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ABSTRACT Diagnosis of Autism Spectrum Disorder (ASD) using clinical evaluation (cognitive tests) is
challenging due to wide variations amongst individuals. Since no effective treatment exists, prompt and
reliable ASD diagnosis can enable the effective preparation of treatment regimens. This paper proposes
structural Magnetic Resonance Imaging (sMRI)-based ASD diagnosis via an outlier detection approach.
To learn spatio-temporal patterns in structural brain connectivity, a Generative Adversarial Network (GAN)
is trained exclusively with sMRI scans of healthy subjects. Given a stack of three adjacent slices as input, the
GAN generator reconstructs the next three adjacent slices; the GAN discriminator then identifies ASD sMRI
scan reconstructions as outliers. This model is compared against two other baselines– a simpler UNet and
a sophisticated Self-Attention GAN. Axial, Coronal and Sagittal sMRI slices from the multi-site ABIDE II
dataset are used for evaluation. Extensive experiments reveal that our ASD detection framework performs
comparably with the state-of-the-art with far fewer training data. Furthermore, longitudinal data (two scans
per subject over time) achieve 17-28% higher accuracy than cross-sectional data (one scan per subject).
Among other findings, metrics employed for model training as well as reconstruction loss computation
impact detection performance, and the coronal modality is found to best encode structural information for
ASD detection.

INDEX TERMS Autism spectrum disorder, sMRI slice reconstruction, outlier detection, generative adver-
sarial network, self-attention.

I. INTRODUCTION
Autism SpectrumDisorder (ASD) is characterized as a devel-
opmental disability. Initial signs typically appear in the early
stages of childhood [1], [2]. Children with ASD are prone
to a number of unusual or repetitive behavioral changes,
including problems with speech, touch, eye contact and facial
expression. These symptoms become more severe as age
progresses [3]–[7]. Core ASD symptoms typically result due
to developmental changes in structural and functional brain
connectivities. The best way to detect and treat ASD is by
effective diagnosis. Currently, the Diagnostic and Statistical
Manual (DSM-5) [8], [9], Autism Diagnostic Observation
Schedule (ADOS) [10], [11] and the AutismDiagnostic Inter-
view (ADI-R) [12], [13] are used to conduct initial screening.
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Manual diagnoses are subjective, prone to errors and biases
due to disparities in expertise [14], [15]. Recently, Computer-
Aided Diagnosis (CAD) is being used as an alternative aid in
the diagnostic process [16], [17].

Recent research has shown that neuroimaging analysis is
useful for ASD diagnosis as Magnetic Resonance Imaging
(MRI) methods are capable of examining both qualitative and
quantitative details derived from detailed three-dimensional
anatomical images [18]. Among imaging modalities, neu-
roimaging can be categorized into structural imaging and
functional imaging. Structural MRI (sMRI) research relies
on volumetric and morphometric studies to evaluate irregular
neuroanatomy across the three acquisition planes – Axial,
Coronal and Sagittal. Functional MRI (fMRI), which utilizes
the correlation between cerebral blood flow and brain activity,
is preferred in studies which seek to examine how the ner-
vous system oxidizes while undertaking visual, motor, and

27794 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0799-7264
https://orcid.org/0000-0001-9749-7858
https://orcid.org/0000-0002-9616-7942
https://orcid.org/0000-0002-8602-0533


K. Devika et al.: Outlier-Based Autism Detection Using Longitudinal Structural MRI

cognitive processes. In contrast, sMRI is popular in clinical
studies [19], [20] due to its ability to detect subtle brain struc-
tural changes, and to produce images with greater contrast
and spatial resolution.

The National Database for Autism Research (NDAR) [21]
and Autism Brain Imaging Data Exchange (ABIDE) [22],
[23] are popular open-access databases for ASD research.
Neuroimaging scans are obtained either as cross-sectional
(one sample per person) or longitudinal (multiple samples per
person captured over time) samples. These scans enable us to
examine and monitor changes in brain structure and function
in individuals over time. Most neuroimaging-based diag-
nostic research are based on cross-sectional data. Recently,
a few researchers have analyzed longitudinal data to predict
neurological disorders via machine learning [24]. Among
the aforementioned databases, ABIDE II [23] provides lon-
gitudinal samples. Longitudinal data collection is difficult,
as data needs to be acquired for the same subject at various
time points. Subject readiness to engage in multiple scanning
sessions is not assured in longitudinal setups, and subject-
specific samples typically drop over time. A major drawback
of longitudinal studies is therefore a limited sample size and
fewer participants [25].

