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ABSTRACT Next-generation wireless networks must handle a growing density of mobile users while
accommodating a rapid increase in mobile data traffic flow and a wide variety of services and applications.
High-frequency waves will perform an essential role in future networks, but these signals are easily
obstructed by objects and diminish over long distances. Reconfigurable intelligent surfaces (RISs) have
attracted considerable interest because of their potential to improve wireless network capacity and coverage
by intelligently changing the wireless propagation environment. Consequently, RISs possess potential
technology for the sixth generation of communication networks. Machine learning (ML) is an effective
method for maximizing the possible advantages of RIS-assisted communication systems, particularly when
the computational complexity of operating and deploying RIS increases rapidly as the number of interactions
between the user and the infrastructure starts to grow. Since ML is a promising strategy for improving
a network and its performance, the application of ML in RISs is expected to open new avenues for
interdisciplinary studies as well as practical applications. In this paper, we extensively investigate the
ML algorithms used in RISs. We provide a brief overview of RISs, a summary of ML methods with
RIS architecture, and a comparison of the available methodologies to explain the combination of these two
technologies. Moreover, the significance of open research topics is emphasized to provide sound research
directions.

INDEX TERMS Reconfigurable intelligent surface, machine learning, deep learning, federated learning,
reinforcement learning.

I. INTRODUCTION
Web-enabled gadgets, such as smartphones, have emerged as
vital tools for global communication, information transfer,
and entertainment. The academia and industry are now focus-
ing on sixth generation wireless technology as the wireless
sector is in a highly exciting moment where the fifth genera-
tion (5G) technology has been largely standardized and com-
mercialized. According to the Cisco Annual Internet Report
(2018-2023), mobile connectivity is expected to be available
to more than 70% of the global population by 2023 and the
number of overall mobile subscribers is expected to increase
from 5.1 billion in 2018 to 5.7 billion in 2023 [1]. Inter-
cell synchronization approaches have been built to solve the
interference as cellular networks have become denser owing
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to more aggressive frequency reuse. However, the bandwidth
of a network is still constrained owing to the irregularity of
wireless transmission and accessible spectrum [2].

The limited availability of spectrum for communica-
tion systems is encouraging a gradual migration towards
the higher frequency bands with abundant unoccupied
spectra. However, as the radio frequency increases, the
electromagnetic (EM) waves become more susceptible to
obstruction from objects such as buildings in metropolitan
regions. Adding more relays and base stations (BSs) to min-
imize communication distances and provide better network
coverage consumes more energy. As a result, employing tra-
ditional cellular methods to assure wireless service coverage
is challenging. To deal with the spectrum scarcity of commu-
nication systems, reconfigurable intelligent surfaces (RISs)
have evolved as an important wireless network resolu-
tion for attaining high spectrum and energy efficiency [3].
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For upcoming wireless communication networks such as
beyond 5G, the RIS is projected as viable technology with the
potential to significantly increase link quality and minimize
the possibility of blockages. Small, low-cost passive compo-
nents are piled together in the RIS to reflect incoming sig-
nals with a controllable phase shift toward the receiver. The
comparatively simple deployment of RIS-assisted communi-
cations with affordable passive parts makes them valuable in
smart radio contexts.

However, some certain challenges must be addressed
before obtaining the advantages of RISs. Accurate channel
state information (CSI) for optimum reflection on the RIS is
required. It is challenging for a realistic RIS-aided wireless
network to achieve a precise value for CSI on a continu-
ous basis because of the potential flexibility of the served
client and the obstruction-prone character of the signal.
Consequently, the issues of CSI assessment and optimization
of network performance under poor CSI should be appropri-
ately addressed to allow real-time and effective RIS-assisted
transmission. Owing to the utilization of considerable number
of components, channel assessment complexity is high in
RIS-assisted wireless networks, which is a major challenge;
moreover, obtaining channel knowledge may require a large
training overhead. Furthermore, the phase shift of the reflect-
ing elements complicates the designing of an ideal passive
beamforming system, and the conventional methodologies
require complicated procedures for the configuration of the
RIS which is both power and time consuming.

Owing to their ability to learn and the requirement of
operating over wider search areas, machine learning (ML)
techniques have attracted attention in wireless communi-
cations [4]–[8], especially in the field of RISs. Over the
last few years, several researchers have attempted to over-
come these obstacles. They have been working with various
ML algorithms for the communication sector so that the
infrastructure can independently solve all challenges. Most
ML methods work by learning the parameters and construct-
ing an optimization model from the input information for
the goal function. In the present arena, as a massive amount
of data must be handled, the efficiency and effectiveness of
mathematical optimization procedures significantly impact
the popularity and application of ML models [9].

Although few studies have been performed on the appli-
cation of artificial intelligence (AI) in RISs, in the literature,
there is no survey that exists exclusively based on ML appli-
cations in RISs. To overcome this gap, our survey offers a
comprehensive assessment of the state-of-the art applications
of ML in RISs. Subsequently, the techniques are classified
according to the optimization targets. A comparative study
was conducted among all the reviewed techniques.

As the first step of this study, in [10], we presented a
brief introduction to RIS and a simplified introduction to the
machine learning techniques used in RIS. However, this paper
contains a general and detailed description of RIS, and var-
ious machine learning-based algorithms such as supervised
learning, unsupervised learning, reinforcement learning, and

federated learning applied to RIS systems are explained in
depth. Furthermore, a more detailed comparison with the
advantage and drawbacks of each technique is provided in
this paper. The contributions of our study are as follows.
• A concise overview of the RIS architecture is provided
for an important insight into this evolving architecture.

• A brief introduction to ML is presented, and different
ML techniques are introduced.

• Existing surveys and studies on RISs and ML are pre-
sented for a better understanding.

• Applications of the ML techniques that have been used
in the reviewed studies are revealed with the investiga-
tion, and the examined schemes are categorized based
on their optimization goals and models.

• Finally, research issues are emphasized to offer valuable
directions for future research along with the key chal-
lenges in employing ML in RISs.

The remainder of this paper is organized as follows.
In Section II, an overview of the structural design of the
RIS is discussed. Section III introduces ML designs that
have been applied in the literature. Related works are
addressed in Section IV. The applications of ML in RISs
are described in Section V. The key research challenges and
related future research issues are discussed in Section VI.
Finally, in Section VII, this article is concluded with an out-
line of the entire work.

II. OVERVIEW OF RECONFIGURABLE INTELLIGENT
SURFACE
RIS models are primarily created using metamaterials, which
are periodically aligned subwavelength elements capable of
providing complete control over EM actions of the meta-
surface and consist of unit cells [11]–[13]. This man-made
EM material surface can be controlled electrically via inte-
grated electronics and has unique wireless communica-
tion characteristics [14]. More precisely, an RIS functions
by the placement of a large number of low-cost antenna
components with the goal of controlling re-radiation and
capturing energy. In the literature, varactor-centered and
positive-intrinsic-negative diode based control methods were
the standard techniques used [15]–[17]. To enhance the user
communication quality and improve the properties of incident
waves, control signals are transmitted by a BS to an RIS con-
troller in an RIS-supported wireless network. The RIS does
not perform digitizing because it operates as a reflector. Con-
sequently, if properly implemented, the energy consumption
of the RIS will be significantly lower than that of stan-
dard relays such as amplify-and-forward relay [18]–[20].
As illustrated in Figure 1, the practical EM wave-based tasks
that RISs can employ in wireless communications are as
follows:
• Reflection: An impacting radio wave is reflected in
a particular direction, which may not be in the same
direction as the incidence wave direction.

• Refraction:An impacting radio wave is refracted which
may not be in the same direction as the incidence wave.
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FIGURE 1. Electromagnetic wave-based activities of a reconfigurable
intelligent surface.

• Absorption: This entails creating a smart surface that
cancels the refracted and reflected radio waves corre-
sponding to a certain incident radio wave.

• Focusing: It entails directing an impinging radio beam
to a certain point.

A. PERSPECTIVE OF PHYSICS
EM waves encounter dispersed particles while traveling
across space, which attenuates the signal. The physics-based
bedrock of surface electromagnetism is the surface equiva-
lence theorem. The Huygens principle asserts that each point
across a wavefront is a generator of spherical wavelets, and
additional wavelets emerging from various sites overlap. The
wavefront is formed by the addition of several spherical
wavelets. The EM field radiated by an RIS can be computed
and analyzed based on the Huygens principle.

Figure 2(a) [21], [22] illustrates a volume V occupied by
several EM radiation sources consisting of charges qi and
currents Ji. Just outside the volume V , these sources generate
a magnetic induction field B and an electric field E . The
arrangement of scatterers can be substituted by an arbitrarily
thin layer of particular magnetic currents Jm and electric
currents Je that completely covers the volume V , as per the
Huygens principle. Magnetic currents can only be created by
cycles of electric currents with a limited depth. Hence, the
layer thickness can be electrically negligible but not zero.
EM fields are scattered exclusively outside the volume V
by the corresponding surface currents Jm and Je, and all
these EM fields are identical to those formed by the original
sources. Huygens’ surfaces that are related to currents that
disperse EM fields solely with one side may be extended to
metamaterials.

