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ABSTRACT Many studies have been conducted in the field of face aging, from approaches that use pure
image-processing algorithms, to those that use generative adversarial networks. In this study, we review a
classic approach that uses a generative adversarial network. The structure, formulation, learning algorithm,
challenges, advantages, and disadvantages of the algorithms contained in each proposed algorithm are
discussed systematically. Generative Adversarial Networks are an approach that obtains the status of the
art in the field of face aging by adding an aging module, paying special attention to the face part, and
using an identity-preserving module to preserve identity. In this paper, we also discuss the database used
for facial aging, along with its characteristics. The dataset used in the face aging process must have the
following criteria: (1) a sufficiently large age group in the dataset, each age group must have a small range,
(2) a balanced distribution of each age group, and (3) has enough number of face images.

INDEX TERMS Face recognition, image generation, image database, face aging dataset, deep generative
approach, generative adversarial network.

I. INTRODUCTION
Face-aging has recently attracted the attention of the
computer vision community, and a variety of approaches,
ranging from pure algorithms in the field of computer graph-
ics to approaches that use deep learning architectures have
been proposed. Several successes have been reported, from
approaches that use theory in anthropology to approaches that
use deep learning.

Generally, approaches to age progression are classi-
fied into four categories: (1) modeling, (2) reconstruction,
(3) prototyping, and (4) deep learning approaches. The first
to third category approaches usually use a simulation of
the aging process from facial features by use (a) adopt-
ing anthropometric knowledge [1], or (b) representing face
geometry and appearance by setting it through conventional
parameters. Examples of methods that use this approach
are Active Appearance Models (AAMs), 3D Morphable
Model (3DMM). Even with many studies that have obtained
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inspiring results, the representation of this method is still
linear and has various limitations when modeling non-linear
aging processes.

Face aging across ages becomes very challenging because
faces changes over time are not linear. However, the lin-
ear method cannot solve this problem. However, a mod-
ern approach, the Deep Generative Method (DGM) for
face modeling and mapping of the aging process, achieves
a state-of-the-art face aging approach. Deep learning
algorithms have a better ability to interpret and trans-
fer nonlinear aging features. Several faces aging studies
on how to produce superior synthetic image results as
in [2]–[7], including the Generative Adversarial Networks
method.

Inspired by a study that obtained state-of-the-art results,
in this study, we aim to provide a review of the current
Generative Adversarial Networks in face aging progression
and the dataset used in that method. In this study, eachmethod
is discussed in terms of its structure and formulation. In this
paper, we will cover, in general, the conventional approach
and the Generative Adversarial Networks approach. Discuss
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how they produced face synthetics and used a public dataset.
The paper structure is built sequentially: discuss the dataset
used in face aging and their characteristics, and the distri-
butions, approaches used in face aging, and also discusses
challenge and opportunity in face aging if we add more
information to the dataset.

II. FACE AGING DATASET
Collecting a dataset related to face aging is challenging.
Several criteria were satisfied in the collection process. First,
each subject/identity in the dataset must have images of dif-
ferent ages and must cover a long age range. However, this
is not an absolute requirement, because, in some research,
we found some face aging approaches do not need sequence
images of the same person at different ages and can still
produce the aging pattern. It is important to discuss the dataset
in Generative Adversarial Network because the success factor
of this model in obtaining a robust model depends on the
characteristics of the dataset. Currently, the face aging dataset
is limited in terms of age labels and the number of available
datasets.

The MORPH-Album 1 dataset [8] contained
1,690 grayscale portable gray maps (PGM) images from
515 individuals. Metadata this dataset metadata has informa-
tion about subject identifier, date of birth, picture identifier,
image date, race, facial hair flag, age differences, glasses flag,
image filename, gender. The image age group distribution
in this dataset was not balanced and was dominated by
ages–18-to 29.

The MORPH-Album 2 dataset [8] consisted of 55,000
unique images from 13,000 subjects aged 16–77 years, with
an average age of 22. Has information about subject identi-
fier, race, picture identifier, date of birth, image date, and age
difference. Image film number, race, gender, facial hair flag,
and glass flag. The age group distribution is more balanced
compared to the Morph Album 1 dataset; a balanced distri-
bution on the dataset causes a face aging architecture easy to
learn aging patterns from each age group, and the number of
face images from each age group must sufficient to get the
age group pattern.

FG-Net [9] is a dataset consisting of 1,002 face images
from 82 subjects that contain information, such as Identity
ID and age. The age distribution is not balanced, is not well
separated, has a very small number of images, is dominated
by the young age group, and is not easy to obtain an aging
process pattern.

The AdienceFace dataset [10], [11] consisted of 26,580
face images from 2,984 subjects. Grouped into 8 age group
labels (0-2, 4-6, 8-12, 15-20, 25-32, 38-43, 48-53, 60+), and
has a gender and identity label. The age distribution of this
dataset is dominated by young labels/groups.

The Cross-Age Celebrity Dataset (CACD) [12] con-
sists of 163,446 facial images from 2000 celebrities from
2004-to 2013, the following information: name, id,
year of birth, celebrity ranking, LBP features from

16 facial landmarks. The age groups distribution is slightly
balanced but still dominates the age 20 to 60 years.

The IMDB-WIKI [13] dataset contains 523,051 images
from 20,284 subjects obtained from the IMDB and
Wikipedia. The dataset contains information on the date of
birth, taken date, gender, face location, face score, second
face score, celeb name, celeb id, age calculated using the date
taken, and the date of birth. The distribution of age groups in
this dataset is dominated by 20-30 and 30-40 age groups and
unbalanced in the young and old age groups.

The AgeDB [14] dataset contained 16,488 images from
568 subjects and was annotated manually to ensure that the
age labels were clean. The AgeDB is an in-the-wild dataset,
and the average number of images per subject was 29. The
dataset contains image information, including ID, subject
name, and age. Domination using greyscale images. The
age distribution is dominated by the age groups of 30-40,
and 40-50, slightly balanced, and the number of images is
sufficient to face the aging architecture learning the age
pattern.

TheUTKFace [4] dataset is a large-scale face dataset with a
long age span (ranging from 0 to 116 years), containing more
than 20,000 images with information about age, gender, and
ethnicity. The UTKFace dataset is in the wild, with variations
in pose, expression, occlusion, illumination, and resolution.
The age distribution was quite balanced, dominated by the
age group 10-19 years.

An unbalanced dataset distribution makes it difficult for
the face aging architecture to identify good-aging patterns
of each age group. The ability of the architecture to obtain
aging patterns from each age group depended on the number
of images in each group. An insufficient number of face
images does not provide sufficient pattern information from
age group images.

The characteristics of the dataset and the age distribution
of several existing face aging datasets are summarized in
Table 1 and Figure 1. The sample images for each dataset are
shown in Figure 25.

III. FACE AGING METHOD
A. CONVENTIONAL APPROACH
1) MODEL-BASED APPROACH
Early research on age progression utilized an appearance
model to represent the shape of the face structure and
face texture in input face images. The aging process is
represented by an aging function that applies the param-
eter sets of different age groups to the input image.
Patterson et al. [15] and Lanitis et al. [16] used Active
Appearance Models (AAMs) to simulate adult craniofacial
aging in images using two approaches, (1) estimating age
in an input image, and (2) shifting the active appearance
model parameters in directional aging axis. Active Appear-
ance Models (AAMs) presented an anthropological perspec-
tive on the active appearance model of facial aging and had
an effect on face recognition for the first time.
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TABLE 1. Properties of different face aging datasets in the wild, dataset collected from unconstrained environment condition.

A different study was proposed by Geng et al. [17] which
introduced the Aging Pattern Subspace (AGES) approach.
Gang et al. constructed a subspace representation of the
aging pattern as a chronological sequence of face images
using Principal Component Analysis (PCA). Finally, facial
synthesis results in a certain age group by applying a variance
aging effect on facial appearance. We used a face model
transformation among all less than one-year-old subjects in
the database, instead of using a cardioid strain transformation
or global aging function. The main problem encountered in
this architecture is the aging transformation, which is the dif-
ficulty in constructing a suitable training set and a sequential
age progression from a different individual.

Suo et al. [18] introduced a dynamic compositional model
of facial aging. each faces from each age group into a
hierarchical ‘‘And-Or’’ graph model. The ‘‘And’’ node is

used to decompose the facial image into several parts to
define facial details such as hair, wrinkles, etc., a pattern
that is crucial for defining the perception of age. This com-
positional and dynamic model seeks to build a perception
of aging and at the same time maintain the identity of an
input facial image by combining several parts of differ-
ent faces with different aging effects. This method lacks
individual facial sequences and requires retraining when
additional facial sequences are included. In the study by
Suo et al. [18], the model was not trained over a long lifespan.
The resulting model still leaves ghosting artifacts on the
resulting synthetic face which is caused by the difficulty in
performing precise alignment between the model and the
original image.

