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ABSTRACT In this paper, we propose a unified deep learning model for monitoring elderly in execution of
daily life activities such as eating, sleeping or taking medication. The proposed approach consists of three
stages which are activity recognition, anomaly detection and next activity prediction. Such a system can
provide useful information for the elderly, caregivers and medical teams to identify activities and generate
preventive and corrective measures. In literature, these stages are discussed separately, however, in our
approach, we make use of each stage to progress into the next stage. At first, activity recognition based
on different extracted features is performed using a deep neural network (DNN), then an overcomplete-deep
autoencoder (OCD-AE) is employed to separate the normal from anomalous activities. Finally, a cleaned
sequence of consecutive activities is constructed and used by a long short-term memory (LSTM) algorithm
to predict the next activity. Since the last two stages depend on the activity recognition stage, we propose
to increase its accuracy by exploiting different extracted features. The performance of the proposed unified
approach has been evaluated on real smart home datasets to demonstrate its ability to recognize activities,
detect anomalies and predict the next activity.

INDEX TERMS Smart homes, activity recognition, anomaly detection, sequence prediction, deep neural
network, autoencoder, LSTM.

I. INTRODUCTION technology (ALT) such as human activity recognition (HAR)

The care of elderly people who are unable to effectively
develop activities of daily living (ADL) requires a lot of
attention and dedication, as both their lifestyle and health
are affected. The spread of dementia-related problems in
older adults aged 60 years or above is one of the world’s
major public health challenges [1]. For instance, an elderly
person suffering from Alzheimer’s disease may forget to have
their medicine, lunch or wake up in the middle of the night.
As a result, secondary issues may arise that affect mental,
physical, and mobility capabilities [2], [3]. Nowadays, there
is a growing need for society to take care of their health while
incorporating the use of technology to develop assisted living
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and anomalous detection. The ALT enables monitoring of
people’s quality of life, and as time goes on, new features
and functions emerge in this domain, relying on a diverse
set of hardware and software components. The daily home
activities that involve basic functions like preparing meals,
walking, sleeping, showering, etc. can be used to evaluate the
well-being of elderly people. The goals of ALT are: i) the
development of predictive models that allow for the classifi-
cation of normal and abnormal behaviour in individuals [4],
and ii) the provision of tools for caregivers and medical teams
to identify activities and generate preventive and corrective
measures [5], [6].

Sensor-based ambient systems in smart homes can be used
to recognise various behaviours and complex activities [7] by
monitoring the interaction between objects and inhabitants.
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This process can be done using machine learning (ML) tech-
niques which can effectively classify ADLs performed by
people. Existing activity classification methods employ a
variety of ML techniques to recognise activities, including
the Hidden Markov Model (HMM) [8], Conditional Random
Fields (CRF) [9], Random Forest (RF) [10], Support Vector
Machine (SVM) [11], Naive Bayes (NB) [12], Decision Tree
(DT) [10] and K-nearest neighbour (KNN) [13]. Recently,
increased attention has been given to deep learning (DL) tech-
niques such as deep neural network (DNN), convolutional
neural network (CNN), autoencoders (AE) and recurrent neu-
ral networks (RNN) in several fields because they have great
impacts in terms of flexibility and performance. The accuracy
of the ML and DL techniques to classify activities is an impor-
tant measure that depends on the classifier parameters and on
extracted features from a pre-segmented dataset. Number of
active sensors, start time, end time and duration of activity
are example of extracted features. The extracted features are
critical for the classifiers to learn useful representations and
capture spatial information and local dependency of granular-
level patterns [14].

Another useful technique is the prediction of the next
sensor event based on the sequence of events [15], [16], which
usually used to improve the operation of automation functions
such as adjusting the temperature sufficient time prior to the
person waking up, informing the resident if the predicted
activity has not performed yet or recognizing changes in
person’s habits [17], [18].

Most of the previous studies, consider activity recognition
(AR) [9], [12], anomalous detection (AD) [19], and next
sequence prediction [17], [20] separately, or AR and AD are
discussed together only [2], [14], [21]. A comprehensive tool
that provides features and functionality such as activity recog-
nition, anomalous detection and next activity prediction will
be useful to asses behaviour change, detect early, meaningful,
cognitive change in order to prevent or delay the impact of
dementia.

In this paper, we propose an elderly monitoring system
that consists of three stages which are activity recognition,
anomalous detection and next activity prediction. At first,
we propose to increase the accuracy of activity recognition
using different extracted features from pre-labelled activity
instances, train and test the ability of the DNN model to
classify a given activity, and secondly, a proposed overcom-
plete autoencoder (OCD-AE) is used to identify anomalous
instances within each activity class. An activity instance is
considered anomalous if its execution time is unusually long
or if it contains an unusually large number of sub-events.
After activity classification and anomaly extraction, a clean
sequence of consecutive activities is formed. Finally, the
sequence is trained using long short-term memory (LSTM)
algorithm and its model is used to predict the next activity.
A unified monitoring system with such features can pro-
vide useful information for elderly people who suffer from
dementia, and for medical team to analysis elderly health
and take preventive action once needed. A dataset from
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CASAS project called Aruba [22] and Cairo are selected for
this study since its labelled activities are good example to
represent the daily life pattern of elderly residents in smart
homes. The usage of the proposed unified model can be
extended and implemented for different smart home applica-
tions such as energy-saving or security monitoring and threat
detection [23].

The rest of the paper is organised as follows. Section 2 pro-
vides an overview of related works. Section 3 presents
the details of the proposed approach together with the
models used. Section 4 describes the dataset, extracted
features, and experimental results for activity recogni-
tion, anomaly detection and next activity prediction fol-
lowed by a discussion. Finally, Section 5 concludes the

paper.