The boundary conditions are based on the fact that when
an average tangential field is applied to a thin sheet of
polarizable objects, it induces magnetic Jms and electric Jes
surface currents, which may be linked to the applied fields
using magnetic surface admittance Ym and electric sur-
face impedance Ze. Figure 2(b) [23]–[25] shows a mag-
netic surface admittance Ym(x,y) and an electric surface
impedance Ze(x,y), which define the physical configuration

FIGURE 2. Representation of (a) surface equivalent theorem scattered EM
source and (b) physical layout of the metasurface.

of a generic sheet of the metasurface. The mean applied field
induces magnetic and electric currents on the metasurface,
creating a discontinuity between the fields above and below
the surface, thereby allowing wavefront modification.

B. INTERACTION BETWEEN THE CELLS
The RIS modulation is dependent on the intercell
connection of tunable chips, which regulate the scattering
components of the metasurface to provide the desired tun-
able functions. Wireless or cable communication is possible
among the underlying chip controllers. Because wired com-
munication is easier to combine with the controllers on the
same chip, it is a better option; however, in a significantly
compact or large sized metasurface, wireless intercell com-
munication is an effective solution. With strict robustness
requirements and energy latency, the design guidelines for
inter-communication procedures must be practiced [26].
The exact application is determined by either the size of
the tile or the desired wavelength. Two separate connection
pathways are shown in the Figures 3 (a), (b) [27]. In case
(a), the metasurface layer, which is the gap between the
plane at the back and the metasurface patches, is the first
channel. The antenna is a part of the chip, whereas the role
of the waveguide is performed by the plane at the back and
metasurface patches. In case (b), a separate control plane
is constructed by inserting additional metal slabs beneath
the chip for the second channel. As in the aligned-plate
waveguide, monopoles supplied from the chip could generate
waves that travel in this barrier condition.

C. RELATIONSHIP BETWEEN THE METASURFACE AND
THE RIS
Metasurface is a two-dimensional planar metamaterial with
EM properties. Metamaterials have not been discovered in
natural supplies, and they are composed several tightly placed
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FIGURE 3. Communication channels: (a) metasurface substrate,
(b) waveguide with specific parallel plates.

subwavelength resonating structures known as meta-atoms or
pixels [28]. The distinguishing characteristics are their ability
to shape EM waves in a variety of ways. Owing to their
petite size, a significant number of these closely packed atoms
provide large degrees of freedom in altering the incident
EM waves. For instance, a metasurface can impose arbitrary
quasi-continuous [29] amplitude or phase profiles on the
incident wavefronts and exert fine-grained control over the
dispersed electric field by carefully incorporating its meta-
atoms.

In general, software and meta-atom oriented controllers
are essential elements of the RIS that influence the metasur-
face reconfiguration rate. The related power consumption of
static and reconfigurable metasurfaces is significantly differ-
ent because no active electrical circuits are required for static
metasurfaces; they can be completely passive. As energy
is required to control the received signals and switches for
reconfiguration, metasurfaces with reconfigurable properties
can only be virtually passive. However, a specialized power
supply is not required for signal transmission after the meta-
surface has been appropriately calibrated.

D. PASSIVE BEAMFORMING AND RIS
When multiple antennas produce identical signal copies
of the postponed signal, beamforming occurs. Constructive
interference occurs in geographic places where the signal
copies are collected simultaneously, whereas at other places,
destructive interference occurs. When multiple antenna send
signals, the receiver will collect better signals than when a
single antenna transmits signals while consuming the same
total power. The time delays at the transmitting antennas are
set to create constructive interference at the receiver. This tra-
ditional array gain demonstrates that the beamformed signal
becomes more spatially concentrated if there is an increase in
array size. The received signal strength and surface area are
proportional, and depend on the number of elements of the
transmitter. With the delay in time, when the RIS re-radiates
the chosen signal, an array gain is produced to beamform
the signal at the receiver, similar to the traditional manner.

FIGURE 4. Passive beamforming using an RIS.

The process of passive beamforming by the RIS between the
BS and the user by reflecting the signals to aid in communica-
tion is shown in Figure 4. The RIS reflection coefficients can
be modified by the BS using an RIS controller. Furthermore,
passive beamforming at the RIS and transmit beamforming
at the BS must be developed together to increase communi-
cation performance [30].

III. FUNDAMENTALS OF MACHINE LEARNING
A section of science that studies the theory and characteristics
of learning algorithms, their performance, and associated
systems is known as ML. ML is a wide multidisciplinary
area that draws concepts from a variety of domains, including
information theory, AI, statistics, optimal control, optimiza-
tion theory, and a variety of other scientific, mathematical,
and engineering disciplines [31]–[34].ML has touched nearly
every scientific subject owing to its deployment in diverse
applications, which has a significant influence on research
and society [35]. Currently, ML is predominantly applied in
autonomous systems, suggestion engines, informatics, data
mining, and recognition systems [36]. The ML technique
typically comprises two major phases: training and decision
making. In the training phase, a dataset is used to train and
understand the model of the system. During the decision-
making process, the trained model is employed to derive the
projected output for every new input given to the system.
The classification of ML involves various subfields such
as reinforcement learning (RL), unsupervised learning, and
supervised learning [37], as shown in Figure 5.

A. LEARNING ALGORITHM
1) SUPERVISED LEARNING
A type of learning that recognizes the parameters in the
presence of a supervisor is called supervised learning.
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FIGURE 5. Classification of machine learning.

A collection of data is provided to an algorithm that includes
both output and input information in this form of learning.
A model for the data may be developed based on the output-
input connection; then, to make a prediction, a fresh data set
is input into the model [38], [39].

2) UNSUPERVISED LEARNING
A type of ML where, without the assistance of a supervisor,
an algorithm provides the error level or right solutions for
every inspection, with the aim of correctly understanding
the outputs and series of inputs. In summary, an unsuper-
vised learning technique obtains an unlabeled input dataset
and effectively discovers the data connections to form
a cluster [39].

3) REINFORCEMENT LEARNING
This is a commonly applied and effective ML method that
learns about the environment by performing various actions
and determining the best operation strategy. The two fun-
damental factors of RL are the environment and the agent.
By applying the Markov decision process (MDP) [40], the
agent investigates the surroundings and determines the action
that must be implemented for the optimum result.

Q-learning (QL) [41] is a straightforward and effective
RL method in which a model of the environment is not
required; the goal is achieved based on the reward. The pro-
cess of updating the Q-values for an RL task can be expressed
as follows:

Q(s, a)←Q(s, a)+α[r + 1+ ϕmaxaQ(s+ 1, a)− Q(s, a)]

When action a is chosen, Q(s, a) is the current value of the
state s; 0 < α < 1 is the learning constant and 0 < φ < 1 is
the discounting factor. The algorithm operates as follows:
the agent chooses an action at some state s. Given that the
action a is implemented, it discovers the highest feasible
Q-value in the following state (s+1) and changes the current
Q-value. The discounting factor provides the choice of either
rewarding in the future (if � 0) or presenting immediate
rewards (if φ � 1). To improve the convergence and stability
of the algorithm, a constant is used to adjust the learning rate.
QL has been previously used in various wireless situations,

such as in wireless sensor network routing [42]–[44]. It is
simple to set up and exhibits an acceptable balance between
memory and energy needs.

4) DEEP LEARNING
A subset of ML is deep learning (DL), which allows an
algorithm to generate projections and classifications with-
out being explicitly programmed based on the decisions of
input data. Some cases of DL include QL, k-nearest neighbor
classifiers, and linear regression. DL algorithms may extract
information from raw data in a hierarchical manner by uti-
lizing nonlinear processing components of multiple layers
for forecasting outcomes based on the desired objective [45].
Recently, DL has attracted more interest from the academic
community because of its superior performance in areas such
as computer vision, information retrieval, speech recognition,
and language processing [46]–[49]. As computing power and
graphic processors are improving daily [50], it is increas-
ingly becoming important for areas involving big data sets
to deliver projected analytic solutions.

5) FEDERATED LEARNING
This system typically includes an aggregated server and a
wide range of devices, as illustrated in Figure 6. Every device
trains a local model while the aggregating server updates
and manages the global model. Through a series of com-
munication sessions, the global and local models are modi-
fied repeatedly until global acceptance is established. Only
devices with proper channel scenarios and relevant model
updates are selected for updating and training the local model
by the aggregating server. A localized model is updated by
every device based on the most current downloaded global
model. Then, the local modifications are transmitted to the
aggregation server through wireless uplink data transfer to
update the global model. This global model is then transmit-
ted to the chosen devices through downlink broadcasts for
further learning.

6) TRANSFER LEARNING
This is a learning algorithm that can enhance the perfor-
mance of a new task using information from previously
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FIGURE 6. Federated learning scheme.

acquired tasks. Because many real-world problems do not
require large amounts of labeled data sets to train sophisti-
cated models, this algorithm is extremely beneficial in the
field of data science. By utilizing data from the source, the
objective of transfer learning (TL) is to enhance learning in a
specified job [51].

B. NEURAL NETWORK
1) FEED-FORWARD NEURAL NETWORK
It consists of several hidden layers with a single layer each for
input and output. Another name for the feed-forward neural
network (FNN)model is multilayer perceptron (MLP), which
is a simple DL model in which every neuron is linked with
the neurons in the neighboring layer but not to the neurons of
the same layer. The units of each layer are closely connected,
necessitating the construction of a large number of weights.
Figure 7 illustrates the architecture of the FNN, which shows
that all neurons between two successive layers are completely
linked. An effective algorithm for teaching an FNN with
gradient descent is the backpropagation technique [52].