In the model-based approach, the face structure and texture
changes, such as muscle changes, hair color, and wrinkles are
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FIGURE 1. Dataset distribution (a) MORPH album 1; (b) MORPH album 2; (c) FG-NET; (d) AdienceFaces; (e) AGE-DB; (f) IMDB-WIKI (g) CACD
(h) UTK-Face.

modeled using parameters. The general form of face aging
modeling is difficult to determine, which makes it difficult
to apply this facial aging model to certain faces, and there
is a possibility that the resulting facial model is not suitable
for certain faces. Determining this parameter requires a large
number of training samples and need high computational.
Mismatch and difficulty in performing precise alignment
make difficult to produce realistic images of aging faces
without losing identifying information.

2) PROTOTYPE APPROACH
The basic idea of the prototype approach [19] is to apply the
differences between age groups to the input face image to
produce a new image in the desired age group. A prototype
of the average face estimation or mean face [20] for each
age group is applied to the input face image to generate new
faces in the desired age group. To produce a good synthetic
image, a precise alignment is required to avoid producing a
plausible synthetic image. Thismethod produces a relightable
age subspace, a novel technique for subspace-to-subspace
alignment that can handle photo ‘‘in the wild,’’ with a variant
in illumination pose, and expression, and enhances realism
for older subject output as a progressed image from an input
image. This method used a collection of head and up torso
images, which has the effort to get the image. The prototype
approach to facial aging is limited to producing aging patterns
and losing global understanding of the human face, such
as personalized information and possibly facial expressions.
A sharper average face was introduced in [21].

3) RECONSTRUCTION-BASE APPROACH
The reconstruction-based approach focuses on determining
and combining the aging patterns of each age group. This
dictionary was used to convert an input image into a synthetic
faces image for the targeted age group.

Coupled Dictionary Learning (CDL) [22], a method that
uses a reconstruction-based approach, models personalized
aging patterns by preserving the personalized features of each
individual by formulating a short-term aging photo. It is dif-
ficult to collect long-term dense-facing sequences. A person
always has a dense short-term face aging photo but not a
long-term aging photo, covering all age groups

Bi-level Dictionary Learning-based Personalized Age Pro-
gression (BDLPAP) method [23], automatically renders an
aging face personally using short-term face-aging pairs.
A person’s face can be composed of a personalization layer
and an aging layer during the face-aging process. Using the
aging invariant pattern that was successfully obtained using
Coupled Dictionary Learning (CDL), a dictionary captures
the aging characteristics, which learns Personality-aware for-
mulation and short-term coupled learning. individual charac-
teristics such as a mole, birthmark, permanent scar, etc. are
represented in face aging sequences {x1i , x

2
i , . . . , x

G
i } on their

aging dictionaries.

B. DEEP GENERATIVE MODEL FOR FACE AGING
APPROACH
1) TEMPORAL RESTRICTED BOLTZMAN MACHINE-BASED
MODEL (TRBM)
Temporal Restricted Boltzman Machine-based model utiliz-
ing embedding of temporal relationships between sequences
of facial images. Duong et al. [2] proposed an Age Progres-
sion using the log-likelihood objective function and ignored
the l2 reconstruction error during the training process. This
model could efficiently capture the nonlinear aging process
and automatically produce the sequential development of
each age group in greater detail. A combination of the TRBM
and RBM produced a model to simulate the age variation
model and transform the embedding. Using this approach,
linear and nonlinear interacting structures can be used to
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exploit the facial images. Facial wrinkles increased with geo-
metric constraints during post-processing for more consistent
results. However, incorrect results could still be obtained
using this method.

2) RECURRENT NEURAL NETWORK-BASED MODEL
Wang et al. [3] proposed a Recurrent Neural Network (RNN)
and utilized two-layer gated-recurrent-units(GRU) to model
aging sequences. A recurrent connection between hidden
units can efficiently utilize information from the previous
layer and the ‘‘memory’’ is obtained from the previous layer
through recurrent connection to create smooth transitions
between age groups in the process of synthesizing new
faces.

This approach is superior to the classic approach, which
performs a fixed reconstruction and always results in a blurry
and unclear image. The combination of facial structure and
facial aging modeling into a single unit using RBMS creates
a nonlinear change that can be interpreted properly and effi-
ciently and produces a wrinkle, texture model for each age
group with a more consistent output. However, this method
requires a large amount of training data to produce a robust,
general model.

Temporal Non-Volume Preserving (TNVP)was introduced
by Duong et al. [24]. This method uses embedding feature
transformation between faces in consecutive stages and com-
pares the CNN structure. This method uses an empirical
balance threshold and Restricted Boltzmann Machine, which
guarantees that the architecture is intractable model density
with the ability to exact inferences between faces in consec-
utive stages. The TNVP model has advantages in terms of
architecture to improve image quality and highly nonlinear
feature generation. The objective function of the TNVP can
be formulated as:

zt−1 = F1

(
x t−1; θ1

)
zt = H

(
zt−1; x t−1; θ2, θ3

)
= G

(
zt−1; θ3

)
+ F2

(
x t ; θ2

)
(1)

where F1, F2 represent the bijection function mapping x t−1

and x t to their latent variables zt−1, zt , respectively. The aging
transformation between the latent variables was performed
by embedding G. The framework of Temporal Non-Volume
Preserving can be shown in Figure 2.

3) GENERATIVE ADVERSARIAL NETWORKS APPROACH
Goodfellow et al. [25] proposed a new architecture called
Generative Adversarial Network (GAN). Borrow the idea of
a pair game between the generator and discriminator. The
generator attempts to generate sample data that can deceive
the discriminator to consider the data as original data, and
the discriminator learns to discriminate between real and fake
data produced by the generator. The process continued until
the discriminator could distinguish the generated data were
real or fake.

FIGURE 2. Temporal non-volume preserving framework.

A GAN can produce an object image from a given noise,
depending on the given training data. To generate an artificial
face image, a GAN must be trained using the face images.
A GAN can produce certain characteristics [26] of the result-
ing object by assigning conditions to architecture [27] and
applying a residual block, to change the aging pattern [28].
A GAN can also create a new synthetic image from the input
image, not from scratch or noise, to accelerate the generation
process [6].

From step by step aging process, GAN is transformed into
a direct age process [4], [27], [29]. The process directly adds
an aging pattern such as sideburn, wrinkles, eye bags, and
gray hair, and structure change such as the structure of the
head, enlarged eyes, shrunken chin, are directly implemented
when the aging or rejuvenation process happens.

GANs can be categorized into three types: translation-
based, sequence-based, and condition-based. The translation-
based method is based on transferring style from one
set domain of an image into another set domain of the
image.

CycleGAN [30] is a translation-based method that cap-
tures style characteristics from a set of images to be imple-
mented in another set of images. CycleGAN does not require
paired domain sets. This advantage can be utilized in face
aging to translate images from one age group into another.
However, CycleGAN can only translate two age groups into
pairs, which is a limitation in its architecture. In figure 2,
the author illustrated how CycleGAN worked to generate an
image ŷ in domain Y from image x, and the cycle consis-
tency process tries to restore image ŷ to image x which is
in domain X . Forward process and back-forward process,
and cycle consistency loss from this process enable archi-
tecture to get style map from both domains. A clear under-
standing of the translation-based framework is presented
in Figure 2.

The sequence-based model was implemented in a step-
by-step process, and each model was trained independently,
to produce a sequential translation between two neighboring
age groups. In thismodel, the translation process is performed
sequentially and each resulting model is combined into a
complete network. The output from the ith current network is
employed as the input in the next network i+ 1. A sequence-
based method was used to produce faces for each age group
and stage. The challenge in this method is the production
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FIGURE 3. Translation-based approach.

FIGURE 4. Sequence-based approach.

of sequential and complete images of an individual. The
framework is illustrated in Fig. 3.

The conditional-based method [31] uses conditional archi-
tecture to produce an artificial face image in a certain age
group. The conditional is in the form of a label that is
converted into a one-hot encoder tensor. This one-hot code
tensor was used to force the network to generate a synthetic
face image at the desired age. The location of this one-hot
encoder in a varied architecture, some are placed on the
generator and discriminator [6], or there is also an archi-
tecture that only puts this one-hot encoder on the generator
section [32].