Conventional machine learning frameworks use various
handcrafted features and classification techniques such as
Support Vector Machine (SVM). However, the handcrafted
features are the bottleneck for the success of the frame-
works. In-depth domain knowledge and experience is usually
required to design such handcrafted features. Differently,
deep learning frameworks accomplish the same by intelli-
gently learning the intricate bio-markers using substantial
amount of training data. The learnt features, usually the out-
puts of initial layers of the deep neural nets, can sometimes be
related to the handcrafted features diagnosed by the medical
experts. Thus, deep learning frameworks complement, not
replace the physician’s regular diagnosis of medical disor-
ders. ASD has been diagnosed via deep learning [26], [27].
Among deep learning architectures, autoencoders [28] enable
low-dimensional embedding of a high-dimensional input via
an encoder–decoder block. We employ a Generative Adver-
sarial Model (GAN)-based encoder-decoder framework for
sMRI-based ASD detection. Learning structural brain con-
nectivity, an encoder maps an sMRI image slice onto a low-
dimensional vector; the decoder then reconstructs the next
slice from this embedding. The actual and reconstructed next
slices are compared to compute the reconstruction loss, which
is then back-propagated to train the GAN. When the GAN is
exclusively trained with healthy sMRI scans, higher recon-
struction losses would result for ASD scans due to structural
connectivity differences between normal and ASD subjects.
The GAN discriminator would therefore view ASD scans
as outliers (with reconstruction loss greater than threshold),
enabling unsupervised ASD detection.

Single slice reconstruction error [29], [30] has typically
been employed as the objective for model training. Dif-
ferently, we conjecture that structural connectives between

adjacent sMRI slices capture class-specific characteristics
better than single slices, and train the GAN model with
stacks of three contiguous slices. We also evaluate three
encoder-decoder architectures– GAN [31], UNet [32] and
Self-attention GAN (SAGAN) [33] for detection efficacy.
Further, most works on longitudinal ASD data analysis
employ supervised learning where availability of sufficient
ASD data is critical, but ASD data are scarce. Modeling
ASD scans as outliers as in our approach addresses this
issue. In summary, this paper makes the following research
contributions.

1) We employ a GAN encoder-decoder framework for
sMRI-based ASD detection. The GAN trained exclu-
sively from healthy scans views ASD samples as
outliers and enables ASD diagnosis. This approach
obviates the need for many ASD training samples.

2) To effectively model structural brain connectives,
stacks of three adjacent sMRI slices are input to the
GAN to reconstruct the next three slices. Slice recon-
struction loss is employed as the training objective.
Empirical results (Table 7) confirm that modeling
structural patterns from three-slice stacks is more ben-
eficial vis-à-vis single slices.

3) We evaluate the GAN against a computationally less-
intensive UNet, and more-intensive SAGAN. SAGAN
outperforms the GAN and UNet architectures.

4) We examine the efficacy of (a) longitudinal vs cross-
sectional data (b) various loss functions formodel train-
ing, and (b) the Axial, Coronal and Sagittal slices and
their combinations for encoding structural information.
The L2+cosine loss objective is found to be the most
effective, and a combination of the Axial and Coronal
slices achieves the best detection performance.

The paper is structured as follows. A survey examining
related work is presented in Section II. Section III details
our framework and other baselines. Section IV discusses
empirical results, and the paper concludes in Section V.

II. RELATED WORK
This section reviews longitudinal sMRI-based ASD diagno-
sis, and deep learning models developed to this end.

A. LONGITUDINAL STUDIES ON ASD DETECTION
ASD detection has been attempted with both cross-sectional
and longitudinal sMRI data. Wang et al. [34] conducted a
study of cerebellar thickness to determine longitudinal differ-
ences associated with ASD. The analysis used longitudinal
scans from the ABIDE II dataset, which includes 19 ASD
subjects and 14 healthy subjects. Correlation between ADOS
scores and lobular thickness data was examined. Subjects
with ASD showed smaller lobular thickness and asymmetry
in the right cerebellum, and this reduction is associated with
the severity of behavioral symptoms.

Fu et al. [35] studied Gray Matter and White Matter asso-
ciation with respect to ASD using longitudinal sMRI and
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Diffusion Tensor Imaging for 34 ASD and 26 healthy sub-
jects. Chi-square and t-tests were used to compare demo-
graphic and clinical features extracted from the baseline and
follow-up scans for ASD and healthy subjects. The study
discovered that at across time, Fractional Anisotropy (FA)
and brain volume of white matter was higher in ASD sub-
jects. Ning et al. [36] analyzed the developmental patterns
of core-symptom-anchored cortical vertex-wise Gyrification
Index (GI) in ASD. They used data from 321 ASD and
350 healthy subjects from ABIDE I, and 14 ASD plus
7 healthy subjects’ longitudinal data from the ABIDE II
dataset. Statistical differences between two groups were
examined using chi-square and t-tests. While comparing GI
between the baseline and follow-up conditions, significant
variations were discovered in ten ASD clusters, with nine
clusters showing decreased gyrification. Prigge et al. [37]
reported longitudinal volumetric findings in ASD subjects
acquired from FreeSurfer. Linear mixed-effects models were
used to characterize longitudinal volumetric changes in the
brain over time. ASD-specific findings included larger gray
matter in early childhood, enlarged ventricles by early adult-
hood, and reduced corpus callosum volume in adulthood.
Devika and Oruganti [38] investigated longitudinal sMRI
samples from ABIDE II for supervised ASD detection, and
reported a classification accuracy of 94.29% using Support
Vector Machines.

