrated in [42].

B. STATE MACHINE PROGRAMMING IN INDUSTRIAL
APPLICATIONS

Katzke and Vogel-Heuser in [6] propose the integration of
concepts like statecharts into classical IEC 61131-3 environ-
ments. This tool supports 3 types of UML diagrams, two of
which, Statecharts and Activity Diagrams, were made fully
executable up to the level of PLC programming languages.
A variant of the statechart implemented in the MATLAB
framework is used to model reactive systems within a
Simulink model [43].

Secchi, et al. [44] have introduced the use of UML in
automation providing methodology of PLC code design by
refining UML specification. Thramboulidis proposed in [45]
generation of IEC 61499 function blocks from UML dia-
grams. In [5] they further compare the IEC 61499, UML,
SysML approaches to facilitate model-driven in IEC 61131-3
and conclude that SysML can be used to model control
software and automatically generate IEC 61131 code. Similar
attempts were made for the IEC 61499 standard [46]. Basic
function blocks of IEC 61499 are programmed using a state
machine called Execution Control Chart (ECC). Examples of
system designs with state machines can be found in [47]-[49].

Frey in [50] suggests using Signal Interpreted Petri
Nets (SIPN) that have enhanced dynamics as compared to
SFC. In SIPN several transitions can fire simultaneously and
there can be iterated firing of transitions in between stable
markings.

In the TinyOS/nesC project [51] authors proposed the
nesC language [52] oriented for microcontroller-based reac-
tive systems. Based on the results of language application
in embedded systems practice, developers discovered many
code segments organized in the form of finite state machines
(FSMs). The absence of embedded tools for code organiza-
tion in the FSM form was noted as a drawback of the approach
in [53].

Samek in [12] classifies standard state machine imple-
mentation techniques in high-level programming languages,
such as C or C++4-. According to the author, the main tech-
niques are the nested switch statement, the state table, and the
object-oriented State design pattern. Shalyto et al. [13], [14]
promote structuring control programs as state machines in the
C language using the switch statement. Wagner in [11] pro-
posed to represent a reactive system as a set of concurrently
operating state machines.

Zyubin in [15] proposes the SPARM language — a C-like
language that describes a control algorithm as a set of weakly
connected concurrent processes. A SPARM-process is an
FSM-like entity (a set of process states) where C-operators
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and sentences are enhanced with inter-process operators and
PAUSE-states to provide concurrent and timed behavior of
the software. The language was implemented for the time-
triggered polling-based model of execution. The language
was successfully used in the process control system for a sili-
con single-crystal growth furnace [54] that practically proves
acceptance of the approach for complex control algorithms.

This idea saw further development in the hyperprocess
model [40] employed in the Reflex language [55]. The model
was, in part, inspired by [56] and features built-in time-
out instructions. The hyperprocess was later adopted in the
IndustrialC language [41], [57] aimed at the development of
microcontroller software and embedded systems.

These languages are C-like and therefore they are easy
to learn. Translators of the languages produce C-code and
therefore cross-platform portability is achieved. With their
native support for state machines and floating-point oper-
ations, these languages allow cyber-physical systems to be
easily expressed. Unfortunately, the IEC 61131-3 languages
do not use C-like notation, and an attempt to include a new
C-like language in the IEC 61131-3 set would fail even if the
language is an extremely powerful one.

However, the IEC 61131-3 standard includes a Pascal-like
language Structured Text (ST). ST is a high-level lan-
guage and has ample expressive power as compared to
other low-level languages of the standard, e.g. Ladder Dia-
grams [58]. The attractiveness of the language is also due to
its wide popularity. According to CoDeSys GmbH (former
3S-SmartSoftware Solutions GmbH) ST is regularly used
by up to 70% of users, and the number is constantly grow-
ing [59]. Moreover, a noticeable part of ST developers use
the FSM pattern for their programs.

We therefore can adapt the process-oriented approach for
this procedural programming language in the same way as
it was done for the C language. To do this, we develop
a process-oriented extension of the ST, or in abbreviated
form, poST.

Ill. THEORETICAL FRAMEWORK FOR THE PROPOSED
EXTENSION

In this section we present the fundamental mathematical
and terminological grounds for our proposed programming
language.