The concept of the conditional-based method is to drive the
generator by providing extra information on the age target
that you want to produce, which has a significant advan-
tage and high efficiency compared to translation-based and
sequence-based approaches. The conditional-based method
framework is illustrated in Figure 5.

The one-step approach to facial aging is still a top pri-
ority, and there are still many challenges to producing syn-
thetic faces for certain age groups using only one training
course [33], and the current face aging method used ‘‘one-
shot’’ and achieves state-of-the-art [34]–[36]. Much research
on current generative face aging categories is presented
in Appendix C.

FIGURE 5. Conditional-based approach.

C. GENERATIVE ADVERSARIAL NETWORKS APPROACH
1) TRANSLATION-BASED APPROACH
a: GENERATIVE ADVERSARIAL STYLE TRANSFER NETWORKS
FOR FACE AGING
CycleGAN [30] implements a style transfer architecture [37],
utilizing cyclic consistency between the input image and
the generated image, which can maintain the identity of the
generated image still the same as the input face. The aging
effect is produced by utilizing the mapping functions of this
style transfer architecture to minimize the values of the age
loss and cycle consistency loss in Equation 2:

Lage (G+,G−) = Ek P(k)Exo Pdata(xo) [|DEX (G+ (xo) , k)
−DEX (xo)− k|

+ |DEX (G∓ (xo) , k)− DEX (xo)+ k|]

Lcyc (G+,G−) = Ek P(k)Exo Pdata(xo)
[∣∣|G+ ( ˆx−k)− xo|∣∣1

+
∣∣|D (G− (x̂k) , k)− xo|∣∣1] (2)

Training stability is produced using LSGAN loss which is
formulated in Equation 3.

LLSGAN (G,D) = Exo Pdata(xo)
[
(D (xo)− 1)2

]
+Exo Pdata(xo)

[
D(F (xo))2

]
(3)

To create the aging effect and preserve the identity, the final
objective function was set, as shown in Equation 4:

L (G+,G−,D) = LLSGAN (G+,G−,D)+ Lage (G+,G−)

+Lcyc (G+,G−)+ Lac (G+,G−) (4)

The style transfer method contained in cycleGAN utilizes
pairwise training between age groups to create artificial face
images at the desired age. The CycleGAN framework is
illustrated in Figure 2.

2) TRIPLE-GAN: PROGRESSIVE FACE AGING WITH TRIPLE
Triple-translation loss was utilized in Triple Generative
Adversarial Network(Triple-GAN) by Fang et al. [36] to
model the strong interrelationship between the aging patterns
in different age groups. The ability to learn the mapping
between labels offered by multiple training pairs uses triple
translation loss, as follows:

TLtriple =
∣∣|G (x,Lt)− G (G (x,Lf ) ,Lt) |∣∣22 (5)

Generate three kinds of face images G (x,Lt), G
(
x,Lf

)
and G

(
G
(
x,Lf

)
,Lt
)
and all synthesized faces used in iden-

tity preservation and age classification
The final objective function can be formulated as:

LG = αLg + βLidentity + γLage + λLtriple

LD = αLd (6)

where α, β, γ and λ are values that control the four objectives.
The triple transformation loss reduces the distance between
synthetic faces of the same age target by producing images
on different paths. The triple-GAN framework is shown
in Fig. 6.
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FIGURE 6. Child age progression framework.

3) CHILD FACE AGE-PROGRESSION VIA DEEP FEATURE
AGING
Deb et al. [38] proposed a feature aging module that can
simulate the age progress deep face feature output using
a face matcher to guide age progression in image spaces.
Synthesized aged faces enhanced longitudinal face recog-
nition without requiring explicit training. This model can
increase close-set face recognition over a 10-year time-lapse
and enhance the ability to identify young children who are
possible victims of child trafficking or abduction. Instead of
separating an age-related component from an identity feature,
they want to automatically learn a projection within latent
space.

Let us Assume x ∈ X and y ∈ Y , X and Y are two
face domains when images are acquired at ages e and t ,
where e is source age and t is age target. Domains X and
Y exhibited differences in aging, noise, quality, and pose.
This architecture simplifies the F modeling transformation in
a deep feature using the F′ operator, and is formulated as:

ŷ = F′ (ψ(x), e, t) = W × (ψ(x)⊕ e⊕ t)+ b (7)

where function ψ(x) is a function that encodes features in the
latent space. Function F′ learns the feature space projection
and generates an image x inX with Y age features from source
age e to age target t . The representation lies in d-dimensional
Euclidean space, where Z is highly linear. The output of F′ is
a linear shift in deep space, W ∈ Rdxd and b ∈ Rd , learned
the parameter of F′ and ⊕ is concatenation in the layer. The
scale parameter permits the feature to be scaled directly from
the registration source age and target age because the feature
does not change extremely during the aging process, such
as wrinkle, or color of the eye. This architecture has the
advantage of projecting the face of aging in young people or
children and can be used to find children who are victims of
human trafficking. The framework is illustrated in Figure 7.

4) SEQUENCE-BASED APPROACH
a: FACEFEAT GAN, TWO STAGES A TWO-STAGE APPROACH
FOR IDENTITY-PRESERVING FACE SYNTHESIS
FaceFeat GAN [39] solve problems in terms of preserv-
ing identity with two stages of synthesis, namely feature

FIGURE 7. TRIPLE GAN framework.

generation and feature to image rendering. The first stage
works in the feature domain to produce a synthesis of various
facial features, and the second stage works in the image
domain to render realistic photos with high diversity and to
maintain identity information.

To reconstruct the input image and produce amore accurate
pixel-wise image, the extractor {Ei}ki implements the real
features

{
f ri
}k
i=1 of the input image xr face and recognition

face xr , which extracts the identity feature fid . The identity
feature was used as the input to the GI generator to make xrec

generate an xr image and become the DI input discriminator
as a synthetic image. The generator GI attempts to learn to
map from the feature space to the image space under identity-
preserving constraints. The real feature f ri extracted by Ei is
used by the discriminator Dfi to force the Gfi generator to
produce realistic features.

The generator GI and discriminator DI are trained using
the following function:

min
�GI

LGI = ∅
I (xrec)+ ∅rec (xr , xrec)+ λ1∅id (xrec)
+ λ2∅id

(
xs
)

(8)

min
�DI

LDI = ∅
I (xr)− λ3∅I (xs)− λ4∅I (xrec) (9)

where ∅rec (xr , xrec) = ||xr − xrec||1, l1 reconstruction
loss, and ∅id (.) is a loss function used to measure identity-
preserving quality. ∅fi is an energy function to determine
facial features face is real or fake. ∅I (.) to determine whether
the generated face is real or fake. Coefficient λfi , λ1, λ2, λ3
and λ4 is the value of strength a different term.

Face Feat utilizes Identity and 3DMM features. The iden-
tity feature fid from the input image xr uses the face recog-
nition module as a classification task with a cross-entropy
loss. The 3DMM feature is a 3D morphable model used
to model 2D images in 3D with a basic set of shapes Aid ,
a set of basic expressions Aexp uses a two-stage generator,
where the output of the first generator is the input for the
second generator. By applying these two generator levels, the
competition between the two generators to produce synthetic
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images yields diverse patterns in the output image. The Face
Feat framework is illustrated in Figure 8.

FIGURE 8. Face feat GAN framework.

5) SUBJECT-DEPENDENT DEEP AGING PATH (SDAP) MODEL
An aging controller was used in the TNVP structure in [7]
based on the hypothesis that each individual has facial devel-
opment. Rather than simply embedding aging transforma-
tions into pairs that are linked between successive age groups,
the Subject Dependent Aging Policy(SDAP) structure studies
age transformations within the entire facial sequence to pro-
duce better synthetic ages. The SDAP network is an archi-
tecture that ensures the availability of an appropriate planned
aging path to produce a face-aging controller related to the
subject features. It is important to note that SDAP is a pioneer
in the IRL framework concerning age progression.

SDAP uses ςi =
{
x1i , a

1
i , . . . , x

T
i

}
as the age sequence of

the i − th subject, where
{
x1i , . . . , x

T
i

}
are faces sequences

representative of the face development of the i − th subject
and as a control variable for how much the aging effect will
be added to an image x ji to became x j+1i . The probability from
ς_i can be formulated using the energy function Er (ςi):

P (ςi) =
1
Z
exp (−Er (ςi)) (10)

where Z is the partition function and is similar to the joint
distribution between the variables of the RBM. The goal is to
predict aji for each x

j
i synthesizing image. The SDAP objective

function can be formulated as:

0∗ = argmaxL(ςi0) =
1
M

log
∏
ςi∈ς

P (ςi) (11)

SDAP optimizes the trackable look-like hoot objective func-
tion with a convolutional neural network based on a deep
neural network, providing appropriate facial aging develop-
ment for individual subjects by optimizing the reward-aging
process. This method allows multiple-age images to be used
as inputs. By considering all information from subjects of var-
ious ages, seeks an optimal aging path for a given subject to
produce an efficient face aging process by utilizing the power
of the generative probabilistic model under the IRL approach
in an advanced neural network. For a clear understanding of
the Subject-dependent Deep aging path (SDAP) model, the
framework is illustrated in Figure 9.