Il. RELATED WORKS

A. ACTIVITY RECOGNITION

Several datasets such as CASAS [22], [24] and Kasteren [25]
are provided for the public to test the ability of ML and DL
classifiers to recognise human activities in smart homes. The
Aruba dataset [22] that was collected as a part of the CASAS
project suffers from class imbalance problem which reduces
the performance of the classifiers to recognise some of the
activities (i.e., “Resperate” activity). Features are important
factors that play significant roles in the performance of activ-
ity recognition techniques. Several studies have discussed
feature extraction from different datasets. In [10], many fea-
tures are extracted such as start and end time of activity, dura-
tion of activity, sensors states and location of activities. Then
different ML classifiers are used such as RF, DT and Naive
Bayes for activity recognition task, best accuracy is achieved
by RF with 75.82%. In [14], last-fired sensor (i.e., if there
are multiple sensors, then the sensor that lastly changes its
state is represented by 1 and other sensor states are set to 0) is
considered as feature and trained by combination of CNN-2D
and LSTM to achieve accuracy of 89.72%. In [11], last-
state sensor (i.e., each sensor is represented by its final state
ON/OFF), mutual information of sensors and its extension
method are exploited to attain accuracy of 87.71%. In [12],
graph-based features are extracted by representing motion
sensors in a graph and resident’s movements as edges in the
graph, accuracy of 93.41% is obtained by using SVM classi-
fier. In [13], number of times the sensors are activated during
activity and feature selection based on principle component
analysis (PCA) are used. In [21], three features namely dura-
tion of activity, number of active sensor events within each
activity and total number of each activity performed per
day are used to train probabilistic neural network (PNN) to
achieve accuracy of 90%. In our paper, we proposed to add
sensor states feature in addition to the three features used
in [21] to increase the activity recognition task. Increasing
the accuracy of activity recognition stage has a great impact
on reducing error-propagation to anomaly detection and next
activity prediction stages.
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B. ANOMALY DETECTION

Anomaly detection is the process of detecting unusual behav-
ior in occupancy’s normal lifestyle. In [19], convLSTM
autoencoder is used for anomaly detection, instances with
high reconstruction error are assumed to be anomalies
because they cannot be reconstructed like normal instances.
This is because the autoencoder has been used to train the
normal activities only, hence it will be able to do the construc-
tion for the normal activities, but, the anomalous activities
are not trained, so the reconstruction error is expected to
be higher. However, the activities in the dataset have been
modified to reflect abnormal behavior related to dementia
such as activity repetition, disturbance in sleep and confusion,
for instance, activities such as having multiple lunches or
forgetting to have dinner and prepare it in irrelevant time are
synthesized in the dataset. Hence, about 150 activities such
as “Eating”, “Bed_to_toilet”, and ‘““Sleeping” are added
in [19]. In [14], a method is proposed to artificially produce
abnormal activities to reflect typical behaviors of elderly
people suffering from dementia. The highest sensitivity is
achieved by HMM, while the highest specificity is achieved
by LSTM. The technique of adding synthesized data is done
because there exists no publicly available dataset on abnormal
behaviors for people suffering from dementia. In [21], three
levels of anomaly detection are proposed based on boxplot
outlier analysis such as instances of activities with irregular
number of subevents, unusual durations of activities, and
irregular frequency of activities performed in a day. H20
autoencoder is used as a binary classifier within each class.
Anomalies detection based on statistical information of activ-
ities can be a promising solution since it learns what is normal
and abnormal from generating ground truth using the training
data. The ground truth is the information that is known to
be real or true, provided by direct observation. Since it is
difficult to obtain real observed data, boxplot analysis (such
as median, maximum, minimum and outliers) can be used to
have approximate information about activities such duration,
number of active sensors and so on. This technique has been
widely used in previous works such as [21]. In our paper,
we have adopted this technique to detect anomalous instances
since it doesn’t require any modification to the dataset.

C. SEQUENCE PREDICTION

Sequence prediction provides the ability to know in advance
the next activity, which can be a helpful aid for adults
with cognitive impairment or dementia [17]. In recent years,
a number of algorithms for sequence prediction have been
investigated. These algorithms typically train a model to pre-
dict the next sensor event based on a sequence of symbols,
where the symbol represents the sensor states, for instance,
sensor 1 and sensor 2 are presented by capital letter A and B
in ON state and small letters a and b in OFF states. Active
LeZi (ALZ) predicts the next symbol in a sequence using
Markov Models [26]. ALZ algorithm is an improved ver-
sion of the LZ78 algorithm that uses a sliding window
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technique [16], [27]. ALZ involves a variable-length window
of previously observed events. The Sequence Prediction via
Enhanced Episode Discovery (SPEED) algorithm, inspired
by ALZ, predicts the next sensor event based on the frequency
of observed patterns [15]. In [17], a recurrent neural network
(RNN) with long short-term memory (LSTM) is used as a
sequence prediction method, where the LSTM is configured
as a text generation network. In this paper, we applied a
different approach from the above papers, for example instead
of taking a sequence of sensor events to apply sequence
prediction algorithms, we used a sequence of activities that
has been identified by an activity recognition classifier and
categorized as a normal activity by an anomaly detector. The
activities in a sequence are then converted to capital letters
and used by LZ78 and ALZ algorithms, while for LSTM it is
converted into one-hot encoding.

I1l. UNIFIED DEEP LEARNING MODEL

LetA = {Ay,... A, ... Ag} be aset of K activity classes and
Iy = {h, ..., ik, ... Iy} be aset of J activity instances of
Ay in training data set observed by S sensors deployed at dif-
ferent locations in a smart home. Each instance of ar}e activity
Iy is represented by a set of R features, Fj; = H ]3,’( }r_l. The
features represent the duration spent to complete an activity,
the number of sensors that are activated during an activity,
the number of times an activity is performed by day, and the
states (e. g., ON/OFF) of all sensors during an activity. Our
proposed unified model consists of three steps as shown in
Fig. 1. In the first step, it extracts useful features from a given
pre-segmented or labeled activities dataset. The extracted
features should provide enough information about the classes
so that a classifier can give high prediction accuracy. These
features are then divided into train and test features. The
second step is to train our models for activity recognition
and anomaly detection. We propose to use a deep neural
network (DNN) for activity recognition and an overcomplete-
deep autoencoder (OCD-AE) for anomaly detection. The
third step is to do testing process. Once the DNN model is
built, it is used for testing new features to classify the activity.
Finally, the AE model uses the activity class and the input fea-
tures to determine if an anomalous instance is detected. The
correctly identified normal activities are sent to the sequence
construction block to form a series of consecutive sequences.
LSTM algorithm is then trained and employed to predict the
next activity.