B. DEEP LEARNING MODELS
Mostafa and Wu [39] used Convolutional Autoencoder
(CAE) for single sMRI slice reconstruction to diagnose ASD.
The study used T1-weighted sMRI scans from 403 ASD
and 468 healthy subjects from ABIDE-I [22]. The CAE
was trained with healthy subjects and tested with both ASD
and healthy subjects. Similarity indices including Structural
Similarity Index (SSIM), Mean squared Error (MSE), Peak
Signal-to-Noise Ratio (PSNR) values were used as features
for SVM and Linear Discriminant Analysis (LDA) classifica-
tion. Baur et al. [40] developed an unsupervised UNet model
onMRI of healthy subjects to detect variations corresponding
to anomalous MRI. The model was tested on five different
MRI datasets, and achieved a highest F1-score of 62%.

C. GENERATIVE MODELS FOR CLINICAL DIAGNOSIS
In medical imaging, generative models have become popular
for clinical diagnosis due to their ability to learn complex
distributions from input samples [41], [42]. Generative
Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs) are popular generative models, but GANs
are advantageous as they do not explicitly compute prob-
ability densities and yield better results than VAEs via
a game-theoretic approach. AnoGAN [43] was the first
work to employ GAN to detect retinal anomalies using
spectral-domain Optical Coherence Tomography (OCT).
A Deep Convolutional GAN (DCGAN) was trained using
2D image patches compiled from clinical OCT volumes of
healthy subjects. This model was tested with both healthy

and pathological samples, and the weighted sum of the
residual and discrimination losses was used to compute
the anomaly score. Inspired by AnoGAN, unsupervised
metastatic bone tumor classification with GANwas proposed
in [44]. Anomaly scores were determined by comparing the
test image with a synthesized one at both the image and
feature levels. Although AnoGAN demonstrated high per-
formance, iterative techniques suffer from computing ineffi-
ciency for real-world applications, which was addressed via
fast AnoGAN (f-AnoGAN) [45] that learnt a mapping from
image to latent space with a Wasserstein GAN.

Han et al. [46] developed a two-step procedure for abnor-
mality diagnosis from T1-weighted (T1w) sMRI Axial
slices. Training was done on healthy subjects, while testing
included both healthy andAlzheimer’s disease samples. UNet
and GAN architectures were investigated, and a maximum
AUC score of 0.92 was reported with the GAN architec-
ture. Han et al. [47] studied the effect of self-attention (SA)
modules in GAN architectures to detect AD and brain metas-
tases. The study used longitudinal samples, plus a cross-
sectional dataset compiled by the authors, and reported a
highest AUC score of 0.89 and 0.92 for Alzheimer’s dis-
ease and brain metastases detection respectively. Translation
from Abnormal-to-Normal GAN (ANT-GAN) is a variant
of CycleGAN [48], which was developed to synthesize a
normal-looking medical image from an abnormal one, and
vice versa. The proposed method was tested on MRI and
CT scans from publicly available datasets. ANT-GAN was
able to synthesize extremely realistic healthy scans that nearly
matched images with lesions. Once a healthy scan is gener-
ated from an abnormal counterpart, discrepancies between
the input and synthesized images can then be utilized to
segment abnormal regions and contrast between healthy and
abnormal scans. In ASD, GAN-generated synthetic data has
significantly improved classification performance [49].

III. METHODOLOGY
An overview of the proposed framework is illustrated in
Figure 1. There are five stages. Firstly, we pre-process sMRI
longitudinal scans via the Freesurfer longitudinal pipeline.
Secondly, we extract 2D slices from longitudinally pre-
processed 3D sMRI scans. Thirdly, Axial slices are selected
for further processing. Fourthly, a GAN-based encoder-
decoder framework is trained only using healthy subjects’
data. The GAN objective is to reconstruct the next three
adjacent slices from an input stack of (current) three adjacent
slices. Finally, classification performance is evaluated based
on the average loss between the reconstructed and ground-
truth sMRI slices. Details of each stage and background are
presented below.

A. DATASET DESCRIPTION
Autism Brain Imaging Data Exchange (ABIDE) is an open-
source data collection with two subsets: ABIDE I [22] was
launched in 2014, and ABIDE II [23] in 2017. ABIDE II
includes data from 19 different sites, with longitudinal data
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FIGURE 1. Approach overview: Longitudinal sMRI scans are pairwise-aligned via the Freesurfer pipeline. Slices along a
given plane (Axial, Coronal and Sagittal) are extracted and three adjacent slices stacked. Different architectures (UNet,
GAN, SAGAN) are trained using only sMRI scans of healthy subjects. Reconstruction error from training is used to compute
a threshold for outlier direction. A test subject is labeled as ASD if reconstruction error is greater than the threshold.