2) DEEP NEURAL NETWORK
The major objective of the deep neural network (DNN) is to
learn from the data without performing manual calculations
every time. A DNN is a nonlinear computational model that
is structured similar to the human brain, which can learn and
execute tasks such as decision-making, prediction, classifi-
cation, and visualization tasks [53]. The architecture of the
DNN [54] contains several layers of neurons, typically one
linked output layer, more than one hidden layer, and one input

FIGURE 7. Feed-forward neural network.

layer. The input layer receives input from the input neurons
and forwards it to the hidden layers. Through the hidden layer,
the data are subsequently sent to the output layer. A weighted
input, an activation function, and an output are present in
every neuron. The output is determined by the activation
function, which is dependent on the input of the neuron [55].
The distinction between a DNN and a neural network (NN)
is that a shallow NN has one layer, whereas a DNN contains
many hidden layers, where each layer of the DNN has a large
number of neurons.

3) CONVOLUTIONAL NEURAL NETWORK
This network is built to handle data that are organized into
numerous arrays [56]. The foundation of the convolutional
NN (CNN) architecture is the use of convolutional layers to
extract high-level features from two-dimensional data struc-
tures. The CNN is a class of the FNN [57], [58]. The three
main principles of the CNN are pooling, weight sharing,
and local sparse connections among the subsequent layers.
These three basic principles substantially minimize the dif-
ficulty of training CNNs. Weight sharing refers to the fact
that all neurons in the same convolution layer have the same
weight parameters. Using weight sharing and local sparse
connections, a reduction can be achieved. Pooling may be
used to minimize the feature size while preserving the feature
invariance.

4) RECURRENT NEURAL NETWORK
In recurrent NN (RNN), there are feedback connections
between the connected neurons. Owing to their internal
states, RNN can track the periodic connection of inputs
and have one or more feedback connections between them.
When a neuron in one layer sends data to the previous layer,
it is called a feedback link [59]. Long short-term memory
(LSTM), a popular form of the RNN [60], [61], can obtain
long-term needs as it has a strong capacity. To calculate the
hidden state, the LSTM employs three gates: a forget gate,
an output gate, and an input gate. The LSTM can manage
noise and dispersed representations of continuous data while
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bridging a significantly long time lag. In LSTM, to control
the cell condition and determine the outcome, the forget gate
is utilized.

5) DEEP Q-NETWORK
The deep Q-network (DQN) is formed by the incorporation
of a Q-table in a DNN. Similar to the deep reinforcement
learning (DRL) technique, DQN is a QL technique that
works with Q-values. DQN works to mitigate overestimation
issues that frequently occur when agents move in complicated
settings [62].

6) DEEP DETERMINISTIC POLICY GRADIENT
The deep deterministic policy gradient (DDPG) is a model-
free actor-critic method. It is an off-policy method that
combines the benefits of policy gradients and DQN [63].
Deterministic policies can be optimally learned in a
high-dimensional continuous action space. Outputs and
inputs are received by the actor-network as continuous action
and then fed into the critic-network along with the state
space. To determine an action, the actor network is at work,
removing the requirement for non-convex optimization to
identify the action that maximizes the subsequent state of the
Q-value function.

7) PROXIMAL POLICY OPTIMIZATION
For situationswith continuous or discrete action spaces, a pol-
icy gradient approach known as proximal policy optimiza-
tion (PPO) can be used. It deploys the actor-critic approach
and an on-policy approach to train a stochastic policy. The
critic predicts reward of the agent by observing the actor
from the knowledge obtained through the performed action.
A series of courses was first gathered for every epoch by
sampling the latest edition of a stochastic strategy. As a final
step, the policy was updated by computing the reward system
and the estimated benefits [64].

IV. EXISTING WORKS
In the literature, a few brief magazine papers, surveys, and
tutorials introduce the RIS and its modifications; however,
the focus of these works differs from ours. Several different
terms and acronyms are often used in the literature to refer
to RISs. In this study, we will use the term RIS to address all
types of intelligent surfaces that are used in different studies.
Hence, this section contains a summary of the existing works
related to RISs.

RIS-enabled wireless networks, including the possible use
of RIS in multiple-input multiple-output (MIMO) transmit-
ters to either obtain low complications or to sharpen radio
frequency (RF) signals, and the distinctive properties of RISs,
are described in [15]. Simple analytic models were also uti-
lized, with an emphasis on the performance of in terms of
the error and link budget. In [65], the authors discussed the
primary uses of the RIS in the design of hardware, new signal
models, and critical challenges of wireless communication.
An overview of the current research on large intelligent

surface-aided wireless networks, fundamentals of radio con-
taining reflected waves such as reflective relay, backscatter
communication, and the basics of RIS technology was also
presented [13]. ElMossallamy et al. discussed models of
an appropriate channel for the applications of an accurate
estimation ability [2]. These characteristics distinguish the
optimization of RIS from the precoding designed for typi-
cal MIMO arrays by emphasizing potential possibilities and
future problems.

Moreover, in [66], the authors thoroughly examined of
the theoretical foundations of RIS and presented a current
assessment of various performance indicators and analytical
methodologies for characterizing the improvement in the
performance of wireless networks aided by RIS. In [12],
an extensive review of the primary technical enablers, the
ongoing status of studies, emerging ideas of smart radio envi-
ronments and their challenges in research, major operational
rules, and intended possible implementations were presented;
moreover, in [30], delivered an unbiased view onRIS technol-
ogy by examining the principles and then explaining specific
aspects that can be readily misunderstood, thereby debunking
a few myths.

Another survey [29] offered an introduction of
communications in holographic MIMO (HMIMO), focusing
on the significant obstacles in forming HMIMO-enabled
wireless communications, thus emphasizing the potential
and the reconfiguration of such surfaces with accessible
hardware designs. Further, another study [20] explained the
fundamental similarities and distinctions of RISs that are
configured to act like reflectors or relays along with the
numerical findings that emphasize the spectrum efficiency
of RISs when compared to the radio wavelength.

In [67], the authors discussed the relationship between RL
and an RIS-enabled software-controlled environment, as well
as the notion of Wireless 2.0, which proposes significant
modifications to the existing wireless network. Moreover,
the importance of DL-focused RIS technology in commu-
nication systems and certain future research directions that
are aimed at providing diverse technical discussions are
presented [68]–[70].

Di Renzo et al. [22] provided a detailed assessment of
an idea related to smart propagation environments using
RIS and the potential applications, open research prob-
lems, primary operational concepts, and research advance-
ments in this field. Tang et al. [71], described RIS-aided
multi-stream transmitter models and the benefits of the
metasurface-based receiver and RF chain-free transmitter for
a potential energy-efficient and cost-effective communication
technology.

Furthermore, the principles along with the obstacles in
obtaining reliable communication networks, new opportu-
nities, and future research issues of RIS-assisted commu-
nication were discussed [72], [73]. Equally important are
the problems in the primary physical layer when integrating
wireless networks and RISs. Yuan et al. addressed the issues
of passive information transmission, CSI, a low-complexity
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resilient design process, upcoming investigation scope, and
security schemes in [74].

V. APPLICATIONS OF ML IN RISs
In this section, research works based on ML applications
in the RIS architecture are presented with a comparative
analysis. As shown in Figure 8, the ML frameworks used
in RIS, such as resource management, security, beamform-
ing, channel estimation, and various other aspects are exam-
ined thoroughly along with the key concept. In Table 1,
ML approaches are listed according to their optimization
targets and models.

FIGURE 8. Various applications of ML in RIS.

A. CHANNEL ESTIMATION FOR RIS
In [96], the authors described a technique based on RL for
maximizing throughput with both imperfect and perfect CSI.
A quantile regression distributional reinforcement learning
(QR-DRL) technique was used for each pair of action-state
and to construct a return distribution, which approximated
the innate unpredictability in the collaboration of the MDP
between the environment and the RIS.

As illustrated in Figure 9, the environment is represented
by the connected channels in the RL framework, and the agent
is the controller of the RIS that executes action to adjust the
coefficient of reflection. The RIS receives a communication
reward after each time slot, which is characterized as the sum
rate of the downlink in the direction of the user. Owing to the
effect of fading in small-scale millimeter-wave (mmWave)
channels, the CSI of the downlink may fluctuate even with
a constant RIS coefficient of reflection. After observing a
deviation vector at the conclusion of each time slot, the
RIS strives to change its coefficient of reflection to fit the
real downlink. To increase future rewards, a strategy is first
developed to determine the chance by altering the coefficient
of reflection in the current state to assess the possibility of
every matrix in action. The capability of every action-state

pair in enhancing the transmission for the downlink is then
calculated for each stationary policy. The distributional RL
framework proposed by the authors differs from traditional
RL tactics such as DQL [107]. In conventional RL methods,
a scalar quantity is assigned to predict the return of the future,
whereas in the aforementioned method proposed by these
authors, the sum rate is modeled as a distribution function
with the goal of considering for any doubt in the reward
function.

Elbir et al. [78] developed a DL approach for the estima-
tion of the channel in a massive MIMO system enhanced by
RIS. The authors demonstrated that a method based on CNN
achieves a stronger performance with a smaller normalized
mean square error (NMSE) than the previous benchmark
methods. The received signal is input to a double CNN with
nine layers for the approximation of the cascaded and direct
channels. The input layer acknowledges the received sig-
nals. The remaining layers are composed of a convolutional
layer containing 256 filters with a size of 3 × 3, and the
final layer is the regression layer. A hyperparameter tun-
ing procedure is subsequently incorporated to produce the
optimum performance while keeping the network parame-
ters fixed [108]–[110]. A supervised DL architecture was
employed by plotting the received pilot signals with respect
to the channels. Each user has the same CNN that receives the
input pilot signals and estimates the explicit channel between
the receiver and the transmitter. The proposed method can
also be expanded to amultiple-user conditionwhere each user
has their own CNN and can assess their channel. Although
retraining is unnecessary when there are changes in the posi-
tion of the user, there is a requirement for additional control
while manipulating the RIS components, and the training
overhead is also high.