A. ACTIVITY RECOGNITION

We use a deep neural network (DNN) for activity recognition
and compared its performance with other popular classifiers
such as support vector machine (SVM), K-nearest neighbor
(KNN), decision tree (DT), random forest (RF), and Naive
Bayes (NB). The training of the classifiers is performed on a
training set containing different features of activity instances
for each activity class. As shown in Fig. 2, the DNN has three
main layers namely: input layer which has the feature set Fj
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FIGURE 1. Block diagram of the proposed unified deep learning model
consisting of activity recognition, anomaly detection, and next activity
prediction algorithms.
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FIGURE 2. Architecture of deep neural network (DNN) used for training of
activity recognition system.

of the training samples. The second layer is the hidden layer
which consists of many hidden layers with Relu activation
functions for the first layers and Softmax activation function
for the last layer. The third layer is the output layer which
has the same number of neurons as the activity classes. The
trained DNN classifier can be used later to recognize new
activity events.

B. ANOMALY DETECTION

The recognized activities are analyzed to detect anomalies,
which are unusual and unexpected deviations from standard
patterns. Anomalies in smart homes deviate from the normal
trend in terms of an unusual number of events and an unusual
duration. For the detection of anomalies, we use learning
algorithm based on autoencoder. Autoencoder (AE) is a spe-
cial type of artificial neural network that consists of input,
encoder, feature (bottleneck layer), and decoder layers as
shown in Fig. 3. The encoder aims at mapping the input data
into N -dimensional representation feature, the function of the
decoder is to do the reverse mapping, where the input and out-
put data of the network should be identical. Reconstruction
error (RE) is the difference between the input and output of
the AE. The AE is usually trained to minimize this error to
effectively reproduce the input from the features representa-
tion. The AE is a semi-supervised technique that only used to
train part of the data (i.e., normal activity). Hence, the trained
activity (i.e., normal activity) is expected to have smaller
RE, whereas the RE for non-trained activity (i.e., anomalous
activity) is expected to have higher RE since the autoencoder
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FIGURE 3. Structure of the proposed overcomplete-deep autoencoder for
anomaly detection.

has never encountered the non-trained activity before. There
are two types of AEs that based on the number of neurons in
the encoder layer which are undercomplete and overcomplete
AEs. The encoder layer dimensionality of an undercomplete
AE is smaller than the input layer. In this type the AE learns to
compress high dimensional input data into lower dimensional
in order to capture the most important features, this technique
is known as dimensionality reduction. On the other hand, the
overcomplete AE has more neurons in the encoder layer than
the input. This type of network architecture gives the possibil-
ity of learning a greater number of features; however, it may
lead to learning the identity function of original input and
become useless. Sparse AE [28] is a technique proposed in
the literature to prevent AE from learning identity function by
employing sparsity in the encoder and decoder layers, in other
words, only a small fraction of neurons are allowed to be
active during the training stage. An alternative approach is to
use multiple hidden layers within the encoder and the decoder
which we propose to use for anomaly detection within each
activity class. We trained an overcomplete-deep autoencoder
(OCD-AE) with normal instances only, and a threshold value
is chosen based on reconstruction error for each class to detect
anomalous instances. The reconstruction error (RE) is the
difference between the original data and its N-dimensional
reconstruction output, which is used as an anomaly score
to detect anomalies [29]. The performance of the proposed
OCD-AE is compared with two popular classifiers such as
SVM and K-means.

C. SEQUENCE PREDICTION

A sequence of activities can be constructed after performing
activity recognition and discarding the anomalous instance.
This stage can help the elderly to recall what activity to
do next. If there is abnormal activity, it may affect the pre-
diction. In other words, the presence of abnormal activi-
ties can be treated as noise that negatively affects the next
sequence prediction and hence it should be removed. The
cleaned sequence can be then trained and tested to predict
the next activity. LSTM [30] is a type of recurrent neural
network (RNN) designed to be better in storing and accessing
internal memory than the standard RNN. We used the LSTM
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FIGURE 4. LSTM network configuration used for next activity prediction.

network as a text generation network where the number of
inputs is equal to the memory length and the output is the
predicted next activity in the sequence as shown in Fig. 4.
The sequence of activities are first converted into letters
(symbols), then both input and output of LSTM network are
converted into one-hot encoded form, where each symbol in
the sequence is represented by a vector of bits (input raw
data) with a length equal to the number of symbols in a
sequence. For example if we have sequence = [A, B, C, D,
E], where the number of symbols is 5, each symbol will be
converted into bits of length 5 such as [10000, 01000, 00100,
00010, 00001], where 1 is placed at specific bit and zeros
elsewhere for each symbol. This conversion is widely used in
machine learning techniques and LSTM for categorical data,
but it is computationally expensive especially when there is a
large number of activities. We compared the performance of
the LSTM algorithm with two popular sequence prediction
algorithms such as ALZ [26] and LZ78 [27][16].

IV. RESULTS AND DISCUSSION

We evaluate our proposed monitoring system on a CASAS
smart home datasets called Aruba and Cairo. In this section,
we first present an overview of the datasets, followed by
feature analysis and extraction. Then we evaluate the per-
formance of different classifiers to recognize activities per-
formed in smart homes, and separate anomalous activities
from normal activity. The activities are then organized as
consecutive series of events. A sequence prediction technique
is employed to predict the next activity. The classification
models are implemented in Python 3 using Keras and Sklearn
open source libraries.

A. DATASETS
We use Aruba and Cairo dataset to evaluate the performance
of our proposed algorithms. The Aruba dataset consists of
data from a total of 39 sensors, out of which 31 are used for
motion sensors (M001-MO031), 3 door closure sensors (D001,
D002, and D004) and five temperature sensors (T001-T00S).
The activities of an elderly woman living in a house with
layout as shown in Fig.5a are recorded for 220 consecutive
days (~7 months). There are 11 activities annotated within
the dataset which consists of 1,719533 raw sensor data as
shown in Fig. 5b.

The number of times the activity appears in the dataset
is given in Table la. As shown, the dataset is imbalanced,
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FIGURE 5. (a) Aruba layout (b) dataset.

as some activities occur more frequently than others. The
table also shows the activities performed on the first and
second days as an example. Some activities like sleeping
begins at one day and completes in the next day, so in our
analysis we assumed this activity belongs to the starting day
only.

Cairo dataset consists of 27 motion sensors (M001-M027)
and 5 temperature sensors (TO01-T00S). It has 13 activities
as listed in Table 1b with shortcuts used in our paper. The
dataset is collected for two adult couples (R1 and R2) and
a dog living in the smart home. The couple’s children also
visited the house at least once. The data consist of 726534 raw
sensors reading for 57 days distributed for the 13 activities as
described in Table 1b.