FIGURE 9. Subject-dependent deep aging path (SDAP) framework.

6) CONDITIONAL-BASED APPROACH
a: CONDITIONAL ADVERSARIAL AUTOENCODER(CAAE)
A conditional adversarial Autoencoder(CAAE) [4], which
adopts the conditional GAN approach, adds an age label
as a conditional encode to enable GAN to produce a syn-
thetic face at a certain age from an input image. CAAE
changes were applied to the objective functions in the original
GAN to:

min
E,G

max
DxDimg

λL (x,G (E(x), l))

+ γTV (G (E(x), l))+ Ez∗∼p(z)
[
logDz

(
z∗
)]

+Ex∼Pdata(x)[log (1− Dz (E(x)))]
+Ex,l∼Pdata(x,l)

[
logDimg (x, l)

]
+Ex,l∼Pdata(x,l)

[
log

(
1− Dimg (G (E(x), l))

)]
(12)

where l is the vector representing the age level, z is the latent
feature vector, and E is the decoder function, for example,
E(x) = z. L (., .) and TV a (.) the `2 norm and total variation
function which is effective for removing ghosting artifacts.
The coefficients λ and γ are intended for a balance between
smoothness and high resolution. The latent vector was used
to personalize face features and age conditions to control
progression by studying the learning manifold. Make the age
progression/regression more flexible and easy to manipulate.

Framework of. Conditional Adversarial Autoencoder
(CAAE) is shown in Figure 10.

FIGURE 10. Conditional adversarial autoencoder(CAAE).

b: AGE CONDITIONAL GENERATIVE ADVERSARIAL NEURAL
NETWORK MODEL
Conditional GAN(cGAN) [26] produces one-to-one image
translation by implementing certain characteristics by
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embedding a condition. Antipov, Baccouche, and Duge-
lay [27] proposed an age Conditional Generative Adversarial
Network (acGAN) by implementing cGAN, which is capable
of generating a synthetic face image in the required age cate-
gory. This method reconstructs an input into a new face for a
certain age group and preserves the identity of the face image
using latent-vector optimization. Euclidean distance between
input image x, and reconstructed image x̄ by minimized
Euclidean distance embedding from FR(x) and FR(̄x) used
to preserve identity. AcGAN creates a new face with high
quality, and the resulting image is optimized using a latent
vector along with the adversarial process of acGAN.

With input face image x with age y0, an optimal latent
vector z∗ find to allow reconstructed face x̄ = G(z∗, y0)
generated as close as possible to the initial one, with a given
target age ytarget , a new synthetic face image generated by
xtarget = G

(
z∗, ytarget

)
with switching the age at the input

generator. The objective function in the acGAN is as follows:

min
θG

max
θD

v (θG, θD) = Ex,y∼pdata
[
logD (x, y)

]
+Ez∼pz(z),̃y∼py
× [log (1− D(G (z,̃y) ,̃y))]

(13)

The placement of conditionals in this architecture will
ensure that the architecture can produce changes in the aging
pattern on the resulting synthetic facial and make the model-
ing process more focused and convergent. This framework is
illustrated in Figure 11.

FIGURE 11. Age conditional generative adversarial neural network model.

c: CONTEXTUAL GENERATIVE ADVERSARIAL NETS (C-GANs)
Contextual Generative Adversarial Nets(C-GANs) [28],
consist of a conditional transformation network and two
discriminative networks. This conditional imitates the aging
procedure with several specially designed residual blocks.
The pattern discrimination in this architecture is the best part
to distinguish real transition patterns from fake ones, guid-
ing the synthetic face to fit the real conditional distribution
and extra regularization for the conditional transformation
network, ensuring that the image pairs fit the real transition
pattern distribution.

The transition pattern discriminative network Dt (xy, xy+1,
y, y + 1) has a task of transition patterns between xy with
age y and the image xy+1 in the next age group y + 1.
Dt , the task is to distinguish the real joint distribution
xy, xy+1, y Pdata

(
xy, xy+1, y

)
from the fake one and force

FIGURE 12. Contextual generative adversarial nets(C-GANs).

the generator to obey the real transition pattern distribution
when generating fake pairs

{
xy,G

(
xy, y+ 1

)}
. By consider-

ing the loss in the conditional transformation in generator G,
age discriminative Da, and transition pattern networkDt , the
objective of the function is formulated as:

min
G

max
Da

max
Dt

E
(
θG, θDa , θDt

)
=Ea + Et + λTV = Exy,y∼Pdata(xy,y)

[
logDa

(
xy, y

)]
+Ex∼Px ỹ∼Py

[
log (1− Da (G (x ,̃y) ỹ))

]
+Exy,xy+1,y∼Pdata(xy,xy+1,y)

[
logDt

(
xy, xy+1, y

)]
+

1
2
Exy,y∼Pdata(xy,y)

[
log

(
1− Dt

(
xy,G

(
xy, y+ 1

)
, y
))]

+
1
2
Exy,y∼Pdata(xy,y)

[
log

(
1−Dt

(
G
(
xy, y−1

)
, xy, y−1

))]
+ λ

(
TV
(
G
(
xy, y−1

))
+TV

(
G
(
xy, y+1

))
+TV (G (x ,̃y))

)
(14)

d: DUAL CONDITIONAL GAN FOR FACE AGING AND
REJUVENATION
Song et al. [40] proposed a novel dual conditional GAN
mechanism that enables face aging and rejuvenation by
training multiple sets without identities of different ages.
This framework contains two conditional GANs: the pri-
mary(primal) GAN transforms a face into other ages based
on age conditions and the dual GAN or second network
learns how to invert a task. Construction error identity can
be preserved using a loss function. The generator learns
transition patterns, such as the shape and texture, between
groups to create a realistic face photo. With multiple training
images F1,F2, . . . ,FN of different ages, the network learns
the face aging or rejuvenation model Gt and face reconstruc-
tion model Gs with a facial image Xi age of Cs and target age
condition Ct . This model can predict the face Gt (Xi,Ct ) of
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a person of different ages, and the identity is preserved by
X ′s = Gs(Gt (Xi,Ct ),Cs).
This framework uses adversarial loss (LGAN ) and genera-

tion loss (Lgene) to match the data distribution and similarity
between synthetic and original images, with this mechanism
framework, can produce a specific synthetic image at a certain
age. Reconstruction loss (Lrecons) was used to evaluate the
consistency between synthetic and original images, and the
identity was preserved. LGAN ,Lgene and Lrecons were formu-
lated as follows:

LGAN = Ex, c Pdata
[
log(1− Dt (Gt (Xi,Ct) ,Ct ))

]
+Ex Pdata

[
log(Dt (Xt ,Ct ))

]
+Ex,c Pdata

[
log(1− Ds(Gs

(
Xj,Cs

)
,Cs))

]
+Ex Pdata

[
log(Ds(Xs,Cs))

]
Lrecons = ‖Gs (Gt (Xi,Ct) ,Cs)− Xi‖

+
∥∥Gt (Gs (Xj,Cs) ,Ct)− Xj∥∥

Lgene = ‖Gt (Xi,Ct)− Xi‖ +
∥∥Gs (Xj,Cs)− Xj∥∥ (15)

And final objective:

L (Gs,Gt ,Ds,Dt)= LGAN (Gt ,Dt ,Gs,Ds)

+αLrecons (Gt ,Gs)+βLgene (Gt ,Gs)

(16)

where α and β are hyperparameters to balance the objective
function.

FIGURE 13. Dual conditional GAN for face aging and rejuvenation.

For a clear understanding of the dual conditional GAN
framework, we illustrate it in Figure 13.

e: IDENTITY-PRESERVED CONDITIONAL GENERATIVE
ADVERSARIAL NETWORK (IPCGANs)
IPCGANs [6] has three modules consisting of a conditional
GAN (cGAN) module to generate synthetic faces according
to the expected age target Ct and produce (ẍ) photos that look
real as a result of syntheses that successfully model face aging
at age stages in a short period, and the two preserved-identity
modules which ensure ẍ has the same identity as x, and a clas-
sifier module [41] that pushes an image ẍ to the desired target
age. The IPCGAN conditional module adopts the derived
cGAN architecture proposed by Isola et al. [26].