Liu et al. [77] presented a deep denoising NN-aided chan-
nel state prediction for RIS in mmWave systems to decrease
the training overhead. Initially, the authors presented a
hybrid RIS design, in which relatively limited RF receiver
chains were used for achieving a trade off between hard-
ware complications and performance. The authors presented
a complex-valued denoising CNN (CV-DnCNN) to improve
the estimation accuracy by exploiting the MIMO system
with a delay in the angular domain channel matrix, which
is produced by a denoising CNN (DnCNN) [19]. The
suggested CV-DnCNN uses a network design similar to
that of DnCNN [111], with the exception of complicated
signal processing components, which may jointly process
the imaginary and real parts of the channel matrix of an
angular-delay domain, leveraging their relationship for
improved performance. The authors incorporate the com-
plicated structure blocks, which were inspired by [112],
for complicated signal processing into the DnCNN for the
modification of the denoiser. As shown in Figure 10, the
components of the CV-DnCNN are an input layer, an out-
put layer, and 15 convolutional layers. The primary layer
consists of 64 filters, and for activation, a rectified linear
unit (ReLU) is utilized. To accelerate the learning process
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TABLE 1. Comparison of machine learning techniques for reconfigurable intelligent surfaces.

and enhance denoising performance, batch normalization is
utilized between the ReLU and the convolution layer. Unlike
the traditional DnCNN, CV-DnCNN employs a complex con-
volutional layer.

The centralized learning (CL) method, in which the
entire dataset is transmitted from the clients to the BS, has

a significant transmission overhead. Typically, after the
model has been trained at the BS, the parameters obtained
are delivered to the subscribers, who may then utilize the
model to execute channel estimation tasks by providing it
with the pilot data they have received. However, in [113],
FL techniques for channel estimation across RIS-aided
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FIGURE 9. RIS-assisted downlink transmission based on a reinforcement learning framework.

massive MIMO are presented to address the significant trans-
mission overhead of CL strategies. The author developed a
CNN at the BS that was trained on local datasets. The collec-
tion of user data, training of a global model, and prediction of
the own channel are the three stages of the proposed scheme.
For both the RIS-aided massive MIMO and traditional oper-
ations, a single CNN (ChannelNet) is trained on two separate
datasets, and a CNN with 10 layers is the suggested network
design. Based on simulations, the suggested approach has
shown a reduced transmission overhead when compared to
the CL systems while retaining channel prediction perfor-
mance that is comparable to CL, which exhibits only a minor
estimation error. FL schemes are beneficial in minimizing
significant transmission overhead; however, the reliability of
the FL is typically worse than that of the CL when the model
is trained only once.

Liu et al. [114] used a CNN to allow deep residual learning
in RIS-aided systems to address the problem of restricted
channel estimation performance and presented a CNN-based
deep residual network (CDRN) for channel estimation.
A CNN-based denoising block with a component-wise sub-
traction architecture is specifically intended to concurrently
utilize both the cumulative characteristics of the noise and
the spatial characteristics of the noisy channel matrices. The
authors discussed a multi-user communications network with
one RIS, several users, and one BS that uses the time division
duplex (TDD) protocol. The CDRN is composed of denoising
blocks, and a CNN with a deduction architecture is used in
the denoising block to acquire the residual noise from the
noisy channel matrix. Furthermore, as the channel matrix is
complex, the input is split into imaginary and real parts for
ease of feature extraction. The proposed technique achieved
nearly the same prediction accuracy as that of the best mini-
mal MSE (MMSE) estimator that relies on a prior probability
density function of the channel, according to the simulation
findings. However, the training overhead may be significant
because of the large amount of data from multiple users.

Xu et al. [82] suggested an ordinary differential equation
(ODE)-oriented CNN for estimating the cascaded channel in
which the RIS components could be partially switched off
by spatial sampling, thereby improving resource usage and

reducing the duration of the pilot phase in channel estima-
tion. The authors analyzed an interior scenario in which a
multiple-antenna access point (AP) uses RIS reflection to
connect with a single-antenna device. The suggested extrap-
olation technique efficiently compressed the large-scale RIS
channel throughout the physical environment, according to
the simulation findings. Furthermore, the ODE-based design
demonstrates the potential to increase the efficiency of tradi-
tional CNNs efficiency by accelerating convergence.

In [83], Zhang et al. proposed two approaches. The first
one is a CNN-based channel extrapolation network with
active antennas that can function together for extrapolating
entire channels using the predicted partial channels in the
channel extrapolation; the second approach is an FNN with
an active antenna selection network to immediately map the
predicted incomplete channels to the optimum beamforming
vector using the beam searching technique. To determine
the best positions for the active RIS components for both
systems, the probabilistic sampling theory was used. The
authors considered a single-antenna receiver and transmitter
in an RIS-assisted communication system. The output dimen-
sion of the beam-seeking network is significantly lower than
that of the CNN-based channel extrapolation network, which
requires high training overhead; therefore, FNN is used to
discover the best vector for beamforming. The beam search-
ing technique is significantly more resilient than the channel
extrapolation system with fewer active antennas, and the
optimum antenna choice is better than the uniform antenna
choice, according to the simulation findings. Future research
may include an expansion to multiple- user conditions.

B. BEAMFORMING
Except for a few active elements attached to the baseband
of the RIS controller, all RIS elements are passive. In [76],
the authors employed a DL technique to learn the reflec-
tion matrices of the RIS by sampling the experience of the
channel with no information on the geometry array. As only
a few channel estimation techniques have been studied for
intelligent surface communication systems that are focused
on DL, the authors offer two techniques for designing RIS
reflection matrices, where the DL-oriented approach has the
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FIGURE 10. Model of complex-valued denoising convolutional neural network.

benefit of having minimal overhead, making it more viable.
MLP networks are known as universal function approxima-
tors [115]; therefore, the application of a network based on
MLP is encouraged to represent the relationship between the
RIS interaction vector and the environment. The proposed
method is thoroughly tested using a particular ray-tracing ori-
ented dataset for DeepMIMO [116]. However, this study only
examined labeled data to maximize the attainable single-user
rate in their models and did not consider poor CSI, secure
communication, and multiple user situations.

Taha et al. presented a DRL structure to eliminate labeled
data with a low-overhead training that can adjust the phase
shifts in an RIS [92]. The proposed method provides dis-
tributed RIS capability that may self-configure and operate
with no aid from the BS or nodes in the infrastructure. The
mathematical findings demonstrate that the recommended
framework, when trained online, may achieve a performance
similar to that of a perfect CSI. It is considered that the DQN
receives the concatenated sampled channel vector as an input.
For training stability, a double DQN is employed. The model
is trained with the goal of forecasting the best vector of the
interactions using a regression loss function. The proposed
DRL-based algorithm seeks to maximize the possible rate
of communication by the direct optimization of matrices in
interaction based on the sampling knowledge of the channel.
Each training episode in the recommended DRL structure
uses only a single beam. Consequently, the training overhead
can be eliminated, and the gathering period of the dataset is
unnecessary.

To calculate the optimum RIS beamforming vector, a DL
system is applied, as illustrated in Figure 11. The sampled
vectors of the channel are called environment signifiers.
These signifiers define the position of the receiver or trans-
mitter and the nearby environment with some resolution.
In DL, the algorithm attempt to discover a link between the
observable environmental characteristics and the vectors of
the best RIS reflection. This might be interpreted as identify-
ing the interaction of RIS with the wireless signal based on
the characteristics of the environment. The desired capability
of an RIS is that vectors of a sampled channel should be pro-
duced with minimal learning costs. When compared to SL,
even though RL allows for independent operation, it requires
more training time.

In [80], Huang et al. suggested a supervised learning based
technique for maximizing the power received in an RIS-
aided network. In a multi-user, multiple-input single-output

(MISO) system, the downlink is studied, and a DNN is uti-
lized to learn the plot between the formation associated with
the RIS reflecting elements and the locations of users using
a function approximator that maximizes the signal quality at
every anticipated position of the user in an indoor situation.
The proposed DNN architecture has five layers, where each
layer of output possesses a nonlinear function.

As shown in Figure 12, on the floor of the room, the
reference point and user location are assumed. An end-user
is provided with a wireless device capable of conducting
channel estimation by itself with the aid of the RIS and AP.
It is anticipated that the propagation of the signal from the RIS
and AP to the position of the desired user is achieved using
a proper setup. Excluding the RIS, ray tracings are absorbed
as they encounter the ceiling, floor, and walls of the interior
environment. The dotted brown lines represent the absorbed
signal beams. The proposed method in an indoor setting can
lower the hardware burden while dealing with several BSs to
enhance the signal; however, the method might not function
well under various barriers in indoor circumstances.