B. FEATURE EXTRACTION

From the dataset, we extract four features for activities recog-
nition. The first feature is the “duration” which defines the
total time spent to complete an activity. The second feature
is the “‘sensor count” which represents the number of times
each sensor remains active during an activity. The third fea-
ture is the “activities per day” which describes the number
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TABLE 1. The annotated activities in (a) Aruba (b) Cairo datasets.

a)
.. Performed | Performed | Performed
No. | Shortcuts Activity Rl inday2 | in220 days
1 TIt Bed _to_Toilet 1 1 157
2 Eat Eating 4 1 257
3 EH Enter Home 2 6 431
4 Hk Housekeeping 2 1 33
5 LH Leave Home 2 6 431
6 MP Meal Preparation 9 3 1606
7 Rlx Relax 5 2 2919
8 Res Resperate 0 0 6
9 Slp Sleeping 2 3 401
10 WD Wash_Dishes 2 1 65
11 Wk Work 2 7 171
Total 31 31 6477
(b)
No. | Shortcuts Activity f;gf;rg;g
1 BTIt Bed _to_Toilet 30
2 BrkF Breakfast 48
3 Dinn Dinner 42
4 Laun Laundry 10
5 LHom Leave Home 69
6 Lund Lunch 37
7 NiWa Night wandering 67
8 RI1SI R1 sleep 50
9 R1Wa R1_wake 53
10| RIWo | Rl work in_office 46
11 R28I1 R2 sleep 52
12| R2Me R2 take medicine 44
13| R2Wa R2 wake 52
Total 600

of times each activity is performed in a single day. The fourth
feature is the set of ““sensor states” which describes the states
of sensors (ON/OFF) during an activity.

Fig. 6 shows boxplot for the duration of activities per-
formed by an elderly woman for 220 days, we plotted
Relax (RIx) and Sleeping (Slp) activities in separate figure
because they takes longer duration than others. For illus-
tration purpose, we omitted in Fig. 6 one outlier from the
Sleeping activity and one outlier from Meal Preparation activ-
ity because they take longer duration than the remaining
instances (i.e., 1141 min and 326 min respectively). The box
covers the interquartile (IQ or Q3) interval, where 50% of the
data is found. The lower and higher sides of the box are the Q
and Q3 quartiles. The horizontal red line that split the box in
two is the median. The whisker is represented by the two lines
outside the box, extended from the lowest to highest points
that represent the minimum and maximum respectively. Data
points that are outside this interval are marked with a red
colour plus ‘4’ on the graph and considered outliers. The
distributions for most of the activities are skewed since the
median is not in the middle of the box, and contains many out-
liers except for Sleeping (Slp), Resperate (Res) and House-
keeping (HK) activities. Also, the data is imbalanced since
the whisker length on the lower side is shorter with no outliers
and longer on the upper side with many outliers as in Relax
(RIx), Eat and Meal Preparation (MP) activities.

Fig. 7 shows the number of times each sensor remains
active during the performance of an activity. We take into
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FIGURE 6. The duration in minutes for the 11 activities in Aruba dataset.

consideration all the motion, doors and temperature sen-
sors as [21]. We can observe that some activities such as
Housekeeping (HK), Resperate (Res) and Work (Wk) have no
outliers whereas others such as Relax (RIx) and Sleep (Slp)
have many outliers. Moreover, Enter Home (EH) and Leave
Home (LH) activities have almost the same boxplots and out-
liers, which create confusion for the classifier to distinguish
between them.

In Fig. 8a, we plotted a boxplot for the third feature, which
describes the number of times each activity is performed per
day. By summing up all the activities performed per day,
we plotted the histogram as in Fig. 8b. The fitting curve
on the histogram shows that an average of 29 activities is
performed per day with a standard deviation of 7 days. The
information provided by the figure determines the daily rou-
tine of an elderly resident, moreover, it provides information
on whether the elderly is able to independently execute daily
activities or need an intervention [21], for instance, a day is
considered as anomalous if the number of activities executed
in that day deviates from the normal pattern.
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FIGURE 7. The number of times each sensor remains active during an
activity performance in Aruba dataset.
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FIGURE 8. (a) number of times each activity is performed per day
(b) histogram of activities per day for Aruba dataset.

We also extracted the three features presented earlier for
the Cairo dataset as shown in Fig. 9. The duration boxplot
(Fig. 9a) shows the activities have different execution times
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TABLE 2. Example of the extracted features from Aruba dataset.

. Sensor Activity Sensor State Activity/
—— Count Per day S1 S2 i Class
2.6495 3 1 OFF | OFF | .. Tt
2.6783 3 1 OFF | OFF | .. Tit
2.1131 ] 10 ] 7 |WOFF [ OFF | ... ] MP
25382 | 6 | 7 | ofFf | OFF | ... | w™P
8.6331 | 6 [ 12 [ OFF | OFF | ... | RKx
11.4304 | 8 | 10 [ oFf | OfFfF | ... | RIx

and the highest outliers are found on Night Wandering activ-
ity. The boxplot of the sensor count (Fig. 9b) shows the Cairo
dataset is more balancing than Aruba dataset, and it has fewer
outliers in terms of sensor count. Fig. 9c shows that most of
the activities are performed once a day. The histogram plot
(Fig. 9d) shows that on average 10 activities are performed
per day with a standard deviation of 3 days.

C. ACTIVITY RECOGNITION ANALYSIS
The extracted feature based on the label activities has
6477 instances, Table. 2 shows an example of the extracted
features that will be used for activities recognition.

We used the following performance metrics to evaluate a
classifier [31]:

Precision (specificity) = TP/(TP + FP) €))
Recall (sensitivity) = TP/(TP + FN) 2)

Precision and recall are used to measure how well the classi-
fiers perform on an imbalance dataset. The balance between
the precision (P) and the recall (R) scores is described by
F1-score as [32]:

Fl-score = (2*Precision*Recall)/(Precision + Recall) (3)
On the other hand, the accuracy metric is given by:
Accuracy = (TP 4+ TN)/(TP+TN+FP+FN) (4)

which represents the percentage of correctly classified activi-
ties, where TP is true positive, TN is true negative, FP is false
positive and FN is false negative. Matthew’s correlation coef-
ficient (MCC) is a coefficient that ranges between [—1, 1].
A coefficient of 1 indicates a perfect classifier, while 0 means
a totally random prediction. A coefficient of —1 indicates a
negative correlation or total disagreement between the pre-
diction and actual value. The MCC is calculated as [33]:

MCC = (TP + TN — FP % FN) /
V/(TP+FP)  (TP+FN) * (TN+FP) * (TN+FN)
©)

We used a deep neural network with 3 input layers, three
hidden layers with 128 neurons each and output layer with
11 neurons. Relu activation function is used for the first
and second hidden layers, where softmax function is used
for the last layer. Adam optimizer is used with a learning
rate of 0.001. The training of the network is performed with
50 epochs consisting of 128 batches. The Aruba data which
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FIGURE 9. Extracted features from Cairo dataset, (a) duration (b) sensor count (c) activity performed per day (d) histogram of activities per day.

includes 6477 instances is divided into 70% for training and
30% for testing. The accuracy and loss learning curves for the
trained DNN are shown in Fig. 10.