A. CONTROL SOFTWARE FEATURES

When considering a modern control system, we generally
picture a digital controller connected to a controlled plant.
The plant represents the external environment of the control
system and consists of hardware and equipment within which
physical processes take place. The plant and controller are
connected via sensors and actuators. Sensors read data from
the plant and pass it to the control system. The controller then
acts or rather reacts on this input by producing control values
for the actuators, which in turn alter the flow of the physical
processes in the plant.
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Input from the sensors is supplied continuously. The con-
troller detects events within the data flow and consequently
reacts to them as determined by the control program. There-
fore, unlike transformational software, control algorithms
operate indefinitely, which for digital controllers automati-
cally implies cyclic execution. A general control algorithm
is thus presented with the following pattern: input of data
about the current state of controlled plant from sensors — data
processing and determination of required reaction — and data
output, which changes the current state of the actuators and
consequently the state of the plant.

Technological processes tend to involve multiple stages
and the way control software reacts to events needs to change
over time. Control algorithms have polymorphic behavior
which cannot be defined by the knowledge of inputs alone
but depends on a history of events.

As the plants are dynamic systems, control software has
to function time-dependently, i. e. according to the plant
dynamics. This means that control algorithms accommodate
delays, latencies, idles, pauses, watchdogs, timeouts, and
other notions connected to time intervals.

Another important feature of control algorithms is that they
are almost always highly concurrent. The system needs to
control multiple physical processes and communicate with
a variety of hardware peripherals — all at the same time.
As physical processes in the plant evolve independently, the
sequence of events is arbitrary. Therefore any attempts to
describe the control system within a single monolithic block
lead to a combinatorial explosion of complexity [60]. Avoid-
ing this requires the system to be split into a multitude of
independent or loosely coupled control flows.

Lastly, we ought to mark the hierarchical structure of any
complex control algorithm that reflects the artificial nature
of the external environment, the designer plan that is imple-
mented in the architecture of the facilities [61]. Taking into
account the previous remarks we can say that the hierarchical
structure consists of chains that are independently executed
in parallel. This means that divergence and convergence of
control flow are the base for a significant part of the control
algorithm. The algorithm structure can be arbitrary, irregular,
and looped.

To summarize our analysis, we list the key features of
digital control systems we deem most significant:

o interaction with an external environment via sensors,
actuators, controls, and indicators,

« indefinite running time,

« cyclic execution,

« event-driven polymorphic behavior,

« operations with time intervals,

e concurrency,

« hierarchical structure.

In this paper we propose a programming language PoST
based on the extended model of finite state machines and
hyperprocesses. We hypothesize that this model and the PoST
language provide tangible benefits to the developers in the
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domain of industrial automation systems. The hypothesis is
validated in a constructive way: in the following subsection,
the hyperprocess model is introduced. Then, the syntax and
semantics of PoST are presented in detail, followed by a case
study, demonstrating the use of the language in a concrete
application scenario. The benefits of the proposed approach
are discussed in Section VI.

B. HYPERPROCESS MODEL

From practice, it is apparent that the Finite State
Machine (FSM) concept is particularly promising for use
in logical control. FSMs implicitly assume the presence of
an external environment, can execute cyclically, and exhibit
event-driven polymorphic behavior. However, our analysis
of control system features shows that the model also needs to
support concurrency, hierarchy, and timed operations.

Furthermore, the FSM model is tailored for hardware
implementation. This is due to historical circumstances of
when the model was created [62]. Negative effects of this
become apparent even on the conceptual level, in the terms
“input alphabet” and “‘output alphabet’” which, while simple
and convenient for theoretical studies, appear awkward and
obscure from a modern programmer’s standpoint. This leads
to general misunderstanding and discourages usage of this
potentially very powerful concept [63]. Efficiency in practice
requires that more conventional programming concepts, like
variables and statements, be supported. With this in mind,
we have constructed an FSM-based model of control soft-
ware, that is suitable for the domain of control software
development. Here we will outline its basic structure and key
properties that are necessary to lay a foundation for poST
language. A more detailed description of the hyperprocess
model can be found in [40].

The control software is represented as a hyperprocess — an
ordered set of processes, which are cyclically activated with
the period Ty . Mathematically, the hyperprocess is defined
by a triplet:

H =< Ty, P,p1 >, where @))

o Tp is the period of activation,
e P is a finite nonempty ordered set of processes (P =
P1,D2, - - ., Pu, where M is the number of processes),

o pi is the first marked process, p; € P.