from two sites (UCLA and UPSM) [23], [50]. The scanner,
scanning specifications, and scanningmethod are all different
since each sMRI scan is gathered independently. In accor-
dance with prior studies [39], [51], [52], heterogeneity of the
dataset is not explicitly addressed. Longitudinal data from
these two sites includes data for 23 ASD and 15 healthy sub-
jects. The subjects ages range from 9–17 years for baseline
scan (median age of 12.6 years), and 10–19 years at follow-
up scan (median age of 15 years) across the healthy and ASD
groups. The two longitudinal sets include T1-weighted (T1w)
sMRI, rsfMRI scans in NIFTI format and phenotype infor-
mation in comma separated value (.csv) format, collected
during a one-to-two year period. By measuring the amount
of water in the tissues, the sMRI data reveals the various
types of tissues present. In T1w images, water and fluid-
containing tissues look dark, while fat-containing tissues
appear bright. This paper uses only longitudinal T1w sMRI
slices for investigation.

B. DATA PRE-PROCESSING
Pre-processing is a necessary step for reducing inter-subject
data variability resulting from data collection. Despite data
being collected at different places, prior sMRI studies on
ABIDE I and II only employed general pre-processing
steps [19], [51]. We followed the same suite and ignored
inter-site scan capture variations. We employed the open-
source Freesurfer (v.6.0) longitudinal pipeline to pre-process
the T1w sMRI longitudinal samples [53], [54]. Longitudi-
nal processing requires cross-sectional processing followed
by generation of a within-subject template (base image)
via sequential, inverse-consistent registration of each time
point scan to an average image. Following which, each

time point scan is processed independently. The longitudinal
pipeline is found to have higher cross-session dependencies
than the cross-sectional pipeline [55]. We intend to leverage
these dependencies with longitudinal samples. While pre-
processing, three ASD subjects had surface reconstruction
errors due to poor image quality, and hence their data were
discarded.

C. MULTIPLE sMRI SLICE RECONSTRUCTION
Longitudinally pre-processed and skull-stripped 3D files
from Freesurfer are fed to the Python3 utility med2image
(v.2.2.4). This package converts each slice (Axial, Coronal
and Sagittal) of formatted 3D or 4D NIfTI (.nii) or DICOM
(.dcm) medical image formats to common 2D image formats
such as Joint Photographic Experts Group (jpg) or Portable
Network Graphics (png), suitable for training deep learning
models [56], [57]. We thus obtained slices along the Axial,
Coronal and Sagittal planes. Among these, the Axial plane
is popularly used [58], [59], but Convolutional Neural Net-
works (CNNs) have also effectively learned from Coronal
plane [60]. In this study, we examined the utility of all three
sMRI imaging planes. Of the 256 slices in a typical sMRI
scan, slice sequence 120–180 is known to contain a majority
of the vital brain information [39]. Hence, we extracted this
60-slice sMRI sequence for future stages. Extracted image
dimensions (height×width) for the three planes are 256×176
(Axial), 256 × 256 (Coronal) and 256 × 256 (Sagittal). The
Axial dimensions are specified by default in the later sections.

Table 1 details the train and test splits for experiments
conducted in this study. To ensure subject independence,
we manually performed the train and test splits. Models were
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TABLE 1. Details of train and test data used in our experiments.

TABLE 2. UNet performance for different slice combinations.

TABLE 3. UNet performance for different slice combinations.

trained only with healthy subjects. The trained model is then
tested with both normal and ASD samples, and unsupervisely
detects ASD samples as outliers.

We sought to model structural connectives between
adjacent sMRI slices by feeding the GAN with, and recon-
structing contiguous slices. To determine the optimum slice
combinations, we considered the UNet model and con-
ducted a preliminary experiment with four different input-
output slice combinations, namely, 3-3, 3-5, 5-3 and 5-5. For
instance, the UNet33was trainedwith a 3-3 slice combination
where the adjacent 3 slices (e.g., 1,2,3) of dimension 256 ×
176 × 3 were input to reconstruct the next adjacent 3 slices
(e.g., 4,5,6) as in [46] and [47]. Sample input and predicted
output slices for the 3-3 and 3-5 combinations are shown
in Table 2. The same convention is used for the UNet35,
UNet53, UNet55, GAN33 and SAGAN33 models. The L2
loss function was employed for training. The performance
and computational time for each model on a computational
cluster with a 28-core NVidia V100GPUwith 1.125TBRAM
is shown in Table 3. To maintain reasonable model training
time and performance, we chose the 3-3 slice combination
for our experiments.

D. ARCHITECTURE DETAILS
For slice reconstruction, we explored three networks,
a GAN, a computationally less-intensive UNet and a more

computationally intensive self-attention GAN (SAGAN).
Their architectures are described below.