The confusion matrix and metrics performance of DNN
are shown in Fig. 11. From the confusion matrix of the DNN
classifier, it can be noted that most of FPs and FNs of leave
home (LH) activity is recognized as enter home (EH) activity
and vice versa. The two activities are mixed up because the
entry and exit of the house use the same main door, and the
same sensors are used to capture their events, thus, the input
features (duration, sensor counts and activity per days) are
high likely to be similar. The ‘meal preparation’ activity and
‘relax’ activity are also mixed up even though they involved
different sensors; this is because the used input features have
common values between the two activities. Therefore, other
input features are needed by the classifier to distinguish
between these activities.

We also compared the DNN with other different classifiers
for activity recognition such as decision tree, random forest,
k-nearest neighbor (KNN), support vector machine (SVM),
Naive Bayes and deep neural network (DNN). Table 3a
shows the metrics performance of those classifiers using the
3 input features described in Table 2. The best performance
is achieved by DNN followed by decision tree classifier.
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FIGURE 10. (a) Accuracy and (b) Loss performance of the DNN for the
activity recognition in Aruba dataset.

The DNN has shown good performance with limit resource
of input features.
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TABLE 3. Comparison of different classifiers using a) 3 inputs only
(duration + sensor count +activity per day) b) 39 inputs (All sensor states
during activities) c) 42 inputs (duration + sensor count +activity per day
+ All sensor states during activities), for Aruba dataset.

HK 0 1 0 11 0 0 0 0 0 1 0 (a)
Classifier/Metric | Accuracy |Precision| Recall |Fl-score| MCC
LHIRCER Oz OF e 20 108 0B RIORR 00 Decision Tree 0.82 0.61 0.60 0.60 0.63
§ MP| O 1 o 1 0 408 64 O 0 0 1 Random Forest 0.82 0.56 0.55 0.55 0.57
< O . 0 s o o KNN (N =7) 0.82 0.54 0.52 0.52 0.55
SVM (RBF) 0.75 0.30 0.34 0.30 0.53
Resy 0 1 0 0 0 0 0 0 0 0 0 SVM (linear) 0.80 0.54 0.56 0.51 0.63
spl o 0o o o o 2 1 o0 107 0 2 Naive Bayes 0.74 0.51 0.56 0.47 0.46
. I Proposed DNN | 0.82 | 0.63 | 059 | 0.60 | 0.64
Wk 6 19 0 0 0 12 4 0 8 0 11 (b)
Predictions Classifier/Metric | Accuracy | Precision [ Recall |Fl-score| MCC
(@ Decision Tree 0.92 0.77 0.80 | 0.78 | 077
Act TP FP TN FN | Acc. Prec. Rec. [F1sc. | MCC Random Forest 0.91 0.73 0.67 0.69 0.69
Tt 44 13 1881 5 0.99 0.77 0.90 0.83 ] 0.83 KNN (N = 7) 0.92 0.71 0.65 0.67 0.81
Eat 39 46 1829 29 0.96 0.46 0.57 0.51 | 0.49 SVM (RBF) 0.92 0.74 0.67 0.69 0.84
EH 70 52 1753 68 | 0.94 0.57 0.51 0.54 | 0.50 SVM (linear) 0.92 072 070 071 0.86
HK 11 2 1928 2 100 0.85 0.85 0.85 ] 0.85 — = . . . =
LH | 62 | 63 | 1764 | 54 | 094 | 0.50 | 053 | 0.51 | 0.48 Naive Bayes 0.62 0.65 076 | 056 | 059
MP | 408 | 62 | 139 | 77 | 093 | 087 | 0.4 | 0.85 | 0.81 Proposed DNN | 0.91 0.72 070 | 071 | 0.70
RIx | 844 | 75 | 988 | 36 | 094 | 092 | 096 | 0.94 | 0.89 ©
Res 0 0 1942 1 100 0.00 0.00 0.00 -
Slp 107 | 15 1816 5 100 | 0.88 096 | 091 | 0.91 Classifier/Metric | Accuracy | Precision | Recall |Fl-score| MCC
WD 5 3 1919 16 0.99 0.62 0.24 0.34 | 0.38 Decision Tree 0.93 0.82 0.88 0.82 0.83
Wk 11 11 1872 49 1097 | 0.50 0.18 | 027 | 0.29 Random Forest 0.93 0.88 0.84 0.86 0.85
All 1601 - - 342 | 097 0.63 0.59 0.60 | 0.64 KNN(N=7) 0.89 0.74 0.65 0.68 0.74
Overall accuracy = (1601)/(1601+342) = 0.82 SVM (RBF) 0.80 0.39 0.37 0.34 0.62
(b) SVM (linear) 0.93 0.91 0.90 0.90 0.90
Naive Bayes 0.80 0.71 0.84 0.70 0.72
FIGURE 11. (a) Confusion matrix and (b) Performance evaluation metrics Proposed DNN 0.93 0.88 0.88 0.88 0.87

using DNN for Aruba dataset.

The overall performance of the classifiers using the three
input features is not adequate; therefore in Table 3b we eval-
uated the performance of the classifiers using the 39 sensors
states, where active sensors during the activity are set to 1,
otherwise set to 0. We can observe the metrics performance
has been improved for all the classifiers, for example the
precision and Fl-score of decision tree classifier has been
improved from 61% to 77% and from 60% to 78% respec-
tively. The decision tree classifier has shown comparable
performance to DNN.

To further improve the classification task, we combined the
three input features with the binary sensor states and evalu-
ated the performance of the classifiers as shown in Table 3c.
The table shows further improvement in all the metrics per-
formance. The best classification has been achieved by linear
SVM, where the Fl-score has been improved from 51% in
Table 3a to 71% in Table 3b to 90% in Table 3c. It is worth
mentioning that, the three classifiers DNN, Decision tree and
SVM (linear) have shown competitive performance in the
three scenarios.