Configuring reflecting factors without large channel esti-
mation or the use of beam training is significantly diffi-
cult. In [87], the authors considered RIS-aided wireless net-
works and proposed a phase optimization technique by taking
advantage of the correlation between the previously calcu-
lated and current channels. An MLP model was developed to
enhance the quality of optimum RIS communication. Single-
antenna transceivers communicate with each other. There are
two steps in the proposed method. The first is a learning
step in which the DL model is constructed and trained, and
a testing stage in which the trained model is used to perform
optimal phase interaction. For different conditions, the best
RIS interaction performance was measured in terms of the
attainable rate. Extensive experiments using a ray-tracing
dataset demonstrated an increase in the attainable rate.

DL techniques were used by Gao et al. to minimize the
model complications in RIS-aided networks in [89]. The
authors offered an unsupervised label-free [117], [118] strat-
egy for optimizing the phase shifts of RIS to minimize the
labeling cost of supervised learning. By optimizing the goal
function and preparing a DNN parameters, offline training
with a modified DNN is proposed. The structural design
of the NN comprises five entirely connected layers. Owing
to the scaling of the system, the concept of proportionaliz-
ing the number of neurons to confirm the learning ability
is considered. The initial four layers employ ReLu for the
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FIGURE 11. Idea of deep learning implementation in RIS.

FIGURE 12. Indoor communication system with RIS.

activation function, whereas the last layer employs a linear
unit to predict the phase shift. Even if the investigated tech-
nique remains empirical in the idea that no optimality of the
property can be asserted, the simulation results demonstrate
an improvement over standard methods based on the usage of
alternating optimization (AO) and semi-definite relaxation.

An ideal joint optimization design is difficult because of
the interaction between active and passive beamforming and
the RIS phase changes. Song et al. presented a two-stage NN
with an unsupervised learning-based solution for the joint
passive and active beamforming design in RIS-assisted multi-
user MISO downlink platforms to efficiently solve the joint
optimization issue in [90]. Figure 13 illustrates the entire
network design. For simplicity, the first and second halves
of the network are referred to as PhaseNet and BeamNet.
PhaseNet is used to anticipate RIS phase changes based on the

input characteristics, whereas BeamNet is used to forecast the
beamforming matrix based on an effective communication
channel built in the middle. Moreover, BeamNet serves as
a PhaseNet analyzer. According to the simulation findings,
the proposed method may reach an equivalent sum-rate capa-
bility with far less complexity than traditional optimization
algorithms, enabling a real-time beamforming setup in RIS-
assisted platforms.

For MIMO systems, a significant level of computational
effort is required in the AO technique for the passive
beamforming architecture and evaluation techniques in the
RIS platform. Nguyen et al. [88] suggested an unsupervised
learning technique with fewer complications involved in the
RIS-assisted spectral efficiency optimization problem in the
MIMO system. When generating the phase shifts for the RIS,
the recommended scheme has a simplified input design and
only demands a limited number of nodes and layers. The
authors have considered a downlink transmission between
a BS and a user-assisted by an RIS in this study, wherein
the 8 × 2 MIMO system can forecast RIS phase shifts using
only one hidden layer, but a 16× 2 MIMO systems requires
two hidden layers. In the simulation results, the spectrum
efficiency obtained from the proposed method appears to be
higher than of the AO technique.

In [119], Liaskos et al. proposed an NN framework for cus-
tomizing the actions of tiles in RIS-aided systems. A tailored
propagation of the signal is modeled using backpropagation.
After a training period, the NN understands how to set the
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FIGURE 13. Architecture of a two stage network.

RIS tiles, providing improved performance. The propagation
environments, which include the number and position of the
receivers and transmitters, noise readings, operational fre-
quencies, and the size of metasurface blocks, are among the
data that are fed into the input layer. Backpropagation works
by adjusting the nodeweights based on the errors at the output
layer [120]. The fault can be split based on the intensity of
connections between the nodes because each hidden node in
the NN adds to the resulting error of its linked node to the
output; thus, the resulting error is transmitted back to each
layer for the weight modification, thereby minimizing the
new error. The authors achieved consistency in performance
gains by employing ray-tracing in a simulation environment.

Utilizing the structure of DRL, Huang et al. proposed a
combined model of phase shifts in an RIS-aided system for
MIMO and transmit beamforming [91]. The proposed DRL
method for achieving scalability is proven to be useful for
accommodating different system configurations. Instead of
using the traditional AO method for acquiring RIS-aided
phase shifts and transmit beamforming, the proposedmethod-
ology provides real-time improvement training of the DNN at
the output of the model. The DDPG approach is incorporated
by the authors using an immediate reward as a sum rate
to maximize the throughput. The phase shift and constant
transmit beamforming were simultaneously enhanced with
minimal complications in the suggested model. The actor and
critic networks are both completely linked DNNs with two
hidden layers. The input and output dimensions of the actor
network are specified as the cardinality of the state and action.
In the components of the hidden layers, the neuron numbers
are determined by the number of BS antennas, elements at
the RIS, and users. In the recommended method, RIS can
learn from the rewards and optimize itself according to the
condition; however, owing to a lack of active elements, the
availability of necessary data will be restricted, hampering
its performance.

Blockage and channel limitations are common in
THz telecommunications. To address these issues,
Abuzainab et al. developed a THz drone system in which

a flying RIS and BS support a mobile drone user [85].
Figure 14(a), illustrates the THz technology scheme
with RIS. It features a single-cell tower with a component
array antenna that provides a beamforming vector to a mobile
drone-based client. A preset beam codebook is used to deter-
mine the beamforming vectors. If the line of sight between
the BS and the drone is disrupted, the drone is served by the
BS via a hovering RIS. The service beams and record of the
positions of the user are employed in a DL-based gated recur-
rent unit (GRU)-assisted RNN, as shown in Figure 14(b). The
model calculates the optimal network connectivity (cascaded
or direct) and optimum beamforming vector for that link
ahead of time.

Owing to the vast number of reflecting components, pas-
sive beamforming may be constrained by high computational
complexity. To overcome this issue, Gong et al. proposed
an optimization-driven DRL strategy for collaborative beam-
forming, which is resistant to channel dynamics [121]. The
RIS phase vector, power-splitting ratio, and the active beam-
forming vector of the AP are all parts of the joint beamform-
ing optimization method for the RIS-aided MISO downlink
system. The authors utilized an optimization-driven DDPG
algorithm to build an optimization module to update and
determine the best action in each decision epoch. As the
DDPG algorithm accelerates the search process and reduces
the search space, numerical findings show that reward per-
formance and learning efficiency are considerably enhanced
when compared to the traditional model-free DRL approach.
However, supplemental optimization techniques add to the
complexity of the procedure.

C. ENERGY EFFICIENCY FOR RIS
The combined optimization of the reflecting RIS and BS
designs is difficult owing to the large number of RIS ele-
ments. Lee et al. presented a DRL-based solution to tackle
this optimization problem, wherein the BS chooses the RIS
ON/OFF states, allocation scheme, and phase shift [122].
Then, the environment modules, which include the user and
RIS, transmit feedback information containing the status of
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FIGURE 14. RIS in a THz communication scheme: (a) RIS with drone,
(b) DL model to predict the operating RIS and BS.

the wireless channel and energy efficiency. During the sug-
gested learning process, the BS can choose the best potential
actions based on various states. The authors examined at a
cellular network with a single BS downlink. As illustrated
in Figure 15, the proposed architecture contains an agent
installed on the BS and the remaining surrounding nodes,
which include the users and RIS. The states are composed
of the energy expenditure of the RIS and precoding vectors
of the users. Moreover, optimization factors such as phase
shifting, ON/OFF status, and transmit power are the actions.
When the number of RIS components is increased, the sim-
ulation findings demonstrate that the proposed framework
enhances energy efficiency.

In another study [84], the authors presented an RIS-aided
hybrid precoding architecture for THz connectivity with
reduced energy usage. To accomplish analog beamforming,
the fundamental concept is to substitute the power-hungry
array inside the standard hybrid precoding design with an
energy-efficient RIS. To address the classification task with
minor complications, a DL-based multiple discrete catego-
rization (DL-MDC) hybrid precoding method is utilized.
A conventional modern downlink THz massive MIMO sys-
tem with 1-bit RIS phase shifts was studied, which can
be readily built using reduced power and low-cost diodes.
To cover a single-antenna client, the BS uses RF chains.
Several DNNs may be used in a parallel DNN system in
which every DNN has a single output that corresponds to

FIGURE 15. Energy efficiency model.

one diagonal member of the analog beamforming matrix.
Consequently, all DNNs in the parallel DNN platform may
be trained and employed simultaneously, thereby reducing
the runtime significantly. Both the actual Third Genera-
tion Partnership Project channel model and the theoretical
Saleh–Valenzuela channel model were used to develop the
DL-MDC algorithm. It can reasonably mimic the compli-
cated nonconvex function of the classic hybrid precoding
algorithm, resulting in a good exchange between complexity
and performance. In the long term, data samples for the
suggested RIS-based hybrid precoding architecture can be
produced via unsupervised learning.

To reduce the transmit power of the AP in an
RIS-aided MISO setup with unpredictable channel cir-
cumstances, Lin et al. [102] developed a DRL technique
with improved learning performance. The authors devel-
oped an optimization-driven DDPG method, which incor-
porates model-based optimization into the architecture of
a model-free DDPG algorithm to aid information transfers
from the AP to the single-antenna receiver. In a continuous
action space, the DDPG method is used to address the opti-
mization issues. The DDPG approach utilizes a DNN with
a parameter to estimate the policy for the Q-value function.
The DNN seeks to enhance the value function by actively
adjusting the parametric policy in the gradient direction. The
DDPG method can more efficiently lead to the discovery of
combined beamforming, as demonstrated by the simulated
data.