At this point, we can assume that a process is just a function
or a set of instructions (in a programming sense). Note that the
word “ordered” refers to the textual description of a program.
It should also be noted that a kind of perfect synchrony
hypothesis [64] is assumed in this model. In contrast to the
original hypothesis, which states that neither computation
nor communication takes any physical time, we assume a
relaxed statement to be true: the latency period for calculation
overhead is less than or equal to the period of activation
Ty . This seems to be a less idealistic and quite reasonable
condition for software implementation.

A process denotes a polymorphic subroutine — it is a set
of mutually exclusive subroutines (i.e. blocks of sequential
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program code) which is handled as a unified entity. We will
further refer to these subroutines as process state functions.
For any cycle of hyperprocess activation, each process is
reduced to one of its state functions as determined by the
current state of that process. That state function is called the
current function of the process and provides instructions to
be executed during that hyperprocess activation. In particular,
it can contain instructions that change the state of the process
for the next cycle. State functions containing no instructions
are referred to as passive and correspond to inactive states
of the process. Each process also keeps track of how many
hyperprocess cycles it has spent in its current state.
Formally, i-th process is a quintuple
pi =< Fi, FP, £, £, T; >, where ()

1

. piEH,iZ 1,2,...,M,

o Fjis aset of mutually exclusive functions,

« F lp is a set of mutually exclusive passive functions,

Fl CF;,
. fi1 is the first function (or marked active function),
(' e F)n (! ¢ F)),

o f"" is the current function, £ € Fj,

o T; is the current time.

In programming, particularly in C, the term function is
equivalent to a subroutine — a set of instructions or statements,
that specify mathematical calculations, conditional actions
etc. In the hyperprocess model we rather prefer to accentuate
the event-driven and reactive features of the model. A state
function is therefore defined as a set of events and reactions
to the events. Formally, j-th functions of i-th process is a twain

fii =< Xji, Yji >, where 3)

 Xj; is a set of events,
e Yj;is a set of reactions.

As events, we consider any changes or superpositions
of changes inside or outside the hyperprocess that are of
importance to the control algorithm. The event is connected
to a reaction it stimulates. Reactions are superpositions of
actions, including calculations, change of output values, state
transitions, communication with other processes, etc. A state
with no events has has no reactions:

&Xji = @) = (Yji = 9). “

Passive functions can then be defined as follows in terms of
events and reactions:

(fii € F)) & (Xji = ). &)

In essence, the process concept is a modification of the
FSM model. The input and output alphabets have been
removed and states of automaton along with its transition
relation have been replaced with state functions. Transitions
between states are part of the instructions within state func-
tions. The input and output alphabets have been replaced with
events and reactions. The transition relation of automaton is
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spread across state functions and expressed with a special
reaction:

set_state(p,-,flj) = (fl.”” ::fl.j, T; :=0).

Thus, the original FSM model was preserved within the
process model. Describing software with multiple automata
provides concurrent execution with a granularity of the func-
tions. The hyperprocess execution can be described in the
following way: the hyperprocess is cyclically activated with
a period Ty. upon each activation the current state function
S for each process p; € P is executed. With each activation,
the time 7; for the process is incremented. Execution of a
state function consists of sequentially testing for each of its
monitored events and executing corresponding reactions for
events that are detected.

To provide means for time-tracking and communication
between processes, special events and reactions are defined.
A process can check whether another process is in a passive
state:

passive(p;) < (f € F{)).
For time tracking purposes, a timeout event can be monitored:
timeout(pi, Ttimeout) 4 (Ti > Ttimeout)~

This event is triggered once the process p; has been executing
with the same state function for a number of hyperprocess
cycles given by Ttimeou: - To allow divergence and convergence
of control flow, processes can start and stop other processes:

start(p;) = (f* == f1, T; = 0),
stop(p;) = (f" = fl.sm’? ), where fl.m[’ € Flp .

These two reactions in conjunction with the passive event
facilitate the arrangement of the processes into a hierarchic
structure, with higher-level processes starting lower-level
processes being a rough equivalence of calling subroutines
in procedural programming. With this model, we, therefore,
have preserved the original cyclic, event-driven, and poly-
morphic nature of the FSM model, and extended it to support
concurrency, hierarchy, and time tracking.