Table 4 provides a summary of the features that are
extracted from the Aruba dataset, the classifiers used and
metrics performance that has been achieved in other liter-
ature paper in comparison to best result obtained by our
works.

For Cairo dataset, Table 5 shows comparison of the clas-
sifiers using 35 inputs which are duration, sensor count,
activity per day and the states of 32 sensors during an activity.
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The best performance is achieved by the proposed DNN.
In [12], accuracy of 70.10% is achieved using motion sen-
sor ON/OFF, 72.73% using count of motion sensors, and
76.57% using graphic-based method. Our achieved result for
Cairo dataset is very closed to the graphic-based method used
in [12].

D. ANOMALY DETECTION

After performing activity recognition, it is important to check
if the given activity is normal or abnormal. However, the
dataset does not provide ground truth to know the anomaly
detection. We can generate approximate ground truth based
on boxplot analysis by defining two conditions of anomaly
events. The first condition is the deviation of duration of
activity from the whisker (Fig. 6), and the second con-
dition is based on the deviation of number of sub-events
for activity from whisker (Fig. 7), where the whiskers are
03 + 1.5(Q3 — Q1) and Q1 — 1.5(Q3 — Q1) and QO is the
sth quartile. If a certain event satisfies the two conditions,
it is considered an anomaly. Table 6 shows the number of
normal and anomaly events for each activity of the Aruba
and Cairo datasets. We can observe the number of normal
behavior is greater than the anomalous per activity, activity
like ‘Resperate’ has no anomaly event recorded and activity
‘Housekeeping’ has only one anomaly. In the Cairo dataset,
the number of anomaly instances is very small compared to
Aruba instances.
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TABLE 4. Summary of results, features and methods used in the literature papers for activity recognition based on Aruba dataset.

Ref. | Accuracy | Precision | Recall F-score .
Year % % % [0-1] Features Method/Classifier Other
21] Duration of activity — Probabilistic Neural Network ~ |70%:30%
2021 90 74 80 0.74 Count of the sensor events within activity (PNN) Training-to-test
Count of activity times performed per day
Start time of activity — Random Forest (RF)* Ten folds cross-
[10] End time of activity — Decision Tree (DT) validation
2020 75.82 - - - Duration of activity — Extra-tree (ExT)
—  Sensors states — Naive Bayes (NB)
— location
14 — CNN-1D 139 days for
2[012) 89.72 512 50.55 50.87 |- Last-fired sensor — CNN-2D training and 70
—  CNN-2D+LSTM* days for testing
—  Time of the first sensor events —  Support vector machine (SVM) |Cross-
—  Time of the last sensor events validation
87.23 - - 0.63 —  Duration of the window Ei
(1] —  Count of the different sensor events within
2015 the window
—  Mutual information (MI) of sensors — Support vector machine (SVM)
8771 B R 0.68 —  Extension method of mutual information
of sensors
—  Last-state Sensor method
9331 : ; ) —  Sensor states — Naive Bayes (NB), Ten folds cross-
) — _ Count of the sensor events within activity |~ Hidden Markov Model (HMM) |validation
[12] - Conditional Random Fields
2014 . (CRF)
9341 ) ) . ~  Graphical feature —  Support vector machine
(SVM)*
Number of ti h ivated Clustering based Classification |Three folds
. - ) umber of times the sensors are activate (AR-CbC)* ross-validation
(1311 9140 7965 | 7646 0.75 uring activity - ET-KNN
2014 —  Feature selection based on Principle
component analysis (PCA) is used KNN
P Y : — PNN
Durati £ activi — Decision Tree 70%:30%
- uration of activity o Random Forest Training-to-test
—  Count of the sensor events within an
Our L KNN
93 91 90 0.9 activity
work R - SVM*
—  Count of activity times performed per day .
— Naive Bayes
—  Sensor states
— Deep neural network

TABLE 5. Comparison of different classifiers using 35 inputs (duration +

sensor count +activity per day + All sensor states during activities) for dataset.
Cairo dataset. a)
Classifier/Metric |Accuracy|Precision| Recall [Fl-score| MCC No. | Shortcuts Activity 11:1 e2r£(())n;1:ds Normal | Anomaly
5.0 1y
Decision Tree 0.69 0.67 0.69 0.66 0.65 1 Tit Bed to_ Toilet 157 121 36
Random Forest 0.71 0.69 0.69 0.68 0.66 0] Eat Eating 257 230 27
KNN(N=7) 0.60 0.60 0.55 0.53 0.52 3 EH Enter_Home 431 366 65
SVM (RBF) 0.50 0.34 0.42 0.36 0.50 4 Hk Housekeeping 33 32 1
SVM (linear) 074 | 074 | 070 | 070 | 0.69 5 | LH | Leave Home 431 362 )
Naive Bayes 0.66 0.64 0.62 0.58 0.58 6 MP Meal_Preparation 1606 1461 145
Proposed DNN | 0.76 0.74 0.73 0.73 0.71 7 RIx Relax 2919 2601 318
8 Res Resperate 6 6 0
L o . 9 Slp Sleeping 401 362 39
Within each activity class, the anomaly detection approach 10 | WD | Wash_Dishes 65 58 7
dentifi Givity inst th ab 1 durati d 1| Wk Work 171 155 16
identifies activity instances with abnormal duration and num- T & St T
ber of events. The Aruba datasets are used with a training- (b)
to-test ratio of 70:30 for each activity class. The anomalies No. | Shortcuts Adtiiiy }’:rsf;";‘;;‘: Normal || Anomaly
correctly identified by the anomaly detection approach are 1| BTk Bed_to_Toilet 30 28 2
t d b t -t- (TP 2 BrkF Breakfast 48 48 0
represented by true positives S). 3 Dinn Dinner 5 39 3
Since we have only two input features (duration and sensor 4 | Lam Laundry 10 10 0
. . . 5 LHom Leave Home 69 65 4
count), we propose to use OCD-AE with hidden layers consist 6 Lund Lunch 37 35 2
of 32, 14, 7 and 14 neurons each. Activity regularizer of 1077 ; “li‘l‘zr‘ N‘g}]’:ﬂ";{c’g;““g gg fé ?
and reduction in hidden layers neurons are used to prevent 9 | Riwa RI_wake 53 47 6
. : : : : 12 10 RIWo R1 _work in office 46 42 4
AE from learning identity function and improve the ability TEEYS R2 sieep 5 = o
to capture useful features. The performance evaluation of 12 | R2Me | R2 take medicine 44 39 5
e 13 R2Wa R2 wake 52 51 1
the proposed autoencoder and other popular classifiers such Total 500 363 37

as SVM and K-means for anomaly detection in the Aruba
dataset are shown in Table 7. We also include the results
obtained by the H20 autoencoder used in [21] for comparison
purpose. It is noted that the proposed OCD-AE correctly iden-
tifies the maximum number of TPs (anomalies) in 10 out of
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TABLE 6. Number of normal and anomaly activities in (a) Aruba (b) Cairo