1) UNet33 ARCHITECTURE
The UNet33 architecture is illustrated in Figure 2. There
are two paths, namely, the contracting path (encoder), and
the expansion path (decoder) [61]. The output dimensions
(height×width× channels) of each layer is specified within
the boxes. Layers C1–C5 each denoting a series of two
convolutional layers including batch normalization (BN) and
rectified linear unit ReLU) activation, andmax-pooling layers
P1–P4 are part of the encoder, where the input image size and
depth respectively decrease and increase from 256×176×3 to
16 × 11 × 256. Transposed convolutions (DC1, DC2, DC3,
andDC4) are applied in the decoder, where the image size and
depth respectively increase and decrease from 16×11×256 to
256×176×3. Skip connections are added at all decoder stages
(S1–S4) by concatenating the transposed convolution layer
outputs with the corresponding encoder features. Every skip
connection is followed by two regular convolutions (C6–C9),
and a dropout of 0.5 (denoted by ’D’) is performed at two
points following skip connections to prevent overfitting [62],
[63]. The output layer involves a 1 × 1 convolution with
Sigmoid activation. Adam optimizer with a learning rate of
2.0× 10-4, and the L2 loss function are employed for model
training.

L2 loss to measure reconstruction quality is defined as:

L2(X ,Y ) =
1
mn

m−1∑
i=0

n−1∑
j=0

[Xi,j − Yi,j]2 (1)

where Xi,j and Yi,j denote the ith ground truth/reconstructed
slice stack of size n, i ∈ 1 . . .m. The input and reconstructed
slice stacks are more similar as L2 loss decreases. We used
early stopping with a patience threshold of ten epochs, and
a batch size of 8. Hyperparameters were fine-tuned via grid
search, and an input/reconstructed stack length of m = 3 was
fixed as it achieved the best accuracy as seen from Table 3.

2) GAN33 ARCHITECTURE
Figure 3 presents the architecture for GAN33. The GAN
comprises two neural networks: a generator G that receives
input adjacent 3 slices and reconstructs the next adjacent
3 slices. The generator involves a UNet-like architecture
with four 4 × 4 convolution layers in the encoder, and
four 4 × 4 deconvolution layers (DeConv with stride = 2)
in the decoder with same-level skip connections, and two
dropout layers of 0.5. BN is applied to the convolutional and
deconvolutional layers with Leaky ReLU and ReLU activa-
tion functions. The discriminator receives both the generated
output and the ground-truth slice-stack. It uses 3 decoders.
Given the size of the training data, we used a batch size
of 8, Adam optimizer with a learning rate of 2 × 10-4 and
the WGAN-GP+100L1 loss function. The loss function was
found to settle down in 8-10 epochs (max) in our experiments.
The WGAN-GP is an advanced version of WGAN, and uses

27798 VOLUME 10, 2022



K. Devika et al.: Outlier-Based Autism Detection Using Longitudinal Structural MRI

FIGURE 2. Proposed UNet33 architecture includes nine normal and four transposed convolutional layers. Encoder receives an input slice of size
256 × 176 × 3.

the gradient penalty for regularization; this increases training
stability and prevents mode collapse [64]. We also employ
the L1 loss as it facilitates a sharper reconstruction [65]. This
WGAN-GP+100L1 loss function enables the synthesis of
counterparts structurally similar to the ground-truth slices.

3) SAGAN33 ARCHITECTURE
SAGAN33 is a GAN33 with self-attention (SA) modules
added as shown in Figure 3. The SA module [33] is shown
in Figure 4. Three 1 × 1 convolutions are used to segregate
feature maps acquired from the previous convolution layer.
The SA mechanism is applied over feature maps obtained
from the transformations f, g and h. This ensures that dis-
tant image parts are compatible with each other, unlike nor-
mal GANs [33]. Long-range dependencies among the image
regions is established via the SA mechanism. The local and
global image dependencies are combined to enhance details

and quality of the reconstructed images. Seven SA modules
are included in the SAGAN– five SA modules in the gener-
ator, and two SA modules in the discriminator. These layers
are complementary to the convolutional layers, and allow the
network to capture finer information. Output size of the SA
modules is identical to the input [66]. Hyperparameters for
SAGAN33 were set identical to GAN33.

E. PERFORMANCE EVALUATION
We assume significant sMRI structural differences between
ASD and healthy subjects [39], which should reflect via
dissimilarities between reconstructed healthy andASD slices.
We examined the utility of the a) L2 and b) cosine loss
functions for threshold-based outlier detection. The L2 loss
is defined as in Eqn. (1), and ranges from 0 to∞. The cosine
similarity loss or distance [67] computed for a pair of vec-
torized slice stacks (X ,Y ) as shown in Eqn. (2). The cosine
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FIGURE 3. Proposed GAN33 and SAGAN33 architecture for generating the next adjacent three slices from input adjacent three
slices of size 256 × 176. GAN33 excludes SA modules, while SAGAN33 includes the seven SA modules.

loss enforces similarity between the generated and actual
slices [68], [69], and ranges between 0 (for identical) to 1
(for highly dissimilar) slice stacks.