Using a generator, a synthetic image was generated from
the input image with the age condition Ct . Discriminator D
ensured that the generated images are real or fake. Generator
G increases the probability that generated image is mistaken
for the original image D (x|Ct) by discriminator D. Discrim-
inator tasks to align Ct label input to the generated image.
To perform this task successfully, the objective function is
formulated as:

min
G

max
D

V (D,G) = Ex Px (x)[logD(x|Ct )]

+Ey Py(y)[1− logD(G (y|Ct))] (17)

IPCGAN uses Least Square Generative Adversarial Net-
work (LSGAN) [42] in discriminator force generated images
that look real and difficult to distinguish. The LSGAN condi-
tional can be formulated as follows:

LD =
1
2
Ex Px (x)

[
(D (x|Ct)− 1)2

]
+
1
2
Ey Py(y)

[
D (G (y|Ct))2

]
(18)

at generator loss (LG):

LG =
1
2
EyPy(y)

[
(D(G (y)|Ct))−1)2

]
(19)

To preserve identity IPCGAN uses perceptual loss instead
of adversarial loss. The adversarial loss generates sample data
following desired distribution, the resulting image can be any
person within the age target. Perceptual loss identity Loss
(Lidentity) is formulated as:

Lidentity =
∑

x∈Px (x)

||h(x)− h (G (x|Ct) ||2 (20)

where h(.) is related to a feature extracted by a specific layer
in a pre-trained neural network.

This function loss does not use Mean Square Error (MSE)
to calculate losses between image x and generated age face
G (x|Ct ) in pixel space because the generated face has a
change in hair color, side-burn, wrinkle, gray hair, etc., which
causes a large difference between the input images x and the
generated face. The MSE loss forces generated faceG (x|Ct )
to be identical to image x. IPCGAN uses proper layer h(.)
to preserve identity, an experiment on style transfer showed
that a lower feature layer is good for preserving face content
(identity), and a higher layer for preserving styles such as face
texture and wrinkles; identity information certainly should
not change.

In the IPCGAN, age classification is used to generate an
aging face for the desired age target. If the resulting generated
face is in the correct category, the architecture provides a
small penalty and vice versa. The age classification loss was
used for this and formulated as

Lage =
∑

x ∈ Px (x)

` (G (x|Ct) ,Ct) (21)

where `(−) is the Softmax loss. In backpropagation, the age
classification loss

(
Lage

)
forces the parameter to change and

ensures the generated face is in the right age or age group.
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To produce a new face at the same age and identity using
the conditional GAN (cGAN), the final objective function is
formulated as follows:

Gloss = λ1LG + λ2Lidentity + λ3Lage (22)

where λ1 is the desired control as long as the input image
is old. In addition, λ2 and λ3 have control over the extent to
which we want to store identity information, and the resulting
image falls to the appropriate age group.

The advantage of this method is that the architecture is
trained in one go to be able to produce a model that can
synthesize new faces in many groups in one model. The
IPCGAN framework is illustrated in Figure 14:

FIGURE 14. IPCGAN framework.

f: AGE PROGRESSION AND REGRESSION WITH SPATIAL
ATTENTION MODULES
Spatial attention mechanisms were exploited by
Li et al. [43], [44]. to restrict image modification to areas
closely related to age changes, giving images high visual
fidelity when synthesized in wild cases. This model uses
adversarial loss as follows:

LGAN = EIy
[(
DIp
(
Gp
(
Iy, αo

))
− 1

)2]
+EIo

[(
DIp (Io)− 1

)2]
+ EIy

[
DIp
(
Gp
(
Iy, αo

))2]
+EIo

[(
DIr
(
Gr
(
Io, αy

))
− 1

)2]
+EIo

[(
DIr
(
Iy
)
− 1

)2]
+ EIy

[
DIr
(
Gr
(
Io, αy

))2]
(23)

To penalize the difference between the input images uses
reconstruction loss is formulated as:

Lrecons = EIy
[∣∣|Gr (Gp (Iy, αo) , αy)− Iy|∣∣2]
+EIo

[∣∣|Gp (Gr (Io, αy) , αo)− Ioy|∣∣2] (24)

Activation loss uses the total activation of the attention
mask, formulated as:

Lactv=EIy
[∣∣∣|GAp (Iy, αo) |∣∣∣2]+EIo [∣∣∣|GAr (Io, αy) |∣∣∣2] (25)

FIGURE 15. Age progression and regression with spatial attention
modules.

To force the generator to reduce the error between the
estimated age and target age used Age Regression Loss for-
mulated as:

Lreg = EIy
[∣∣∣| Dαp (Gp (Iy, αo))− αo |∣∣∣2]

+EIy
[∣∣∣| Dαp (Iy)− αy |∣∣∣2]

+EIo
[∣∣| Dαr (Gr (Io, αy))− αy |∣∣2]

+EIo
[∣∣| Dαr (Io)− αo |∣∣2] (26)

By optimizing this equation, the auxiliary regression net-
workDα gains age estimation ability and generatorG encour-
ages the production of a fake face at the desired age target.

The final loss function in this model is a linear combination
of all defined losses. Formulated as follow:

L = LGAN + λreconLrecon + λactvLactv + λregLreg (27)

where λrecon, λactv, and λreg are coefficients to balance each
loss.

By adding a spatial attention mechanism to the architec-
ture, the learning process in training focuses only on the
focus of attention, strengthening the attention component has
a significant impact on the aging patterns formed. The effects
of aging and rejuvenation were more pronounced in the areas
of concern.

Age Progression and Regression with Spatial Attention
Modules framework illustrated as:

g: S2GAN: SHARE AGING FACTOR ACROSS AGE AND SHARE
AGING TRENDS AMONG INDIVIDUAL
He et al. [45] proposed continuous face aging with favorable
accuracy, identity preservation, and fidelity using the inter-
pretation (coefficient) of any pair of adjacent groups. The
architecture consists of three parts: (1) personalized aging,
(2) transformation-based age representation, and (3) repre-
sentation of the age face decoder.
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The personalized aging basis processes each individual
dominated by a personalized aging factor using a neural
network encoder E. maps input image to personalized Bi =
[bi1, bi2, . . . , bim] using Bi = E(Xi). Given an aging basis,
Bi can obtain age representation using an age-specific trans-
form, formulated by:

rki =
m∑
j=1

Wkjbij = Biwk (28)

To achieve this framework aims, they use the following
objective: Age loss for accurate face aging, which is formu-
lated as:

lagei = −
∑
k

log(Ck ( ˆxki )) (29)

whereCk (.) denote the probability that a sample falls into k-th
age group, predicted by the classifier C.
L1 Loss for identity preservation is formulated as:

lL1i =
∑
k

δ(yi = k)||xi − ˆxki ||1 (30)

Adversarial Loss for image fidelity is formulated as:

ladv−di = max(1− D (xi, yi) , 0)+
∑
k

max(1+ D
(
ˆxki
)
, 0)

ladv−gi =

∑
k

−D( ˆX ki , k) (31)

where D is discriminator real, fake regulator.
Finally, the objective function for this framework can be

formulated as:

min
E,G, {wk }

∑
i

λ1l
age
i +λ2l

L1
i +l

adv−g
i min

E,G, {wk }

∑
i

ladv−gi (32)

where λ1 and λ2 are hyperparameters to balance the losses
and optimize two objectives. S2GAN framework is illustrated
in Figure 16.

FIGURE 16. S2GAN: Share aging factor across age and share aging trends
among individual framework.

h: AUTOMATIC FACE AGING IN VIDEO VIA DEEP
ENFORCEMENT LEARNING
Duong et al. [46] proposed a novel approach for the automatic
synthesis of age-progressed facial images in video sequences

using deep enforcement learning. Modifying the face struc-
ture and longitudinal face aging process of a given subject
across video frames. Deep enforcement learning preserves
Garantie’s visual identity from an input face.

The embedding function F1, maps X ty into latent repre-
sentation F(X ty), a high-quality synthesis image, which has
two main properties: (1) linearity separability and (2) detail
preservation. Age progression can be interpreted as linear
transversal from the younger region F(X ty) toward the older
region F(X to) using the formula:

F1
(
X to
)
=M

(
F1

(
x ty
)
;X1:t−1

)
= F1

(
X ty
)
+ α1xt |X1:t−1

(33)

where 1xt |X1:t−1
learning from neighbors containing only

aging effect only without the presence of other factors, i.e
identity, pose, etc., estimated by:

1xt |X1:t−1
=

1
K

∑
xεNt

o

F1(A(x, x ty))−
∑
xεNt

y

F1(A(x, x ty))


(34)

Framework Automatic face aging in video via deep enforce-
ment shown Figure 17:

FIGURE 17. Automatic face aging in video via deep inforcement learning.