IV. POST LANGUAGE SYNTAX AND SEMANTICS
The hyperprocess model presented above underlies the poST
language, which enriches the ST language. The language
uses ST syntax for the statements, expressions, and variable
declarations. Additional constructs are implemented, for pro-
cess definitions, process interaction, and tracking of time
intervals. Within standard terminology, a poST program is an
IEC 61131-3 program, which, according to the POU concept,
can be executed once, on a timer, or upon an event. The IEC
61131-3 runtime environment manages cyclic execution of
the poST program via time-triggered calls of the program
code.

A poST program consists of process definitions. A process
is defined by its local variables and a list of its states. The
first defined state in the list is the process’s initial state.
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States are lists of ST statements, extended by TIMEOUT,
SET STATE operations, as well as START / STOP / check
state operations to communicate with other processes. Each
process also has two implicit inactive states: the STOP state
that is for a normal halt of the process, and the ERROR state
indicating an abnormal halt. A process is inactive if it is in
either of these two inactive states. Otherwise, the process is
considered active. For a poST program, the initial process is
one that is defined first. For a process, its initial state is one
that is defined first. A sample process definition in the poST
language is presented in Listing 1.

(# simple process *)
PROCESS simple_process
STATE first_state
out := TRUE;
SET STATE second_state;
END_STATE
STATE second_state
IF (inp = TRUE) THEN
out := FALSE;
STOP;
END_IF
END_STATE
END_PROCESS

Listing 1. Simple process expressed in the poST language.

Once started, the process sets the out to TRUE and
changes its current state to second_state. It then repeat-
edly checks the value of inp on each consequent time-
triggered call. If the variable reads TRUE, the process sets out
to FALSE and stops. In the case process changes its current
state to the next defined state, the statement SET NEXT is
used for the short hand. The PoST notation allows for an
intuitive implementation of an arbitrary state machine logic
inside the process but is optimized for the most typical case of
the sequential organization of states. A shorthand SET NEXT
can be used for transition to the next defined state.

As in the hyperprocess model, on the first call, the initial
process is in its initial state, while the rest of the processes are
in the STOP state. An example of further unfolding control
algorithms with interprocess operations is presented in List-
ing 2. Once started, the initial process starts the P__1 process
and stops. The P_1 process implements the algorithm from
the previously discussed code sample.

Apart from starting and stopping other processes, a process
can monitor their status using ACTIVE/INACTIVE pred-
icates. We demonstrate this kind of process interaction in
Listing 3. Here the Init process starts P_1 and proceeds
to state wait_ 1, where it monitors the P_1 status with an
IN STATEACTIVE predicate. Once P_1 becomes inactive,
the Initprocess starts P_2 and goes on to checking its state
in wait_2. As soon as P_2 becomes inactive, the Init
process stops.

Combined with the START statements, these status moni-
toring predicates provide a mechanism of program organiza-
tion that is somewhat similar to subroutine calls in procedural
languages. At the same time, starting a process means a
divergence in control flow as, in effect, a new concurrent (log-
ically independent) thread is created. Listing 4 demonstrates a
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PROGRAM sample_program
PROCESS Init (x the initial process x)
STATE begin
START PROCESS P_1;
STOP;
END_STATE
END_PROCESS
PROCESS P_1
STATE first_state

out := TRUE;
SET NEXT; (x shorthand =)
END_STATE

STATE second_state
IF (inp = TRUE) THEN
out := FALSE;
STOP;
END_IF
END_STATE
END_PROCESS
END_PROGRAM

Listing 2. Initial unfolding of algorithm.

PROGRAM sample_program
PROCESS Init (x the initial process x)
STATE begin
START PROCESS P_1;
SET NEXT;
END_STATE
STATE wait_1
IF (PROCESS P_1 IN STATE INACTIVE) THEN
START PROCESS P_2;
SET NEXT;
END_TIF
END_STATE
STATE wait_2
IF (PROCESS P_2 IN STATE INACTIVE) THEN
STOP;
END_TIF
END_STATE
END_PROCESS
< o>
END_PROGRAM

Listing 3. Process completion monitoring.

STATE diverge
START PROCESS P_1;
START PROCESS P_2;
< o>
START PROCESS P_N;
SET NEXT;
END_STATE

Listing 4. Simultaneous starting multiple processes.