For maximizing the energy efficiency of non-orthogonal
multiple access networks (NOMA), Liu et al. [94] explored
the challenges of joint system implementation, power
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distribution, determination of dynamic decoding order, and
phase shift of RIS control in an RIS-aided system with mul-
tiple users while maintaining the data rate enhancement of
the individual as required. The authors applied ML to solve
this optimization challenge and suggested an LSTM-oriented
echo state network algorithm based on an empirical dataset
for anticipating the traffic demands in the case of an increased
number of users in the future. Furthermore, a position-
acquisition and phase-control method is proposed based on
a decaying double DQN to identify the location of the RIS
and control policy. By implementing a real dataset, an RNN
is utilized to estimate the data traffic density. The BS serves
as an agent in the DQN-based model. Because of having an
installed controller, the BS can manage the phase shift, posi-
tioning of the RIS, and the policy of power allocation to the
user. The energy efficiency of the RIS-NOMA combination
was more significant than that of the benchmarks.

D. RESOURCE MANAGEMENT FOR RIS
Feng et al. [93] enhanced themodel of RIS-aided phase shifts
in downlinkMISO communication networks to maximize the
received signal-to-noise ratio (SNR). The authors used DRL
because the level of examined resource allocation complexity
is greater when constructing a realistic design of the phase-
shifts solution. To avoid the constraints of the DQN, a DDPG-
based technique was created to cope with continuous action
spaces. During the initialization stage, four networks with
uniformly distributed parameters were developed. In addi-
tion, with capacity, the experience of replay was constructed.
At the start of every event, the phase shifts of all elements
were randomly selected from 0 to 2π , without sacrificing
its simplification. Both the critic and actor evaluation net-
works utilized the Adam optimizer for updating their param-
eters. Mathematical results show that a close to optimal
signal-to-interference-plus-noise ratio (SINR) performance
was achieved using the devised algorithm. Even though the
performance of the model is more efficient than that of DQN,
delayed convergence could be a limitation due to the broad
parameters and divergence of the model from the desired
position during initialization.

To combat strong propagating attenuations and enhance
the transmission distance at THz-band frequencies,
Huang et al. presented a multi-hop RIS-aided communication
system, in which a DRL obtains the hybrid design of trans-
mission beamforming at the BS and a phase-shift matrix [98].
As illustrated in Figure 16, the authors used numerous passive
RISs to connect the BS to several single-antenna users. Two
DNNs were used in the DRL structure. One DNN uses the
critic network to assess the current policy associated with
the rewards, while the other employs the actor network to
estimate a policy based on the measured environment state
and output of an action. According to the simulation findings,
the proposed method can enhance the transmission distance
of THz telecommunication by 50%.

Model aggregation for federated learning (FL) via radio
channels is hampered by a lack of communication capacity.

Yang et al. [123] devised a concurrent access strategy aided
by RIS to improve model aggregation performance, resulting
in the creation of a connectivity-efficient FL framework for
internet of things (IoT). The proposed approach comprises
an FL system made up of 20 single-antenna IoT devices
that are used to train a support vector machine (SVM) clas-
sifier using the Canadian Institute for Advanced Research
(CIFAR-10) dataset that has been randomly distributed and
divided. Lowering the model aggregation error, as mea-
sured by the MSE, is critical for improving the learning
efficiency of the over-the-air computing-oriented FL. The
channel environment between the aggregation and devices
server is crucial for the MSE. With the help of the RIS,
it is feasible to minimize the MSE of the model aggrega-
tion. RIS can obtain desirable channel responses by facilitat-
ing software-controlled phase shifts. The simulation results
demonstrate that the RIS-enabled model aggregation pro-
duces a significantly greater convergence rate and consider-
ably lower training loss. However, the computational com-
plexity is quite high.

To provide good quality of network service for traffic mov-
ing through an obstructed area, Al-Hilo et al. [100] proposed
a DRL framework with multi-binary action space to search
a policy that maximizes the minimum average bit rate for
vehicles using wireless scheduling. The authors suggested a
route with no direct connectivity via a roadside unit (RSU).
An obstacle is considered to block the line of sight. The RSU
is expected to have a variety of channels to schedule themotor
vehicles, and it must decide how to allocate its resources and
adjust the RIS aspects if there are several vehicles on the road.
Three linear layers are utilized for the DRL, with tanh as the
activation function of the middle layer and softmax as the
activation function of the output layer. Every internal layer
has 64 units, and the Adam optimizer is used to reduce the
loss function. The effectiveness of the solution technique was
carefully examined by comparing it to other standards, and
the framework was identified to be highly efficient in terms of
the numerical findings. However, wireless resource allocation
was not considered, where a spectrum can be provided to each
vehicle depending on its unique requirements.

Ni et al. [104] jointly optimized the phase shifts and trans-
mitted power while increasing the convergence rate of over-
the-air FL (AirFL) to solve the device selection and unde-
sired transmission error of FL in multiple RIS-aided systems.
The suggested FL architecture was used to train a 7-layered
CNN for image classification on the Modified National Insti-
tute of Standards and Technology dataset and a 50-layered
residual network on CIFAR-10 dataset. The authors consider
an RIS-assisted AirFL platform, IoT devices, and one BS,
as shown in Figure 17, assuming that both the devices and the
BS have a single antenna. The proposed approach accelerates
the convergence rate and reduces aggregation error, according
to the simulated data. However, this study did not include the
privacy improvement strategy related to FL.

In [99], Kim et al. developed a dynamic control system
based on multi-agent DRL that uses only index gradient
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FIGURE 16. Multihop RIS system.

variables for the local RIS reflection beamformer to man-
age the localized user equipment broadcast powers and their
combiners. The reward functions, action, and state represent
the interdependencies in decision making at various BSs.
For the uplink, the authors propose a multicell system with
several RISs and cells, as shown in Figure 18. The system
uses a DQN, where the BS has its DQN trained with weights.
The suggested strategy achieves a significant improvement
in the overall average rate in comparison with the baseline
approaches, according to numerical data analysis.

To tackle a joint optimization issue for a NOMA downlink
network using RIS, Yang et al. [97] provided a method based
on the DDPG algorithm for constructing the phase shifts in
RIS. The reward functionwas established by utilizing the sum
rate ofmobile clients; consequently, the best track of the agent
was identified through the objective function. The phase-shift
matrix of RIS defines the state space. In the learning phase,
the action for every state is determined using an exponentially
weighted algorithm, softmax, and a small-scale Rayleigh
fading between the AP and clients. Figure 19, depicts the
layout of the suggested system, in which the agent of the
DDPG algorithm controls the reflecting components of the
RIS and is sufficiently smart to learn the best phase shifts
through exploitation and exploration. According to numerical
data, the performance of the proposed framework may be
enhanced by expanding the number of reflecting elements
in the RIS and lowering the complexity of the RIS phase
shifts.

Beam management (BM) is difficult for high-performance
mmWave networks. To address this issue, Jia et al. [86] pre-
sented a DL-enabled BM system for RIS-aided mmWave net-
works, which analyzes the motion and environmental knowl-
edge to achieve high system efficiency. The authors assume
a standard RIS-aided mmWave infrastructure, in which

numerous RISs are installed that provide reliable and continu-
ous connectivity for the intended locationwhere themmWave
transmitted from the BS is hindered by the barriers.Whenever
the real-time network information is fed into the DNNmodel,
the ideal network parameters may be forecasted instantly
without the need for complex optimization processes, thereby
substantially reducing the system overhead. Figure 20 depicts
the the time frame model of RIS-aided mmWave platform,
which includes data transmission, channel acquisition, beam
monitoring, and beam training during initial access. The
DL-enabled BM framework achieves improved signal quality
and changeover success rate, according to the simulation
findings. However, this study does not provide BM for mul-
ticell networks.

To solve the phase shift and combined trajectory design
issue, in [103] the authors proposed a decaying DQN (D-
DQN)-based algorithm to predict the phase shift of the RIS
and trajectory of the unmanned aerial vehicle (UAV) while
ensuring that data demands of the client are satisfied in the
process. The control center, which governs both the UAV and
the RIS, operates as an agent in the D-DQN based method.
A UAV is used to provide wireless services to several single-
antenna users. Throughout an area, all users are considered
to be roaming. It is assumed that an RIS is installed on the
wall of a tall building with reflecting components to improve
the quality of cellular connectivity by establishing a cascaded
virtual line-of-sight propagation between the clients and the
UAV. The MDP is characterized by the states, environment,
reward function, and actions. The cycle is formed by the
state transition function. The transitions of a new state occur
after one MDP cycle, based on the actions performed and the
previous state. In comparison to the traditional DQNmethod,
the suggested D-DQN oriented approach uses a decaying
learning rate to achieve a balance between the training speed
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FIGURE 17. FL in multiple RIS system.

FIGURE 18. Multicell system.

and oscillation. However, the motion of the UAV in terms of
speed variation was not included in this study.

Obtaining the activation pattern of the IoT devices ahead
of the UAV flight is a complicated task. To address this issue,
Samir et al. [101] developed a DRL-focused PPO to shift the
phase of RIS components to detect the unpredictability of IoT
device activation patterns, and performed connectivity plan-
ning to reduce the predicted cumulative age-of-information
and regulate the height of the UAV. When the transmission
power of IoT devices is increased, the SNR obtained at the
BS improves directly. Nevertheless, in certain IoT applica-
tions, increasing the quantity of reflecting components per

RIS increases the obtained age of information and SNR by
improving the quality of the communication link between the
BS and the IoT devices. However, no investigation has been
performed in the case where the source or destination nodes
have several antennas.