FIGURE 18. Conditioned-attention normalization GAN (CAN-GAN).

i: CONDITIONED-ATTENTION NORMALIZATION GAN
(CAN-GAN)
Shi et al., [47] introduced a Conditioned-Attention Normal-
ization GAN (CAN-GAN), an architecture for age synthesis
from input face images by leveraging the aging differences
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between two age groups, to capture a face aging region with
different attention factors. This architecture can freely trans-
late an input face into an aging face in certain age groups
with strong identity preservation that satisfies the aging
effect and provides authentic visualization. The CAN-GAN
layer was designed to increase age-related information on
the face when smoothing unrelated information by using an
attention map.

In training CAN-GAN uses the following formulation for
adversarial loss:

Ladv = Ex [Dadv(x)]− Ex,agediff [Dadv(G(x, agediff ))]

−λgpEx̄[(||∇x̄Dadv(x)||2 − 1)2] (35)

where x denotes the real image, and (x) is sampled between
pairs of real and synthetic images. Construction loss used to
construct an image in age target formulated as:

Lrec = ||x − G(x, agediff = 0)||1 (36)

And optimized generator G by L fcls for optimizing Dcls and
G when generating synthetics images to target a group by

Lrcls = Ex,c
[
− logDcls (c|x)

]
;

L fcls = Ex,c
[
− logDcls

(
c′|G(x, agediff )

)]
; (37)

where c and c′ denote to original age class label and age target
class label. And final losses are formulated as:

LD = Ladv + λ1Lrcls
LG = Ladv + λ1L

f
cls + λ2Lrec (38)

where λ1 and λ2 is trade-off parameters.
Focusing on the important parts of the face that char-

acterize changes in age, this architecture is more assertive
in defining the attributes of the changes that occur at the
desired age.

j: HIERARCHICAL FACE AGING THROUGH DISENTANGLED
LATENT CHARACTERISTICS
Lie et al. [48] proposed a disentangled adversarial autoen-
coder (DAAE) to disentangle face images into three inde-
pendent factors: age, identity, and extraneous information.
A hierarchical conditional generator passes the disentangled
identity age embedded into the high and low layers with
class conditional batch normalization to prevent the loss of
identity and age information used in this architecture. The dis-
entangled adversarial learningmechanism boosted the quality
progression.

By employing age distribution, DAAE can create face
synthesis with the effect of face aging at an arbitrary age.
The architecture learns from an input image, learns the age-
progression distribution, and is treated as an age estima-
tor. DAAE can estimate the age distribution efficiently and
accurately.

DAAE consists of two components, the inference network
E and the hierarchical generative network G, Xi, Xr and
Xs denote the real sample, reconstruction sample, and new

FIGURE 19. Hierarchical face aging through disentangled latent
characteristics framework.

sample This framework, based on the original variational
autoencoder (VAE) [49] and inspired by IntroVAE [50], aims
to estimate the accuracy, identity preservation, and image
quality. To preserve identity and age accurately, two regula-
tions were used for generator G and formulated as follows:

L(age)
reg =

1
CA

CA∑
i=1

||Z ′iA − ZA|| +
1
CA

CA∑
i=1

||Z ′′iA − ẐA||

L(id)
reg =

1
CI

CI∑
i=1

||Z ′iI − ZI || +
1
CI

CI∑
i=1

||Z ′′iI − ẐI || (39)

where Z ′A and Z ′I are inferred representation generated image
Xs, and Z ′′A and Z ′′I are inferred to generate an image X̂s.

To avoid a blurry image in VAE they use an inference
network E and generator adversarial and formulate as:

L
(adv)
E = L

(ext)
kl (µE , σE )+ ∝

[
m− L

(ext)
kl

(
µ′E , σ

′
E
)]+

+

[
m− L

(ext)
kl

(
µ′′E , σ

′′
E
)]+

L
(adv)
G = L

(ext)
kl

(
µ′E , σ

′
E
)
+ L

(ext)
kl

(
µ′′E , σ

′′
E
)

(40)

where m is positive margin, ∝ is weight coefficient, and
(µE , σE ),

(
µ′E , σ

′
E

)
, and

(
µ′′E , σ

′′
E

)
computed from real data

Xs, reconstruction sample Xr and new sample Xs.
The final objective of this framework are:

LE = Lrec + λ1L
(age)
kl + λ2L

(id)
kd + λ3L

(adv)
E

LG = Lrec + λ4L
(age)
reg + λ5L

(id)
reg + λ6L

(adv)
G (41)

k: LIFESPAN AGE TRANSFORMATION SYNTHESIS
Or-El et al. [51] proposed a framework to address the problem
of single-photo age progression and regression. A prediction
of how a person in the future or looks in the past, a novel
multidomain image-to-image generation method using GAN.
The framework learns the latent-space mode, which is a con-
tinuous bidirectional aging process trained to approximate a
continuous age transformation from 0 years to 70-year-olds,
modifying the shape and texture with six anchorage classes.

This framework, which is based on a GAN, contains a con-
ditional generator and a single discriminator. This conditional
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generator was responsible for the transition among the age
groups. It consists of three parts: an identity encoder, mapping
network, and decoder. This framework preserves identity by
separately encoding identity and age.

A single generator consisting of an identity encoder,
a latent mapping network, and a decoder was used for all
ages. The training process uses an age encoder to embed both
the real and generated images into the age latent space. The
decoder uses an age with identity features and generates an
output image with style using a convolutional block. In gen-
eral, the generator mapping from the input image, the target
age vector z, into output image z, is formulated as:

y = G (X ,Zt) = F(Eid (X ),M (Zt)) (42)

The age encoder mapping of the input image X into the
correct location vector space Z , produces an age vector cor-
responding to the target age group.

The discriminator-style GAN with a minibatch standard
deviation discriminates the last layer, to force the synthesized
image to produce an age target t .
In the training scheme, they processed source image clus-

ters s into a target cluster t , where s6=t, and performed three
forward phases:

Ygen = G(X ,Zt )

Yrec = G(X ,Zs)

Ycyc = G(Ygen,Zs) (43)

where Ygen is the generated image at target age t, Yrecis
the reconstructed image at source age s, and Ycyc is the
cycle-reconstructed image at source age s, generated from the
generated image at age target t.
They used a conditional adversarial loss Ladv to generate

an image at the target age t; self-reconstruct loss Lrec and
cycle consistency loss Lcyc to force the generator to learn
identity translation, and they formulated as:

Ladv (G,D) = Ex,s
[
logDs(x)

]
+ Ex,t

[
1− logDt

(
Ygen

)]
Lrec(G) = ||x − Yrec||1
Lcyc(G) = ||x − Ycyc||1 (44)

And to keep identity preserving they use:

Lid (G) = ||Eid (X )− Eid (Ygen)||1 (45)

Age vector loss to correct embedding of a real and gen-
erated image, by penalizing distance between age encoder
output with age vector Zs and Zt which generated a sample
by the generator. Age vector loss formulates as:

Lage(G) = ||Eage(X )− Zs)||1 + ||Eage(Ygen)− Zt )||1 (46)

Framework optimized by:

min
G

max
D

Ladv (G,D)+ λrecLrec(G)+ λcycLcyc(G)

+ λidLid (G)+ λageLage(G) (47)

How the framework worked is shown in Figure 20.

FIGURE 20. Lifespan age transformation synthesis.

l: PROGRESSIVE FACE AGING WITH GENERATIVE
ADVERSARIAL NETWORK (PFA-GAN)
Huang et al. [52] proposed progressive face aging using
a Generative Adversarial Network (PFA-GAN) to remove
ghost artifacts that arise when the distance between age
groups increases. The network was trained to reduce accumu-
lated artifacts and blurriness. consists of several subnetworks
whose job is to imitate the aging process from young to old,
or vice versa. Learning was similar to the specific aging effect
in two adjacent age groups. Age estimation loss was used to
increase the aging accuracy, and Pearson’s correlation was
used as an evaluation metric to calculate aging smoothness.