STATE converge
IF ((PROCESS P_1 IN STATE INACTIVE) AND
(PROCESS P_2 IN STATE INACTIVE) AND
<..0>
(PROCESS P_N IN STATE INACTIVE)) THEN
SET NEXT;
END_TIF
END_STATE

Listing 5. Control flow convergence.

control flow divergence with starting multiple processes
simultaneously. Listing 5 demonstrates a control flow con-
vergence with status monitoring predicates of multiple
processes.

Combining divergence and convergence mechanisms, one
can arrange the processes into an architecture with arbitrary
parent-child relationships. However, in practice control soft-
ware tends to be mostly hierarchical in structure.

Another poST construct extending the functionality of ST
is the TIMEOUT statement. The statement consists of a time
interval and a set of actions to be executed in the event
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of a timeout. By definition, every process has a timer to
generate the event. The timer is automatically reset upon state
transitions. Alternatively, one can manually reset the timer
using the RESET TIMER statement. Listing 6 demonstrates
using the TIMEOUT statement to provide a 3-second delay
before continuing further.

STATE delay3s
TIMEOUT T#3s THEN
out := FALSE;
SET NEXT;
END_TIMEOUT
END_STATE

Listing 6. Using TIMEOUT statement for delay.

The TIMEOUT statement is very useful for detecting and
handling abnormal conditions of the plant, e.g. to check
threshold time for closing a valve. Listing 7 shows the tech-
nique to close a shut-off valve.

PROCESS close_Valve
STATE begin
Valve_Control
SET NEXT;
END_STATE
STATE wait_closing
IF (Valve_Sensor = OFF) THEN
STOP;
END_TIF
TIMEOUT T#1ls THEN
ERROR;
END_TIMEOUT
END_STATE
END_PROCESS

:= OFF;

Listing 7. Using TIMEOUT to control abnormal situations.

Here the process initiates valve closing by setting the con-
trol signal to OFF and then monitors the sensor to ensure that
the closing is finished. The timeout statement is used to detect
abnormal situations that lead to the valve being stuck.

To facilitate studying the poST language, a poST-to-ST
compiler has been developed in form of a web application and
deployed at the following address: http://post2st.iae.nsk.su.

V. ELEVATOR CASE STUDY

We demonstrate programming in the poST language with
an example of developing control software for a three-floor
elevator.

A. THREE-FLOORS ELEVATOR DESCRIPTION

For our purpose, we use a simplified case of an elevator
as given in [65]. Elevators themselves are simple devices,
and basic lifting systems have not changed much in over
50 years. Control systems, however, have changed substan-
tially to improve safety and speed of operation.

We consider an elevator servicing three floors. A single
elevator motor and three separate door motors control the
elevator position and door operation respectively. The ele-
vator motor is activated by the up and down signals and
moves the elevator between floors. Three position sensors
are used to detect if the elevator is properly positioned at
one of the three floors. Elevator doors have two panels that
meet in the middle and slide open laterally. The electric door
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opening motors open both the inner elevator door and the
outer floor door, and are activated by the open signals. When
the elevator door opens, it is sensed by one of the three door
limit switches (three door-opened signals). The elevator has
three call buttons, one on each floor, to request the elevator
from the floors (three call signals) and three inner buttons
to set requested floors from the cabin (three button signals).
Every button has a LED indicator to show the active requests.
The elevator operates under the following rules:

1) The elevator must continue traveling in the same direc-
tion as long as there are remaining requests in this
direction.

2) If there are no further requests, the elevator must stop
and become idle. If only requests for the opposite direc-
tion are present, the elevator must switch the preferred
direction and start serving the requests.

3) The doors must always be closed when the elevator is
moving.

4) When the cab has reached a proper location at a
requested floor, the elevator must open the door and
then close it after a three seconds pause.

B. CONTROLLER AND PLANT SIMULATOR DESIGN

The cyber-physical diagram in Fig. 1 represents the sys-
tem as three interacting components: Environment, Plant,
and Controller. In the discussed case study the elevator
users act as an Environment with respect to the Plant
and Controller which are connected with each other in
closed-loop. The Controller defines the behavior of the sys-
tem in accordance with the poST program. The user can
press the external and internal call buttons. The floor call
buttons (callO, calll, call?2), the cabin call buttons
(buttonO, buttonl, button2) are used as Controls.
LED indicators (call0_LED, calll_LED, call2_LED)
combined with the cabin call buttons, and LEDS (button0_
LED, buttonl_LED, button2_LED) combined with
the floor call buttons are used to signal unhandled
calls. The floor LEDS (floorO_LED, floorl_ LED,
floor2_LED) indicates position of the elevator cabin.