Cos(X ,Y )=1−

∑m−1
i=0

∑n−1
j=0 Xi,j · Yi,j√∑m−1

i=0
∑n−1

j=0 X
2
i,j

√∑m−1
i=0

∑n−1
j=0 Y

2
i,j

(2)

For classification, a threshold value (τavg) is computed
from the training samples as:

τavg =
1
N

 N∑
i=1

1
n

 n∑
j=1

Lossij

 (3)

where n denotes the number of adjacent three-slice com-
binations per scan, Loss is the reconstruction loss between
predicted vs actual slices, and N denotes the number of
subjects in the training set. Test samples are classified based

on the threshold value, i.e., if the reconstruction loss for
the test sample is less than τavg, it is marked as healthy
or else as ASD. Two alternative thresholds are shown in
Equations (4) and (5). These are based on the maximum (or
minimum) of the maximum (or minimum) reconstruction
Loss per subject.

τmax = max
N

(
max
n

(Lossij)
)

(4)

τmin = min
N

(
min
n
(Lossij)

)
(5)

We use τavg as the threshold metric in our experiments,
as this threshold reduces the number of false positives
and false negatives, ensuring high sensitivity and speci-
ficity [70]. For performance evaluation, we use model accu-
racy defined as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
× 100 (6)
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FIGURE 4. Overview of the SA module [33] in the SAGAN33 architecture.

FIGURE 5. Exemplar Axial slice reconstruction for a healthy sMRI sample: (a) Input adjacent-3 slices; (b) Original next adjacent three-slices;
Reconstructed slices with (c) UNet33, (d) GAN33 and (e) SAGAN33. Reconstruction PSNR is specified in brackets.

where TP, TN, FP, and FN respectively denote the number
of True Positives, False Positives, True Negatives and False
Negatives. TP and TN represent correctly classified ASD
and healthy samples, whereas FP and FN denote incorrect
predictions.We additionally report the area under the receiver
operating characteristic curve (AUC) for evaluation.

IV. RESULTS AND DISCUSSION
SMRI-based ASD detection results obtained with the
UNet33, GAN33 and SAGAN33 architectures on the Axial,
Coronal and Sagittal slices are presented in this section. In all
three architectures, adjacent 3-slices are input to reconstruct
next three adjacent slices, and the reconstruction error is
minimized during model training.

A. SLICE RECONSTRUCTION QUALITY
Exemplar reconstructions achieved with UNet33, GAN33
and SAGAN33 for adjacent slices corresponding to the Axial

modality are shown in Figures 5 and 6 respectively. Fig. 5
depicts a healthy test sample, while Fig. 6 presents an ASD
sample. The first column in both figures depicts the input
slices, and the second column presents the actual next-
three slices. Columns 3–5 present reconstructions with the
UNet33, GAN33 and SAGAN33, and parentheses values
specify reconstruction Peak Signal-to-Noise Ratio (PSNR).
In both cases, SAGAN33 achieves the highest PSNR and cap-
tures vivid details compared to UNet33 and GAN33. UNet33
trained with the L2 loss function reconstructs blurry images.
GAN33 reconstructs images with good structural quality,
while still performing inferior to SAGAN33. In UNet33 and
GAN33, convolutions are limited to only the local domain of
the convolution kernels, causing the network to overlook sig-
nificant global structures. However, the SAmechanism in the
SAGAN33 effectively captures global dependencies. Sample
Coronal and Sagittal ASD slice reconstructions achieved by
SAGAN33 are presented in Figures 7 and 8 respectively.
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FIGURE 6. Exemplar Axial slice reconstruction for an ASD sMRI sample: (a) Input adjacent-3 slices; (b) Original next adjacent three-slices;
Reconstructed slices with (c) UNet33, (d) GAN33 and (e) SAGAN33. Reconstruction PSNR is specified in brackets.

FIGURE 7. A sample of ASD Coronal slices reconstructed from the test set:
(a) Input adjacent three slices; (b) Next adjacent three slices (ground truth);
(c) SAGAN33-reconstructed next adjacent three slices. PSNR (in dB) for ground
truth vs respective model is given in brackets.

Evidently, the SAGAN33 adequately captures sMRI connec-
tives. Ventricles of ASD subjects are larger and thicker than
those of healthy subjects, as seen from Figures 5 and 6. This
observation is echoed by domain experts [37]. Clearly, visual
cues in ventricular areas allow clinicians to distinguish ASD
from healthy subjects, and likewise, can enable sMRI-based
ASD diagnosis.

B. ASD DETECTION
Given a test sMRI slice-stack, the next three slices are
reconstructed via the encoder-decoder networks described
above, and the reconstruction loss compared against the
threshold specified in Eqn. (3). This threshold deter-
mines whether the sample is a healthy (inlier for which
mean reconstruction loss < τavg) or ASD (outlier, mean
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FIGURE 8. A sample of ASD Sagittal slices reconstructed from the test set:
(a) Input adjacent three slices; (b) Next adjacent three slices (ground truth);
(c) SAGAN33-reconstructed next adjacent three slices. PSNR (in dB) for ground
truth vs respective model is given in brackets.