The architecture comprises four generator sub-networks.
Each subnetworkGi is responsible for generating aging faces
from i to i + 1, consisting of a residual skip connection,
binary gate λi, and subnetwork Gi. Binary gate λi can control
the aging flow and determine which aging mapping of the
subnetwork should be involved. Each subnetwork can be
formulated as Xt = G([Xs;Ct ]), and the progressive aging
framework can be formulated as:

Xt = Gt−1 ◦ Gt−2 ◦ · · · ◦ Gs(Xs) (48)

where the symbol ◦ is the function composition.
To prevent the architecture from producing the same image

as the input image, a residual skip connection was added to
each subnetwork to produce an identity mapping from the
input to the output. By adding this connection and binary gate
into the subnetwork the change from age group i to i+ 1 can
be rewritten as:

Xt+i = Gi (Xi) = X + λiGi(Xi) (49)

where λi ∈ {0, 1} is the binary gate that controls if the
subnetwork Gi elaborate on the path to age groups. λi = 1
if the subnetwork Gi is among source age groups s and target
age group t , i.e s ≤ i < t otherwise λi = 0. Tensor C used
in cGAN based method converted into a binary gate vector
λ = (λ1, λ2, . . . , λN−1) regulatory aging flow in the age
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FIGURE 21. PFA-GAN framework.

progression framework in figure x and expressed as:

X4 = X3 + λ3G3(X3)

= X2 + λ2G2 (X2)+ λ3G3(X3)

= X1 + λ1G1 (X1)+ λ2G2 (X2)+ λ3G3(X3) (50)

The network is highly elastic in modeling the age progres-
sion between two different age groups using this framework.
Finally, by providing an image of a young Xs face from
the source age group s, the aging process for the target age
group t can be formulated as follows:

Xt = G(Xs; λs:t ) (51)

The least-square loss function for adversarial loss used in
generator G formulate as:

Ladv =
1
2
Exs [D([(Xs, λs:t) ;Ct0])− 1]2 (52)

And age estimation loss for progression face aging can
formulate as:

Lage =
1
2
Exs [

∣∣|y−̂y|∣∣2 + `(A(X )W ,Ct )] (53)

For identity consistency to keep the identity and discard
unrelated information, they adapt mixed identity loss a Struc-
tural Similarity (SSIM) and formulated into three losses func-
tion Lpix , Lssim, and Lfea.

Final loss for generative loss and discriminative loss for-
mulate as equation 50.

LG = λadvLadv + λageLage + λideLide

LD =
1
2
Ex[D ([X;C])− 1]2 +

1
2
Exs [D([G (Xs, λs:t) ;Ct )]

(54)

And Progressive Face Aging with Generative Adversarial
Network (PFA-GAN) framework can be illustrated as:

m: AGE FLOW: CONDITIONAL AGE PROGRESSION AND
REGRESSION WITH NORMALIZING FLOW
Huang et al. [53] proposed a framework that integrates
the advantages of a flow-based method model and GAN.
It Consists of three parts: (1) an encoder that maps a given

face image into a latent space. Through an invertible condi-
tional translation module (ICTM) that translates the source
latent vector to another target vector, a decoder reconstructs
the resulting face of the target latent vector with the same
encoder, all of which are invertible, which can achieve bijec-
tive aging mapping.

The novelty of ICTM is its ability to manipulate the direc-
tion of change in age progression. While keeping the other
attributes unchanged, to keep the changes insignificant.

Second, they used a latent space to ensure that the resulting
latent vector was indistinguishable from the original. The
experimental results demonstrated superior performance. The
flow-based encoder G maps the input images into latent
spaces and decoder that inverse using function G−1 for-
mulated the encoding process z = G(I ) and generated
reserve procedure I = G(z), where z is are gaussian
distribution p(z).

Generator G optimized by

LG = −Ez pθ(z)[log pθ (z)+ log |det
dG
dI
|] (55)

where G is the extracted latent vector and G−1 is the inverse
of G.

The invertible conditional translation module is given a
latent vector zs from the source age group Cs, and with age,
the progression translates zs to zt (age target Ct ) using the
ICTM. Cycle consistency was achieved by the reversibility of
the ICTM. Each flow contained two convolutional networks
with a channel attention module to focus the model on the
required latency.

The discriminator used a simple multilayer percep-
tron (MLP) with 512 neurons, followed by spectral normal-
ization [54], leaky ReLU as activations, negative slope 0.2,
bottom layer with 1 neuron, and others for age classification
to improve the age accuracy in the framework.

To make this framework work the loss function in this
framework contained Attribute-aware Knowledge Distilla-
tion Loss (Lakd ), Adversarial loss (Ladv), Age Classifica-
tion Loss (Lage), and Consistency Loss (Lcl). Formulate
as:

Lakd = Ezs |z
′
t − (zs + s ×

(
zt,αi − zt,αi

)
)|

Ladv =
1
2
Ezs [(D

(
Z ′t
)
− 1)2]

Lage = Ezs [`(A
(
Z ′t
)
, t)]

Lcl = −Ezs pθ(z)[log pθ (µ
′
s, σ
′
s, zs)] (56)

And final loss formulates as:

LT = λakdLakd + λadvLadv + λageLage + λclLcl (57)

The framework of age flow can see in as:

n: DISENTANGLED LIFESPAN FACE SYNTHESIS
He et al. [54] proposed a lifespan face synthesis (LFS) model
to generate a set of photo-realistic face images of an entire
person throughout life, with only one image as a reference.
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FIGURE 22. Age Flow: Conditional age progression and regression with
normalizing flow.

The generated face image on a target of a given age provides
a nonlinear transformation of the structure and texture.

The LFS is a GAN conditional on a latent face representa-
tion. LFS was proposed to disentangle face synthesis, where
structure, identity, and age transformation can be modeled
effectively.

The shape, texture, and identity features were extracted
separately from the encoder. There are two transformer
modules, one conditional-convolutional-based and the other
channel attention-based, to model the nonlinear shape
and texture. Accommodate distinct aging processes and
ensure the synthesis image has age sensitivity and is
identity-preserved.

Three distinct set features: shape f (s), texture f (t), and
identity f (id) are extracted from the encoder. And formulated
as:

f (s) = Rs(εm (Ir ))

f (t) = T(εd (Ir ))

f (id) = Td (εd (Ir )) (58)

where Rs is a residual block used to extract shape information
and Ir is a convolutional projection module for extracting
texture information and pooling it into a vector identity.
Identity features were extracted using another convolutional
projection module f (id).

ft (Zt) = Tt (ft ,Zt) = ft ◦ Pt (Aε(Zt )) (59)

where ◦ is element-wise multiplication, and Pt is lin-
ear projection layer. Image generation generator G: It =
G(fs (Zt) , ft (Zt)) transforming reference face images into
older age groups with the same shape information or Ls =

||Rs(Em
(
Ire
)
− Rs(Em

(
Ire
)
)||2 the difference is minimized.

To make the framework achieve the aim they use the iden-
tity loss function Lid , cycle consistency loss Lcyc, recon-
struction loss Lr , conditional adversarial loss Ladv and

FIGURE 23. Disentangled lifespan face synthesis.

formulate as:

Lid = ||ID (Ed (Ir ))− ID (Ed (It)) ||2

Lcyc = ||Ir − f (It ,Zr )||2

Lr = ||Ir − G(fs (Zr ) , ft (Zr ))||2

Ladv = EI rm P(data(I rm))
[log(D(I rm|Z )]

+EIgm P(data(I
g
m))[1− log(D(Igm|Z ) (60)

Overall training objective formulated as:

L = λadvLadv + λrLr + λcycLcyc + λidLid + λsLs (61)

where λadv, λr , λcyc, λid , and λs are hyperparameters to bal-
ance the objective function. The framework for Disentangled
Lifespan face synthesis can see in Figure 24

FIGURE 24. Age-invariant face recognition and age synthesis: Multitask
learning framework.

o: AGE-INVARIANT FACE RECOGNITION AND AGE
SYNTHESIS: MULTITASK LEARNING FRAMEWORK
Zhizong et al. [55] proposed a multitask framework to handle
two tasks, termed MTL-Face, which can learn identity repre-
sentation and generate pleasing face synthesis. Two unrelated
components were decomposed: identity and age-related fea-
tures through an attention mechanism.

Tomake this framework optimize, they conduct the follow-
ing process:
(1) Age-invariant face recognition task for preserving iden-

tity formulated as:

LAIFR
=Lcosface (L (Xid ) ,Yid )+λAIFRage LAE (AE (Xage))

+ λAIFRid LAE (GLR(Xid )) (62)
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(2) Face synthesis task generated synthesis image at age
target use age label

It = D({El(I )}3l=1, ICM (Xid , t)) (63)

(3) Improve and stable training process using Least Square
GAN(LSGAN):

LFAS
adv =

1
2
EI [Dimg([It ;Ct ])] (64)

(4) Face aging and rejuvenation in holistic formulated as:

X tage,X
t
id = AFD(E (It))

LFAS
age = lCE (X tage, t)

LFAS
id = EXs ||X

t
id − Xid ||

2
F (65)

where ||.|| represents the Frobeneius norm.
(5) Final loss processed by:

LFAS
= λFASadv L

FAS
adv + λ

FAS
id LFAS

id + λ
FAS
age L

FAS
age (66)

Using a weight-sharing strategy, this framework succeeded
in increasing the smoothness of synthesizing new faces in
the age group generated in the desired age group under wild
conditions.