The controller monitors the states of the controls,
floor sensors (on_floor0, on_floorl, on_floor2)
and door sensors (doorOclosed, doorlclosed,
door2closed).

Using the values of these inputs, the controller generates
signals for the elevator movement motor (up and down), door
motors (open0, openl, open2), and the LED indicators.
Turning on the elevator motor causes the elevator to move
between floors, whereas the down signal overrides the up
signal. Turning on a door motor causes that door to open while
turning it off closes the door.

Our design, as presented on the diagram, assumes separate
implementation of the controller, the plant simulator, and the
effects of visualization. This approach allows debugging the
code on a development platform while providing a seamless
transfer of the verified program to the target PLC.
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FIGURE 2. Plant simulator process diagram.

C. PLANT SIMULATOR IMPLEMENTATION IN POST
The architecture of the plant simulator program (Fig. 2) con-
sists of five processes.

The initial process (Initialization process) launches pro-
cesses that simulate moving the elevator between floors
(the ElevatorSim process) and opening doors (Door(0Sim
...Door2Sim processes). After the launching, the process
stops itself (Listing 8).

The simulation processes are similar one to another. For
example, the Door0Sim process (Fig. 3.) consists of one
active state. According to the open0 signal, it calculates
changes in the doors coordinate and limits it to the allowed
values reflecting the size of the doorway. If the coordinate
is equal to zero it imitates the corresponding door sensor by
setting the doorOclosed signal to TRUE (Listing 9).

As to the ElevatorSim process. According to the up and
down signals it calculates the elevator coordinate and limits
it to the allowed values reflecting the height of the building.
When the elevator coordinate is within the range of one of
the floors, the process holds the corresponding floor sensor
(onfloor0,onfloorl, onfloor2) to true.
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PROCESS Init
STATE begin
START PROCESS Door0Sim;
START PROCESS DoorlSim;
START PROCESS Door2Sim;
START PROCESS ElevatorSim;
STOP;
END_STATE
END_PROCESS

Listing 8. The poST code of the Init process.

PROCESS Door0Sim
VAR CONSTANT

DOOR__SPEED REAL := 0.5;
DOOR_OPEN_COORD REAL := -50;
END_VAR
VAR
coord REAL := 0.0;
END_VAR

STATE check_open_close LOOPED
IF openO THEN

coord := coord - DOOR_SPEED;
ELSE
coord := coord + DOOR_SPEED;
END_TIF
IF coord >= 0.0 THEN
coord := 0.0;
END_TIF
IF coord <= DOOR_OPEN_COORD THEN
coord := DOOR_OPEN_COORD;
END_TIF
IF coord = 0.0 THEN
doorOclosed := TRUE;
ELSE
doorOclosed := FALSE;
END_TIF
END_STATE

END_PROCESS

Listing 9. The poST code of the Door0Sim process.

D. CONTROLLER IMPLEMENTATION IN POST

The controller program (Fig. 3) contains 13 processes, com-
bined into two groups. The first group of auxiliary processes
consists of processes serving the call buttons and floor LEDs.
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FIGURE 3. Controller process diagram.
PROCESS CallOLatch STATE check_floor
VAR IF onfloor(O THEN
prev_in BOOL; cur := 0;
prev_out BOOL; floorO_LED := TRUE;
END_VAR floorl_ LED := FALSE;
STATE init floor2_LED := FALSE;
prev_in := NOT call0; ELSIF onfloorl THEN
prev_out := NOT open0; cur := 1;
SET NEXT; floorO_LED := FALSE;
END_STATE floorl_LED := TRUE;
STATE check_ON_OFF LOOPED floor2_LED := FALSE;
IF call0 AND NOT prev_in THEN //rising edge ELSIF onfloor2 THEN

callO_LED := // switch on
END_IF

IF openO AND NOT prev_out THEN //rising edge

TRUE;

callO_LED := FALSE; // switch off
END_TIF
prev_in := callO; // for the edges detection
prev_out := openO0;
END_STATE

END_PROCESS
Listing 10. The poST code of the CalloLatch process.