11 activities with accuracy of more than 90%. The K-means
classifier shows a comparable performance with accuracy of
more than 90% for 8 activities, in which 4 of them achieved
higher accuracy than the proposed autoencoder.
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TABLE 7. Anomaly detection comparison of different techniques within each class of Aruba dataset.

Data point index

(@)

False Positive Rate

(b)

No. g\f;l;/elg) Classifier TP FP TN | FN | Accuracy | Precision | Recall | Fl-score MCC
(47) [21] 8 2 37 0 0.95 0.80 1.00 0.88 -
1 Tit SVM (linear) 13 1 33 1 0.96 0.95 0.95 0.95 0.90
43) K-means (N=7) 11 0 34 3 0.94 0.96 0.89 0.92 0.85
Proposed OCD-AE 13 0 35 0 1.00 1.00 1.00 1.00 1.00
a7 [21] 11 0 66 0 1.00 1.00 1.00 1.00 -
2 Eat SVM (linear) 7 5 66 0 0.94 0.79 0.96 0.85 0.74
(78) K-means (N=7) 4 0 71 3 0.96 0.98 0.79 0.85 0.74
Proposed OCD-AE 11 2 65 0 0.97 0.92 0.99 0.95 0.91
(129) [21] 14 1 111 3 0.96 0.93 0.82 0.87 -
3 EH SVM (linear) 15 8 106 1 0.93 0.82 0.93 0.86 0.75
(130) K-means (N=7) 15 0 114 1 0.99 1.00 0.97 0.98 0.96
Proposed OCD-AE 14 0 107 9 0.93 0.96 0.80 0.86 0.75
9) [21] 0 0 8 1 0.88 - 0 0 -
4 Hk SVM (linear) 0 0 10 0 1.00 1.00 1.00 1.00 1.00
(10) K-means (N=7) 0 0 10 0 1.00 1.00 1.00 1.00 1.00
Proposed OCD-AE 1 0 9 0 1.00 1.00 1.00 1.00 1.00
(129) [21] 17 1 106 5 0.95 0.94 0.77 0.85 -
5 LH SVM (linear) 14 116 0 0 0.11 0.05 0.50 0.10 -
(130) K-means (N=7) 9 0 116 5 0.96 0.98 0.82 0.88 0.79
Proposed OCD-AE 10 0 106 14 0.89 0.94 0.71 0.76 0.61
(481) [21] 40 7 428 6 0.97 0.85 0.87 0.86 -
6 MP SVM (linear) 47 23 | 412 0 0.95 0.84 0.97 0.89 0.80
(482) K-means (N=7) 42 0 435 5 0.99 0.99 0.95 0.97 0.94
Proposed OCD-AE 50 12 | 419 1 0.97 0.90 0.98 0.93 0.88
(875) [21] 64 1 762 | 48 0.94 0.98 0.57 0.72 -
7 Rix SVM (linear) 89 62 | 721 4 0.92 0.79 0.94 0.84 0.72
(876) K-means (N=7) 87 2 781 6 0.99 0.98 0.97 0.98 0.95
Proposed OCD-AE 79 2 779 16 0.98 0.98 0.91 0.94 0.89
[€8) [21] 0 0 1 0 1 - - - -
SVM (linear) - - - - - -
8 l({26)5 K-means (N=7) - - - - - - - -
Proposed OCD-AE - - 2 - 1 1 1 1 -
(120) [21] 5 0 108 7 0.94 1 0.41 0.58 -
9 Sip SVM (linear) 15 30 74 2 0.74 0.65 0.80 0.65 0.43
121 K-means (N=7) 3 4 100 14 0.85 0.65 0.57 0.58 0.21
Proposed OCD-AE 6 3 111 1 0.97 0.83 0.92 0.87 0.74
(19) [21] 0 0 17 2 0.89 - 0 0 -
10 WD SVM (linear) 3 0 16 1 0.95 0.97 0.88 0.91 0.84
20) K-means (N=7) 0 0 16 4 0.80 0.40 0.50 0.44 -
Proposed OCD-AE P 0 18 0 1.00 1.00 1.00 1.00 1.00
(51) [21] 5 0 45 1 0.98 1.00 0.83 0.90 -
1 Wk SVM (linear) 3 0 49 0 1.00 1.00 1.00 1.00 1.00
(52) K-means (N=7) 3 1 48 0 0.98 0.88 0.99 0.92 0.86
Proposed OCD-AE 5 1 44 2 0.94 0.89 0.85 0.87 0.74
1 —
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FIGURE 12. (a) Autoencoder reconstruction error (b) Receiver operating characteristic (ROC) for activity ‘work’ in Aruba dataset.

Fig. 12a shows example of AE reconstruction error that
is used to classify normal and anomaly event for the activ-
ity ‘Work’. The threshold value is chosen to be 0.07 to
decide the anomaly events. Five events are TPs classi-
fied correctly as anomaly and 44 events are TNs clas-
sified correctly as normal events. However, two anomaly
events are FPs classified wrongly as normal and 1 event is
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FN classified as anomaly event. The drawback of autoen-
coder is the requirement to manually select the thresh-
old value based on the reconstruction error to classify
anomaly events. Fig. 12b shows receiver operating charac-
teristic (ROC) plot that demonstrates the good ability of the
autoencoder to discriminate between normal and anomaly
cases.
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TABLE 8. Anomaly detection comparison of different techniques within each class of Cairo dataset.