E. DETECTION FOR RIS
In [79], the authors utilized a DL-based method to estimate
and identify symbols in an RIS-aided wireless system. To cal-
culate the phase angles and channels of a reflected received
signal by an RIS, a fully connected NN was used. This
allows symbol identification by not the application of any
specialized adjustment in the obtained pilot signal, which
substantially lowers the overhead that is necessary for the
RIS-aided network. The bit error rate (BER) of the system
was enhanced using DL. The proposed DeepRIS network
consists of three hidden layers. The model was trained over
several iterations so that it could be robust to data overfitting.
Moreover, DeepRIS outperformed the traditional MMSE and
least squares estimators. However, the necessity of gathering
a large amount of data for the diverse user positions compli-
cates the proposed technique.

To cope with the signal interference that deteriorates the
SINR of the RIS, Yang et al. [75] demonstrated that CNN can
be used as part of a traditional RIS controller to recognize
the conflicting devices using incident signals. To enhance
the wireless connection quality, the authors examined an
RIS-aided uplink network composed of users, a group of
RISs, and a BS. Although each RIS functions as a nearly
passive surface, the RIS controllermay consume energy in the
givenmodel. To build the spectrum-learning approach, online
CNN inference, offline CNN training, and acquisition of RF
traces are the three key components. Convolutional layers
with ReLU activation functions are used in the trained CNN
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FIGURE 19. Use of deep deterministic policy gradient in the phase shift of RIS.

FIGURE 20. Time frame model for beam management.

model, which are accompanied by two fully connected layers.
The ability of DL to increase performance was validated by
simulation findings. However, the CNN needs to be retrained
if the distribution of RF data changes considerably.

The authors suggested a feasible ML approach for wireless
fingerprinting localization in RIS-aided settings using a NN
with ReLu as the activation function and a single hidden layer
of size 100 [81]. The proposed system model consists of a
receiver, an RIS, and a transmitter and assumes that the AP
and RIS are both linked to a service provider who could also
manage the RIS settings. Figure 21 illustrates the suggested
method in which every RIS setting is viewed as a feature,
and the goal is to choose the best collection of features from
several options. If features are chosen negligently, the feature
set may comprise redundant, irrelevant, and inaccurate infor-
mation. The simulation results demonstrate that a supervised
learning-oriented approach in RIS for selecting features can
improve the detection performance andminimize the location
collection time. However, the work does not include different
scenarios or the use of multiple RISs.

Vaca-Rubio et al. presented a computer vision method
based on SVM and TL to analyze radio graphics created
by the RIS to identify abnormalities along the path of a
robot [124]. The authors analyzed an industrial situation in
which a robot maintains a predetermined route that assumes
that it could divert from the intended path and pursue an unde-
sirable direction owing to random factors. While the target
device travels along the path, the training data are acquired by
sampling the received power at different temporal moments.
The proposed model contains a VGG19 structure, and the
last fully linked layer is eliminated during the modification
process. The findings demonstrate that RIS-aided detection
provides considerable accuracy and appears to have a wide
range of applications in indoor industrial settings.

F. SECURITY
While the key generation rate (KGR) is typically restricted by
wireless channel dynamics, it can also be hindered by other

FIGURE 21. Representation of localization algorithm.

factors. In wireless fading of channels, there is randomness
that affects the secrecy of the produced key. Weak probabil-
ity extraction from the channel limits the KGR in static or
slow-fading scenarios. To enhance the KGR of the physical
layer key generation on the basis of CSI, Jiao et al. [106]
presented an interactive quantization level forecasting model
using the ML technique. The authors considered a wireless
system with two single-antenna users that were aided by
RIS. By exploring and retrieving unpredictability from bi-
directional channels, users communicate in the TDD mode
to generate a secret key. A function is used to track fresh
channel observational data in real time, and the suggested
method assesses the training data at the beginning. The FNN
used in the model consists of two hidden layers, where a
tansig function for the hidden layer and purelin function for
the output layer, is used as an activation function. When
the SNR is high, the forecasting model prefers to use high
quantization levels to decrease the bit disagreement ratio,
whereas low quantization levels are used when the SNR is
lower to maintain the bit disagreement rate at a minimum.

Yang et al. [95] proposed a secure beamforming strategy
with DRL in the RIS-assisted communication network for
physical layer security, where adjustment of the reflecting
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FIGURE 22. Secure communication for RIS.

elements in RIS is performed to ensure the safe commu-
nication of numerous genuine clients in the presence of
numerous spies, as shown in Figure 22. A model for the
joint optimization of beamforming in the RIS and BS is
proposed to increase the secrecy rate of the system under the
premise of quality, service needs, and time-varying channel
conditions. A prioritized experience replay and post-decision
state are used to improve secrecy and learning efficiency.
During the training steps, the controller using RL modifies
the parameters of the network and monitors the state of the
present system, which includes several factors such as total
CSI for all clients, data rate of transmission, and the expected
secrecy rate. Then, the DQN is fed with the vectors of the
state to train the model. The e-greedy policy is used for bal-
ancing exploitation and exploration, while a random action
is determined depending on the knowledge gained from the
environment. The RL agent obtains a reward from the envi-
ronment after completing the selected action and observes the
state shift. Simulation findings show that the proposed secure
beamforming strategy improves the system secrecy with a
good probability. However, the model incorporates complex
computations and large amounts of data; consequently, the
additional computational power will affect its efficiency.

Li et al. proposed a privacy-preserving ML-boosted
communication systems by adding FL in the RIS-aided
wireless technology to solve the privacy breach of user infor-
mation [125]. Multiple RIS-assisted IoT network transmis-
sion and single RIS-aided outdoor connectivity strategies
were proposed by the authors. FL-based RIS-aided outdoor
communications will utilize distributed learning to train the
best DNN model for projecting user channels to the best
RIS configuration matrix and achieving high-speed wireless
communication while protecting privacy. The FL is used in
IoT network connectivity to enhance several RISs in parallel
under the protection of the private CSI method, allowing the
best possible rate of the combined signal, which would be
the convergence of signals across all RISs. According to the
simulation results, the proposed architecture improves user
privacy while maximizing the attainable rate of the receiver.
However, owing to the common wireless links utilized by the

transmitted information, the efficiency of global aggregation
may suffer.

The concern of privacy issues in RIS-aided connectivity
was addressed by Ma et al. [105] by suggesting an FL-based
algorithm for achieving high-speed communication while
maintaining the privacy of an individual. A local model can
be trained in FL using the local dataset of each participant,
and a global model was constructed by combining all local
models. The starting configuration of each device in the next
training cycle is retrieved from the global model. To reach the
ideal global model, all steps are iterated until the global model
output converges. For FL to understand the mapping function
between the RIS configuration matrix and the CSI, a DNN is
adopted. As per the input CSI, the DNN output is determined
by the optimal attainable rate of the device. A transmitter is
assumed to interact with an RIS-aided receiver via a server
linked to the RIS for data processing. The performance of
the proposed algorithm using FL may effectively satisfy the
theoretical value and be greater than 90% of that obtained by
the centralized ML while safeguarding user privacy, accord-
ing to the simulation findings. However, the utilization of a
CNN can be a better choice because it may result in greater
performance; moreover, because of the simple RIS design,
connecting a complex parameter server may be problematic.
For model training, it is more convenient to use the BS to
handle the parameter server.

VI. CHALLENGES AND FUTURE RESEARCH
Owing to its ability to enhance resource usage, RIS has
garnered considerable interest. The RIS in wireless networks
shows considerable potential, but a variety of difficulties and
limitations must be addressed, as shown in Figure 23.

A. ISSUES WITH THE CHANNEL
Ongoing studies on channel fading in RIS have focused
on simpler wireless link designs. Fading schemes similar
to traditional phased arrays and multiantenna systems are
often used. Accurate modeling is required for the transmis-
sion of signals dispersed by metasurfaces in assessing the
performance boundaries in wireless connections using RISs.
Assuming that the inter-antenna length is more significant
than half the wavelength, these approaches could be suitable
for a large number of cheap antennas, while their applica-
bility to meta-atom based RIS requires additional research.
Furthermore, sub-wavelength structured fading models must
be developed at both the visible and microscopic levels for
easy incorporation into communication schemes.

RISs do not require amplifiers. Therefore, the critical ques-
tion is how it can notify the channel condition to the receiver,
transmitter, or any controller responsible for determining
the optimal phases and assessing the channels necessary for
phase optimization. Consequently, it might be beneficial to
incorporate an energy harvesting unit in the RIS to drive
low-powered sensors that monitor the channels and present
the results to a gateway for sending these results back to the
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FIGURE 23. Categorization of challenges and future research.

network controller. Thus, RIS-based communication can be a
part of an energy-efficient technology.

A high proportion of recent research advancements have
concluded that there is an unbroken CSI accessible at the BS.
Even so, because of the passive nature of RIS, the exchange
of CSI and acquisition is not an easy task to perform. Quick
and precise data gathering is critical in RIS communication
systems; however, significant training is required to achieve
this.