The second group (control processes) consists of the pro-
cesses of moving the doors and elevator car. The initial pro-
cess (Initialization process) launches the auxiliary processes
and the UpControl process. After this, the process stops itself.

The latch processes (CallOLatch, CalllLatch,
Call2Latch, ButtonOLatch, ButtonlLatch,
Button2Latch) differ only in variables (Listing 10). Each
latch process has two local variables and two states. The local
variables store previous values of the cal10 and openO sig-
nals and are used to detect the rising and falling edges. In the
initial state the process sets the starting values of its local vari-
ables. In its second and main state the process monitors the
button press and door opening events via callOand open0
signals. On the button press event it sets the cal10_LED
signal. On the door opening event the process turn off the
LED. The CheckCurFloor process (Listing 11) tracks the
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cur := 2;
floorO_LED := FALSE;
floorl LED := FALSE;
floor2_LED := TRUE;
END_IF
END_STATE

END_PROCESS
Listing 11. The poST code of the CheckCurFloor process.

floor sensor signals onfloor0, onfloorl, onfloor?2,
sets the corresponding LEDs, and stores the current floor
number in the cur internal variable.

The UpControl process (Listing 12) gives priority
to calls from upper floors. If the call is on the cur-
rent floor, the process launches a door opening sequence
(DoorCycleprocess) and changes its current state to
door_cycle. If calls on upper floors are present, it ini-
tiates elevator movement in the upward direction by start-
ing the UpMot ion process and changes its current state to
check_stop. Otherwise, if calls are from lower floors only,
it starts the DownControl process and stops itself. In the
door_cycle state the process waits for the DoorCycle
process (Listing 13) to stop and then resumes operation in the
check_calls state.In the check_stop state the process
awaits arrival to the target floor by monitoring inactive state
of the UpMotion process. It then starts the DoorCycle
process and proceeds to the door_cycle state.
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PROCESS UpControl (x up motion priority x)
STATE check_calls //call from current floor?
IF (cur = 0 AND (callO_LED OR buttonO_LED)) OR
(cur = 1 AND (calll_LED OR buttonl_LED)) OR
(cur = 2 AND (call2_LED OR button2_LED)) THEN
START PROCESS DoorCycle;
SET STATE door_cycle;
ELSE // are there other calls?
CASE (cur) OF
0: // call from upper floor?
IF ((calll_LED OR buttonl_LED) OR
(call2_LED OR button2_LED) ) THEN
START PROCESS UpMotion;
SET NEXT;
END_TIF
1: // above?
IF (call2_LED OR button2_LED) THEN
START PROCESS UpMotion;
SET NEXT;
// below?
ELSIF (callO_LED OR buttonO_LED) THEN
START PROCESS DownControl;
STOP;
END_TIF
2: // switch direction
START PROCESS DownControl;

END_TIF
END_STATE
STATE check_stop
IF (PROCESS UpMotion IN STATE INACTIVE) THEN
START PROCESS DoorCycle;
SET NEXT;
END_IF
END_STATE
STATE door_cycle
IF (PROCESS DoorCycle IN STATE INACTIVE) THEN
RESTART; // set the initial state
END_TIF
END_STATE
END_PROCESS

Listing 12. The poST code of the UpControl process.
PROCESS DoorCycle

STATE choose_door_to_open
CASE (cur) OF

0: openO := TRUE;
1: openl := TRUE;
2: open2 := TRUE;
END_CASE
SET NEXT;
END_STATE

STATE delay3s
TIMEOUT T#3s THEN

open0 := FALSE;
openl := FALSE;
open2 := FALSE;
SET NEXT;
END_TIMEOUT
END_STATE

STATE check_closed
IF (doorOclosed AND
doorlclosed AND
door2closed) THEN
STOP;
END_TIF
END_STATE
END_PROCESS

Listing 13. The poST code of the DoorCycle process.

The UpMot ion process (Listing 14) starts upward motion,
then tracks the active call from the next floor. If an active
call is present it sets the target floor and changes its state to
check_target. In this state it detects arrival to the target
floor, then terminates the elevator movement and stops itself.
The DownControl and DownMotion processes imple-

ment the same logic for the downward case.
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PROCESS UpMotion
STATE start // check the next floor call
up := TRUE;
CASE (cur) OF
0:
IF (calll_LED OR buttonl_LED) THEN
target := 1; // if next floor
SET NEXT;
END_TIF
1:

IF (call2_LED OR button2_LED) THEN
target := 2; // if next floor
SET NEXT;

END_TIF

2:

target := 2; // a stub

SET NEXT;

END_CASE
END_STATE
STATE check_target
IF (cur = target) THEN // have arrived?
up := FALSE;
STOP;
END_TIF
END_STATE
END_PROCESS

Listing 14. The poST code of the UpMotion process.