TABLE 4. Confusion matrix values for SAGAN33 trained using Axial
planes only.

reconstruction loss > τavg) sample, enabling unsupervised
ASD detection.

We employed different metrics to train the encoder-
decoder networks described above, and to compute the dis-
tance between the original and reconstructed test slices.
Table 4 specifies the loss function employed for model
training as the objective metric, while the measure used
to compute the distance between actual and reconstructed
slices is specified as the distance metric. The L2 and cosine
distance metrics defined in Eqn. 1 and 2 were used for
evaluating test samples. For model training, the UNet33
was trained with the L2 objective, while the GAN33 and
SAGAN33models were trained with theWGAN-GP+100L1
or WGAN-GP+100L1+Cosine loss objectives.

Accuracy and AUC scores achieved by the UNet33,
GAN33 and SAGAN33 networks with the different objective

TABLE 5. Confusion matrix values for SAGAN33 trained using Axial
planes only.

and distance metrics are listed in Table 4. When the L2
distance metric is used for classification, the UNet33 model
performs worst due to poor reconstruction quality to achieve
an accuracy of 36.95%. Without SA modules, the GAN33
network reconstructs slices with adequate structural detail
and produces a fair accuracy of 65.21%. The SAGAN33
which incorporates self-attention modules achieves the best
reconstruction quality, and correspondingly the best ASD
detection accuracy of 80.43%. Overall, the SAGAN33 out-
performs GAN33 by over 15%.

We also employed the cosine metric, and L2+Cosine mea-
sure as the distancemetric with the SAGAN33model. Table 4
confirms that the use of alternate distance metrics improves
ASD detection accuracy. The cosine distance metric is more
sensitive to outliers, and improves detection accuracy by over
2%. A combination of the L2 and cosine metrics further
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improves detection performance, achieving an accuracy of
84.78% and an AUC of 0.63. Finally, a SAGAN33 model
incorporating cosine distance in the objective metric, along
with the L2+cosine distance metric achieves the highest
accuracy of 86.95% and an AUC of 0.71. Also, while the
small size of our dataset can make the models prone to
overfitting, the GAN33 and SAGAN33 networks effectively
address this issue via regularization applied in the objective.

Table 5 extends the results in Table 4, and presents the
confusion matrix values for different objective–distance met-
ric combinations employed with the SAGAN33 network.
Given that the test set mainly comprised ASD samples
(Table 1), we note that the sensitivity or true-positive rate
gradually increases as the distance metric changes from L2
to L2+cosine loss. The true-negative rate (or specificity) also
increases slightly when the objective metric is modified to
include the cosine loss. Cumulatively, these results convey
that both the objective and distance metrics impact ASD
detection sensitivity and specificity.

We also note here that the longitudinal sMRI scans used
in this study are heterogeneous, and were collected with
different scanner settings (from different sites). Empirical
results reveal that the proposed approach is robust to input
data variations, and can be used in real-world situations where
it is practically difficult to standardise scanning setups.

C. sMRI IMAGING MODALITIES
To examine whether the detection performance is impacted
by the sMRI imaging modality, the best performing model
SAGAN33 was input with Axial, Coronal and Sagittal slices.
Results are reported in Table 6, and the corresponding
Receiver Operating Curve (ROC) graph is plotted in Figure 9.
The model objective was to minimize the WGAN-GP +
100L1 + Cosine loss, while the distance metric employed at
test time was the L2 + Cosine loss. Among individual mod-
els, the Sagittal slices performed worst and Coronal slices
best, achieving 20.4% higher accuracy and 0.17 higher AUC
over the Sagittal slices. Utilizing multimodal information
for ASD detection was found to be more beneficial than
unimodal slices. Higher detection accuracy was obtained on
combining the Axial and Sagittal slices, and the best accu-
racy/AUC was achieved with a combination of the Axial and
Coronal slices. Training the SAGAN33 with slices from all
three imaging modalities however did not enhance the overall
accuracy or AUC.

D. GRAD-CAM VISUALIZATION
To understand the features learned by the SAGAN model
for encoding sMRI visual cues, we present two different
visualization maps in Figures 10 and 11. We used the Python
package ELI5 to visualise Gradient-weighted class activation
map (Grad-CAM) [71]. The Grad-CAM is used to create
class-specific heatmap visualizations in order to highlight the
salient regions in the sMRI slices. Green or blue shades in
the heatmap represent lesser importance, implying that the
corresponding features are less significant from the model

TABLE 6. Performance of SAGAN33 on different planes of sMRI.

FIGURE 9. ROC plot with AUC values illustrating SAGAN33 ASD detection
performance on different sMRI planes.

FIGURE 10. Comparing Axial modality feature maps output by the first
convolutional layer of SAGAN33 for healthy and ASD subjects.

viewpoint, while the yellow, red and orange shades represent
regions of moderate-to-high importance, implying that those
features are attended to by the model in order to model
information or make inferences regarding the specific class.