The age-invariant face recognition and age-synthesis mul-
titask learning frameworks are as follows:

Age-Invariant Face Recognition and Age Synthesis: Mul-
titask Learning Framework illustrated:

IV. CHALLENGE IN FACE AGING DATASET
The challenge in a deep neural network is the quality and
number of datasets, and the success of a network is based on
the availability of data that allows it to be properly trained
to produce models. Currently, dataset availability relies on
public datasets, and datasets related to children are limited.
Most of the datasets used in face aging research related to
children are private data. Obtaining a child dataset is difficult
because of the several legal regulations that protect children’s
rights to privacy.

Ethnicity is also a challenge in determining facial aging
patterns. The face aging pattern is nonlinear. If there are
diverse datasets, the algorithm can be retrained to produce
aging patterns across races.

Face-aging is a challenging dataset with a large age range
in the age group dataset, which makes it difficult to find a
pattern.

High-resolution generated faces are more attractive, and
producing a high-resolution image is challenging in terms of
the algorithms used to build high-resolution images difficult
to find.

The incorrect label is also a challenge, to give the correct
age label to the dataset is not easy, until now there is no
clear benchmark in determining the age label of an image
in the dataset, many datasets are collected with incorrect
labels.

External factors, such as the aging pattern of each individ-
ual, are not linear and are influenced by lifestyle, nutrition,

the environment, and disease. A dataset containing this infor-
mation could provide a new direction for future research.

A. METHOD
A model-based approach using an anthropological perspec-
tive in the active appearance model is represented by an aging
function that applies the mean face parameter of different age
groups [15], [16] or a variant aging effect [17]. The difficulty
of this method is the construction of a suitable training set
where sequential age progression from different individuals
is required to create facemodel transformation. Suo et al. [18]
used a compositional and dynamic model for face aging,
representing the face in each age group with a hierarchal
‘‘And-Or’’ graph. This compositional and dynamic model
can build an aging effect perception and preserve identity
from an input image in high but has difficulty developing
a model without image sequences, cannot train for a long
age range, and requires precise alignment to produce fine
synthetic images without losing information.

Prototype-based approaches can produce reliable age sub-
spaces and alignments that can handle wild photographs with
numerous variations in poses, expression, and lighting. This
method uses a collection of head and torso images to obtain
synthetic images for a certain age. The prototype model
approach requires precise image alignment to avoid plausible
facial images.

Reconstruction-based approaches such as coupled Dic-
tionary Learning (CDL) model aging patterns maintain the
personalization of each person’s face, use the aging base or
basic pattern of each age group, and combine it into the input
image. Producing short-term or neighborly patterns of age
change requires a complete dataset of individuals, which is
a difficult task.

A deep neural network approach, such as the TRBM and
Recurrent Neural Network is a better approach to face aging.
This method uses past information to identify soft transition
patterns between age groups. Using a single unit model,
interpretation of facial changes can be achieved The facial
structure and changes in face aging can be interpreted in one
training, this makes it easier for the architecture to form a
robust and simple model. However, this approach requires
a long computation time and a large number of datasets to
produce a robust model.

The Generative Adversarial Network (GAN) is another
approach for face aging. The translation method is based
on how style is transferred from one set of group images
to another set of a group images. For example, CycleGAN,
which uses this method, attempts to capture the style of
one age group from other age groups. CycleGAN has the
advantage that it does not require consecutive photos of the
same individual in each age group domain and only requires
that each age group in the dataset has a sufficient number.
The sequential-based approach seeks to identify the facial
aging patterns in each adjacent age group. In contrast to other
approaches that seek to obtain a direct model, this approach
is more concerned with a sequential approach and requires
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TABLE 2. Score, categories, and method face aging GAN.
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TABLE 3. Score, categories, and method face aging GAN.
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TABLE 3. (Continued.) Score, categories, and method face aging GAN.

a sequential dataset for each age group. Training will be
conducted gradually from the young age group to the older
age group, and vice versa. This transition was performed
sequentially and each stage was trained independently or sep-
arately to complete the aging process. The conditional-based
approach uses a label as one-hot code in the architecture
embedded in the generator or discriminator. This method
required a dataset with clear (correct) labels. A GAN is a con-
volutional neural network, and its architecture requires a long
training time and high computational cost. The advantage of
this approach is that it can produce a single model that can be
applied to all age groups, and the resulting model can make
a smooth and real transition from one age group to another,
leaving only a few artifacts. The attention mechanism can
enhance this architecture and emphasize parts that produce
an aging pattern.

Following figure 6, we describe the timeline for the
development of face aging using a generative approach.
To describe the performance of each method, we provide the
results in Table 2.

V. CONCLUSION
The dataset used in the facial aging process also plays an
important role in the success of identifying aging patterns
in each age group. Smaller age range better than larger age
range, 5-year range better than 10-year range, because 5 years
range has fewer differences than 10 years range. makes it
an aging facial architecture, which makes it easy to identify
an aging pattern. Teenagers aged 20 years have large differ-
ences from adults aged 30 years. They cannot be grouped
into the same age range, suggesting that the age range must

be narrowed down to 5 years. A young age range must be
added to increase the ability of the architecture to generate
young aging patterns. The dataset label must be clean and
incorrect in the image(a photo must be correctly grouped).
The dataset distribution of each age group must be balanced
to prevent bias in the training process, and the number of
images for each age group must be sufficient such that the
architecture can produce a good model. The diversity of the
dataset can improve the quality of the observed face aging
pattern.

Based on the comparison of the Mean Absolute
Error (MAE) and the accuracy of eachmethod inAppendix B,
the face aging architecture that uses the conditional GAN
approach is still superior. The current approach applies state-
of-the-art models to mobile and edge computers.

The synthetic face image quality during the face aging
process depended on the algorithm used. In a model-based
approach, it is difficult to find a general model for a certain
age group, and a bad-alignment model with a face image
produces blurry plausible images and identity information
loss. Using a dynamic model, the resulting synthetic pho-
tovariations were found to be significant using a dynamic
model. This prototyping approach eliminates the global iden-
tity information of an individual in synthetic facial images
and produces image-loss identity information. A reconstruc-
tion approach in which CDL and identity information can
be maintained, even though the reconstruction process must
be sequenced from one aging group to another, generates
synthetic faces with considerable variation. The Generative
Adversarial approach is still the best, with the approach
method, by finding the minimum value of the mean square
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FIGURE 25. Dataset sample image.

FIGURE 26. Generative adversarial network approach categorygenerative adversarial network approach category. A translation-based method is
a method that captures style characteristics from a set of an image to be implemented in another set of images. The sequence-based method is
a method in which is model is implemented step by step process, and each model is trained independently, to produce a sequential translation
between two neighboring age groups. The conditional-based method uses a conditional in its architecture to produce an artificial face image in
a certain age group, usually the conditional is in the form of a label that is made into a one-hot encoder tensor.
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error for images of a certain age group, the pattern of age
groups can be found, and by finding the minimum value of
perceptual loss with the original image, the aging pattern can
be implemented into input face images and identity informa-
tion is maintained. The alternative method uses cyclic consis-
tency in Fang et al. ’s research [36] to maintain its identity or
uses two stages of synthesis (feature generation and feature
to image rendering) in GAN. Feature generation tasks to
synthesize various facial features render them photorealistic
in the image domain with high diversity but preserve their
identity.

For future research, face aging at high resolution is a
challenge, because processing high-resolution images make
the architecture require a high computation process, and has
challenged finding algorithms or methods that have a lower
requirement and are faster. Improving the quality of datasets
in the context of diversity is a challenge. A dataset with a
variety of races, living environments, nutrition, and lifestyles
can open the opportunity for research on the effects of nutri-
tion, living environment, nutrition, lifestyle, and face aging
on Asian people. The effects of disease and sickness on facial
aging have been investigated.
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APPENDIX
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APPENDIX B
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APPENDIX C
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See Figure 25.

APPENDIX D
GENERATIVE ADVERSARIAL NETWORK APPROACH
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See Figure 26.
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