/0 signals

- — []

Up OnFloor 2

Down + OnFloor 1
OnFloor 0

OpenDoor 2 +" | Door 2 closed

+' OpenDoor 1 Door 1 Closed

OpenDoor 0 + Door 0 closed

Intems varisbles

H=225 X2=0

FIGURE 4. CoDeSys visualization of the elevator.

E. DEPLOYMENT AND VISUALISATION IMPLEMENTATION
IN CODESYS

The presented control algorithm along with the three-level
elevator model was implemented using the poST/Eclipse
IDE [66]. The behavior of the control system was dynami-
cally verified using CoDeSys (Fig. 4).

The Controller program implements the control algorithm
and is targeted to be uploaded to PLC. The Plant program
is a digital twin of the elevator and simulates physical pro-
cesses within the Plant. It implements the Reconfiguration
and Transformation block (Fig. 1) to allow testing of the
control algorithm.

The behavior of the control system was dynamically ver-
ified using CoDeSys simulation mode [CoDeSys] (Fig. 4).
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FIGURE 5. CoDeSys elevator project tree.

Here the interaction between the Plant and the Controller is
organized via global variables stored in a separate GVL file.

According to this schema, the controller sets the output
variables (up/down and open door motors). The Plant sim-
ulator reads these variables, then recalculates elevator coor-
dinates in case of motion, and forms input signals such as
states of the floor and door sensors. Among the input and
output signals, there are controls and indicators (call buttons
and LEDs) that implement an interface with the user. When
used in actual physical PLC and plant, these global variables
would be mapped to PLC input/output ports and represent
the PLC input/output signals. The state of the elevator and
its user interface are displayed using CoDeSys visualization
tools (Fig. 5).

VI. DISCUSSION AND CONCLUSION
In this work a novel programming language poST - a
process-oriented extension of IEC 61131-3 Structured Text is
presented. poST assumes specification of control algorithms
as a set of communicating FSM-based processes. The hyper-
process model underlying poST is compliant with primary
features of control software — cyclic execution, event-driven
and polymorphic behavior, temporal behavior, and concur-
rency. The language syntax is similar to the IEC 61131-3
Structured Text and provides time-interval operations as well
as means for inter-process communication that encourage a
hierarchical organization of control software. A translator
from poST to ST has been implemented and semantics of
key poST constructs has been demonstrated. The case study
demonstrates promising qualities of the resulting code such
as readability, maintainability, and overall robustness. This
shows that the language can be successfully used in complex
industrial applications.

Within the process-oriented approach, it provides the fol-
lowing advantages.

1) The syntax of the language enables explicit specifi-
cation of state machines, which ST programmers use
for complex control algorithms. Compared to state
machine description using bare ST, this reduces code
size and has a positive effect on readability. Fur-
thermore, this enables automatic semantic checks in
high-level control domain terms such as interaction
between processes.
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2) poST encourages control algorithm specification to be
correspondent to the technological description of pro-
cesses inside the controlled plant. This allows static
analysis tools to provide a high-level graphical repre-
sentation of the source code with UML and process
diagrams.

3) poST is a textual language, which is an attractive fea-
ture for many developers, as compared to the graphical
notations of PLC programming, such as SFC.

Therefore, the poST language enables an application-
centric approach to control software development and
improves the maintainability (readability, error traceability,
changeability, etc.) of the control software.

Apart from the above-mentioned advantages, the language
can employ formal verification and code analysis methods
earlier developed for Reflex, due to the similarity of the two
languages.

Experimental study of the poST language with the
three-level elevator example has shown that developing pro-
grams in poST can yield groups of highly similar processes.
One kind of such processes (e. g., the latch processes) differ
only in their input and output signals. The other kind, such
as UpControl and DownControl, differ in their used child
processes. Description of these processes can be reduced
using some sort of process templating.

Further direction of work would be to develop templating
means and also adapt the IEC 61131-3 configuration mecha-
nism for poST.
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