Figure. 10 visualizes outputs of the first SAGAN33 con-
volution layer for an exemplar healthy and ASD subject.
Some visual differences can be noted from the class-specific
heatmaps; given that the SAGAN33 is trained with healthy
samples, very little attention can be noted on the ventricular
regions which are key areas characterizing ASD subjects
(see Figure. 6). Visualizations from the fourth SA layer for
three adjacent Coronal slices of a healthy vs ASD subject are
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FIGURE 11. Grad-CAM visualizations for three adjacent Coronal slices
from a healthy (top) and ASD (bottom) sample. Highlighted regions are
found to be discriminative by the SA layers.

presented in Figure 11.We can see that the model emphasizes
on the hypothalamus, hippocampus, and amygdala, which
are considered to be significant for ASD diagnosis [72]. The
high-intensity regions reflect areas of interest to the model at
prediction time.

E. COMPARISON WITH OTHER WORKS
We compare our work with others which employ
ABIDE I [22] cross-sectional sMRI data to highlight the
utility of longitudinal slices for ASD detection. Results are
summarized in Table 7. Most baselines [52], [73], [74],
and [75], employ brain region-specific features for model
training. Outlier-based ASD detection similar to ours, via
single sMRI slice reconstruction, is proposed in [39]. Differ-
ently, we (a) utilized the longitudinal ABIDE-II data [23], and
(b) learned holistic structural connectives by reconstructing
three-slice stacks in this study. Among baselines, a highest
accuracy of 96.6% is achieved by [39], while our approach
produces the second highest accuracy of 95.65%. However,
our model is trained with 20 times fewer data than in [39];
these results point to the effectiveness of employing multiple
scans per subject acquired at different time-points for ASD
diagnosis.

To motivate the utility of longitudinal sMRI data,
we applied our best performing SAGAN33 model on cross-
sectional sMRI scans corresponding to the Axial, Coronal
and Sagittal planes. We randomly collected cross-sectional
sMRI samples from ABIDE I [22], so that the total num-
ber of train and test samples equalled the longitudinal data
size in this study. The results obtained are summarized in
Table 8. When compared with Table 6, rows 1-3, we see

TABLE 7. Comparison with cross-sectional ASD works.

TABLE 8. SAGAN performance on cross-sectional data from different
planes.

that detection accuracies with longitudinal data results are
superior by 17-28%, even if the accuracy/AUC trends are
consistent for the different modalities. The Coronal modality
performs best achieving an accuracy of 63%, and an AUC of
0.64. Overall, these results support our rationale to perform
ASD detection with longitudinal instead of cross-sectional
data.

V. CONCLUSION AND FUTURE WORK
We employ a GAN-based encoder-decoder framework on
longitudinal sMRI slices, where the error between the
reconstructed and actual adjacent three slice stacks is
utilized to determine ASD samples as outliers. Three
architectures, namely, the UNet, GAN and SAGAN were
examined for reconstruction quality and therefrom, ASD
detection performance. The SAGAN incorporating self-
attention modules achieves the best reconstruction and detec-
tion accuracy, while the UNet trained with the L2 objective
produces blurry reconstructions and the worst performance.
Furthermore, both the objective metric employed for model
training and the distance metric used for computing the
reconstruction loss are found to significantly impact detection
performance. The WGAN-GP+100L1 objective consider-
ably improves performance of the GAN and SAGAN net-
works, while employing the cosine similarity instead of, or in
combination with, the L2 norm as the distance metric also
increases detection sensitivity. Among other findings, of the
three sMRI images planes– Axial, Coronal and Sagittal, the
Coronal mode yielded the highest accuracy, outperforming
the Sagittal mode by around 20%. This implies that sMRI
structural connectivity is best encoded by Coronal informa-
tion. Empirical results also revealed that the imaging modes
are complementary; multimodal inputs improved accuracies
over unimodal data by more than 5%. Grad-CAM visual-
izations depicting regions-of-interest to the network showed
attention to the hypothalamus, hippocampus, and amyg-
dala regions, considered important for ASD diagnosis [72].
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Comparisons against ASD detection works examining cross-
sectional data convey that longitudinal sMRI slices enable
comparable performance with far fewer training data, and
modeling structural brain connectivity with multiple scans
over time per subject is beneficial. Our unsupervised outlier
detection framework would detect any deviation from the
norm; apart from ASD, our framework could be extended
to potentially tackle other disorders such as Attention deficit
hyperactivity disorder (ADHD), Schizophrenia, etc. Future
work will focus on these extensions. Another interesting
line of exploration would be to utilise multi-task learning
for exploiting complementarities in (substantially available)
cross-sectional and (sparse) longitudinal data for improv-
ing prediction accuracy as in [76]. We will also investigate
architectures alternative to SAGAN such as Dense-Attentive
GAN [77].
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