No. (ﬁf)n:];ts}t]) Classifier TP FP N FN Accuracy Precision Recall Fl-score MCC
BTl SVM (linear) 1 0 8 0 1.00 1.00 1.00 1.00 1
1 ©) K-means (N=7) 0 0 8 1 0.89 0.44 0.50 0.47 -
Proposed OCD-AE 1 0 8 0 1.00 1.00 1.00 1.00 1
BrKe SVM (linear) - - - - - - - - -
2 (s K-means (N=7) 0 0 15 0 1.00 1.00 1.00 1.00 -
Proposed OCD-AE 0 0 15 0 1.00 1.00 1.00 1.00 -
Dinn SVM (linear) 1 2 10 0 0.85 0.67 0.92 0.70 0.53
3 (3) K-means (N=7) 0 0 12 1 0.92 0.46 0.50 0.48 -
Proposed OCD-AE 0 0 13 0 1.00 1.00 1.00 1.00 -
SVM (linear) - - - - - - - - -
Laun —
4 3) K-means (N=7) 0 0 3 0 1.00 1.00 1.00 1.00 -
Proposed OCD-AE 0 0 3 0 1.00 1.00 1.00 1.00 -
LHome SVM (linear) 0 0 20 1 0.95 0.48 0.50 0.49 -
5 e K-means (N=7) 0 0 20 1 0.95 0.48 0.50 0.49 -
Proposed OCD-AE 0 0 20 1 0.95 0.48 0.50 0.49 -
Lund SVM (linear) 0 0 12 0 1.00 1.00 1.00 1.00 -
6 (12) K-means (N=7) 0 0 12 0 1.00 1.00 1.00 1.00 -
Proposed OCD-AE 1 0 11 0 1.00 1.00 1.00 1.00 1.00
NiWa SVM (linear) 4 1 16 0 0.95 0.90 0.97 0.93 0.86
7 @) K-means (N=7) 1 0 17 3 0.86 0.93 0.62 0.66 0.46
Proposed OCD-AE 3 0 18 0 1.00 1.00 1.00 1.00 1.00
RISIp SVM (linear) - - - - - - - - -
8 (1s) K-means (N=7) 0 0 14 1 0.93 0.47 0.50 0.48 -
Proposed OCD-AE 0 0 15 0 1.00 1.00 1.00 1.00 =
RIWa SVM (linear) 3 1 12 0 0.94 0.88 0.96 0.91 0.83
9 (16) K-means (N=7) 0 0 13 3 0.81 0.41 0.50 0.45 -
Proposed OCD-AE 1 0 15 0 1.00 1.00 1.00 1.00 1.00
R1Wo SVM (linear) 0 0 14 0 1.00 1.00 1.00 1.00 -
10 (14) K-means (N=7) 0 0 14 0 1.00 1.00 1.00 1.00 -
Proposed OCD-AE 2 0 12 0 1.00 1.00 1.00 1.00 1.00
SVM (linear) - - - - - - - - -
11 R(lel)p K-means (N=7) 0 0 16 0 1.00 1.00 1.00 1.00 -
Proposed OCD-AE 0 0 16 0 1.00 1.00 1.00 1.00 -
R2Me SVM (linear) 2 1 11 0 0.93 0.83 0.96 0.88 0.78
12 (14) K-means (N=7) 0 0 12 2 0.86 0.43 0.50 0.46 -
Proposed OCD-AE 1 0 11 2 0.86 0.92 0.67 0.71 0.53
SVM (linear) - - - - - - - -
13 R(21\6’\§a K-means (N=7) 0 0 15 1 0.94 0.47 0.50 0.48 -
Proposed OCD-AE 1 0 15 0 1.00 1.00 1.00 1.00 1.00

Table 8 shows the anomaly detection for Cairo dataset, the
proposed OCD-AE performs the best in most of the activi-
ties and only it has been outperformed by SVM in activity
R2_take_medicien (R2Me).

E. NEXT ACTIVITY PREDICTION

The activities performed by a resident can be arranged in a
sequence to predict the next activity. Certain activities are
easily predictable, such as “leave home” activity is always
followed by ““enter home”, *““Sleeping’ activity is sometimes
followed by ‘“bed_to_toilet activity, however, other activi-
ties need a technique to learn the pattern of activities perfor-
mance. To predict the next activity, we arranged the normal
activities as sequence and employed three algorithms such as
LZ78, ALZ and LSTM to do the prediction. In the Aruba
dataset, LZ78 generated a tree with 808 nodes while ALZ
generated a tree of 20819 nodes using 70% of the sequence
as training. The remaining 30% of the sequence is used for
testing the accuracies of the algorithms. The accuracy of
sequential prediction algorithms for the activities in Aruba
and Cairo datasets are shown in Fig. 13. LZ78 and ALZ give
accuracies of 38% and 50.3% respectively with a sequence
length of 4. LSTM gives an accuracy of 54.6% with memory
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length of 4 using two hidden layers with 32 neurons each and
0.5 dropout layer between them. For the Cairo dataset, the
best accuracy is achieved by LSTM with 45.4%. The accuracy
of sequence prediction algorithms are low due to the limited
length of sequence used for training the models, for example,
the length of the training sequence in the Aruba dataset is
greater than the Cairo dataset, therefore, we can notice an
improvement in the algorithms accuracy of Aruba dataset.

V. CONCLUSION

This paper proposed a new sensor-based unified deep
learning model for monitoring the elderly with cognitive
impairments (such as dementia) living in a smart home.
Our proposed method can recognize activities, detect anoma-
lies and predict next activity by exploiting neural net-
works techniques such as deep neural network (DNN),
overcomplete-deep autoencoder (OCD-AE) and long short-
term memory (LSTM) network respectively. The accuracy of
the activity recognition task has been increased by adding
more features extracted from the dataset. Our results on
activity recognition show great competition between DNN,
Decision tree and SVM classifiers. Accuracies of 93% and
76% have been achieved in Aruba and Cairo datasets respec-
tively by DNN. In addition, results on anomaly detection give
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FIGURE 13. Sequence prediction accuracy achieved by different
algorithms for (a) Aruba (b) Cairo datasets without anomaly instances.

promising results to detect most of the abnormal behaviors
with accuracies of more than 90% detected using the pro-
posed OCD-AE by considering boxplot outliers as ground
truth. Finally, a clean sequence of activities has been con-
structed by discarding the anomalous instances. A sequence
prediction algorithm such as LSTM has been used to pre-
dict the next activity. The proposed approach provides a
comprehensive monitoring system that has the ability to
recognize activities, detect anomalies and predict the next
activity to assist elderly and medical team to identify health
situations and generate preventive and corrective measures.
A future work for this research paper can be extended to study
approaches to handle the imbalance dataset to improve the
deep learning models.
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