Unresolved areas of research include the evaluation of
technical limitations and study of the attainable performance
of RIS in frequency-selective channel fading. Deploying an
RIS in a near-field environment may have several intrigu-
ing uses and possible advantages. Currently, supervised DL
is widely utilized to solve channel problems to maximize
efficiency, and DL techniques may be used to explore CSI
structures that are more than just linear correlations.

B. MANAGEMENT OF DATA
Data frameworks depend on the information, which raises
important issues from the perspective of data control man-
agement, in which stability and latency impose limitations
on the feedback loop. Analyzing and modeling RIS-powered

wireless communications is often more complicated than
existing communication schemes. To overcome the complex-
ities of such systems, data-driven approaches based on learn-
ing algorithms provide new opportunities. Channel sensing
may gather significant data owing to their sensing potential
and availability of large scattering components, which opens
the door to data-driven DL methods. An adequate dataset is
required for the DL model to obtain good training results.
In the compressive sensing method, a large dataset is not
required. However, in other disciplines, obtaining adequate
training data may be problematic. It is possible that if only
limited data are obtained for estimating the parameters in the
NN, we will end up with considerable variation and overfit-
ting. A need for more investigation on information storage
solutions is required to enable the administration of data with
a responsive and rapid system.

C. ADJUSTMENT WITH DYNAMIC ENVIRONMENT
User mobility varies significantly in several areas and at
different times. The variable factors of a user are in terms of
speed, direction, acceleration, and angle. It is difficult to learn
the traffic pattern of a user because of themobile and dynamic
natures of the traffic obtained from the client. Furthermore,
the employed parameters cannot be defined as a constant
value owing to the limitless quantity of mobility. Obtain-
ing labels is a significant challenge in supervised learning
in the existing method; therefore, other learning solutions
such as computer vision (using CNNs) and neural language
processing (based on LSTM) techniques may be suitable for
assessing and understanding the traffic model.

D. MODEL TRAINING ISSUES
Training is a key component in the application of ML in an
RIS. Consequently, it is vital to understand the performance
limitations of training models under dynamic conditions. The
equilibrium between the development of non-static settings
and training rate is unclear. Some of the existing DL methods
still have several practical issues. However, standard ML
methods must not be disregarded, and the situations in which
classical approaches are preferable to DL techniques must
be identified. Although DL is a potential technique for RIS,
it requires considerable effort and a large amount of data to
obtain the necessary results. To further study the convergence
of performance, an improvement in the training rate could be
achieved at the possible cost of loss in performance.

Hyperparameter adjustment is required for ML model
training [126]. The effectiveness of ML model is determined
by how well it is trained using data. It is not easy to train
a model with a large amount of data. Minor adjustments
in parameter values can have a significant impact on the
performance of the ML model. Furthermore, the training of
the model can be viewed as a computationally demanding
operation that uses considerable CPU and GPU resources,
especially for deep networks. However, it is challenging for
the BS server to handle this massive quantity of data on its
own, in addition to distinguishing between the relevance of
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the data among all the information necessary to run RIS. It is
critical to utilize the essential data and reject the irrelevant
data for the server to decrease the workload of the server and
allow it to use the relevant data when learning is taking place.

E. PHYSICAL SHORTCOMINGS
Meta-surfaces are composed of subwavelength objects with
complex formations. Consequently, the absence of precise
and manageable models that characterize customizable meta-
surfaces as a factor of their EM characteristics is a key
constraint in the ongoing studies on RIS. In most of the
studies, it is assumed that the metasurface behaves like
an element of reflection. However, it is crucial to bear in
mind that meta-surfaces are not just created to reflect the
wave; they are also designed to perform other tasks because
their reaction to radio waves is affected by elements such
as materials of composition, polarization, and angles. The
spatial pairing between the antenna components is gener-
ally ignored while modeling the RIS. To determine whether
the performance of a metasurface-based RIS increases with
the denser packing of antenna elements, suitable uniform
designs must be used. For metasurface architectures, EM-
based circuit designs may be employed, which clearly con-
siders mutual linkage and the configurations among the unit
cells. Thus, we can effectively overcome the sub-wavelength
barrier and provide possible advantages of metasurface
constructions.

F. DEPLOYMENT CONCERNS
Wireless networks driven by the RIS have a wide range
of possible uses, both outdoors and indoors. Deployment
is one of the most important design considerations when
incorporating an RIS into a communication system. In RIS-
assisted connectivity, the proper deployment of the RIS can
enhance the system to ensure that the receiver, transmitter,
and RIS have a line of sight. Hence, the number and loca-
tion of RIS deployment are essential factors that must be
resolved.

Large amounts of bandwidth are accessible in themmWave
frequency. Therefore, mmWave connectivity is capable of
delivering gigabits per second information speed, which is
essential for higher data rate applications. However, because
of the short waveforms, it suffers from extreme blockage
and imposes substantially greater energy usage with higher
equipment costs because of the increased number of active
antennas that are running at significantly higher frequencies
when compared to lower wireless frequency systems. Owing
to the intelligent reflections that RIS provides, short-wave-
related difficulties can be effectively handled by accurately
deploying RISs in mmWave platforms to construct a virtual
line-of-sight channel between the users and the BS that can
combat the obstructions between them.

G. RESOURCE ALLOTMENT ISSUES
A metasurface functioning as an anomalous reflector must
be modeled using the principles of physics, as the phase and

amplitude interactions are not self-governing. The reactive
nature of the metasurface architecture allows the incorpora-
tion of physics-basedmodels to study the influence of the RIS
sub-wavelength structural system, design limitations, and
radio wave manipulation characteristics. In vehicle models,
the spectrum may be allocated to every vehicle depending
on its specific demands. Therefore, the RIS phase-shift setup
technique may be modified to understand the impact of dif-
ferent link qualities for each individual vehicle based on the
given wireless capacity. Researchers have considered that
RIS installations at permanent sites can only support nearby
users. To further enhance the productivity of RIS with UAVs,
integrated wireless communication can be deployed, and the
speed of the UAV must be optimized.

H. EDGE SERVER
In many ways, edge computing is similar to cloud comput-
ing. Owing to the passive beamforming capabilities of RIS,
mobile edge computing devices may use RISs to increase the
potential of connecting with the edge server and transferring
computationally intensive jobs to the edge server to reduce
delay rather than experiencing excessive transmission power
usage. When using model iteration instead of collecting user
data, FL may be used to boost edge computing and enhance
privacy. To conduct global control smartly, FL will work in
conjunction with edge devices, which are locally trained, and
then transfer model parameters to the control center. More
attention should be focused on latency and privacy problems
in this area.

I. ADVANCEMENTS OF HARDWARE SENSOR
It would be fascinating to investigate methods for building
entirely freestandingRIS designs, in which the RIS is not con-
trolled by the infrastructure but will operate autonomously
while interactingwith the surroundings.Manymobile devices
may now be fitted with a variety of sensors owing to the
advent of sensor technology. In the configuration of beam
control, visual data may be derived from previous knowledge.
Incorporating visual data with other sensor data may be used
to provide motion information and enhance awareness of the
surroundings for the mmWave network that is combined with
an RIS.

J. ENVIRONMENTALLY SOUND
An advantage of the RIS is that it can manipulate EM waves
without requiring power amplifiers and other high-power
demanding equipment; therefore, we position RIS at the fore-
front of the eco-friendly device list. The benefits of these
concepts are that they can make metasurfaces more recy-
clable and help reduce the exposure of people to EM fields.
However, it complicates the process of obtaining the essential
environmental parameters for configuring and optimizing the
RIS. Hence, it is crucial to properly evaluate the essential
exchange required between RIS power usage and operating
complications.
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K. SECURITY ISSUES
Security and privacy are equally key issues in future
RIS-based initiatives because of their vulnerable surround-
ings. Consequently, there has been an upsurge in the creation
of encrypted data transfer methods that rely on the physi-
cal features of communication. To avoid possible data leaks
and maintain data security, RIS offers a path to manipulate
the propagation environment around unsafe endpoints. With
numerous eavesdroppers and authorized users in a place
where RIS will be densely installed, it is important to enhance
network secrecy. Using the FL technique, noise may be used
to improve connection security by decreasing privacy leaks
and making the fields of research worth exploring.

L. WIRELESS POWER TRANSFER OPPORTUNITY
To extend the life of the battery of IoT devices in
next-generation cellular networks that link billions of limited
power-consuming nodes, wireless power exchange can be
a viable technique. Interactions between devices are more
dispersed and varied than traditional downstream broad-
casts from a multi-antenna transmitter to receivers, thus
posing additional challenges for RIS-aided communications.
Diverse approaches have been presented to mitigate signif-
icant energy losses through vast distances to improve the
reliability of power transfer. For wireless power transmission,
the advantages of RIS beamforming are highly dependent
upon the availability of channel information at the transmitter,
which is gained at the expense of energy and time; therefore,
improper training will lead to unreliable channel information,
which consumes considerable energy at the receiving side and
also leaves less opportunity for the collection of energy.

VII. CONCLUSION
In this paper, we provide a comprehensive review of the
emergence of ML in RIS advancements. We started with an
overview of RIS and explained the implementation of ML in
RIS along with its limitations. Finally, the potential obstacles
and open research problems when using ML in RIS have
been identified. Major technological issues should be over-
come to adequately address the considerable architectural
demands in future networks. Over the next few years, the
implementation of RIS inmapping, propagation, localization,
signal processing, and resource allocation idea is expected to
achieve revolutionary results. Further research on RIS and
ML can be conducted on various topics that could have a
significant impact in the field of wireless communication for
the next generation of networks.
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