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ABSTRACT Unmanned aerial vehicles (UAVs) applications have increased in popularity in recent years
because of their ability to incorporate a wide variety of sensors while retaining cheap operating costs, easy
deployment, and excellent mobility. However, controlling UAVs remotely in complex environments limits
the capability of the UAVs and decreases the efficiency of the whole system. Therefore, many researchers
are working on autonomous UAV navigation where UAVs can move and perform the assigned tasks based
on their surroundings. With recent technological advancements, the application of artificial intelligence (AI)
has proliferated. Autonomous UAV navigation is an example of an application in which Al plays a critical
role in providing fundamental human control characteristics. Thus, many researchers have adopted different
Al approaches to make autonomous UAV navigation more efficient. This paper comprehensively surveys
and categorizes several Al approaches for autonomous UAV navigation implicated by several researchers.
Different Al approaches comprise mathematical-based optimization and model-based learning approaches.
The fundamentals, working principles, and main features of the different optimization-based and learning-
based approaches are discussed in this paper. In addition, the characteristics, types, navigation models, and
applications of UAVs are highlighted to make Al implementation understandable. Finally, the open research
directions are discussed to provide researchers with clear and direct insights for further research.

INDEX TERMS Artificial intelligence, deep neural network, optimization, unmanned air vehicles,
navigation.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are vehicles that can
fly without a human pilot onboard [1]. Because of their
high mobility, easy deployment, low maintenance, UAVs
are increasingly being used in civilian and military applica-
tions [2]-[4]. In addition, UAVs can accommodate a wide
range of potential sensors for any crucial missions. [5].
There are many UAV applications such as wildfire mon-
itoring [6], [7], crowd monitoring [8] target tracking [9],
goods delivery [10], medical assistance, search and res-
cue (SaR) [11], emergency cellular deployment [12], and
intelligent transportation. However, UAVs cannot perform
optimally in a complex dynamic environment owing to
the dependency on human control and limitation of radio
frequency (RF) communication [1]. Autonomous navigation
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of UAVs in large-scale dynamic environments is one of
the key components for optimal outcome. Localization and
mapping techniques [13], [14], and sensing and avoidance
techniques [15] are often used in traditional approaches to
achieve autonomous navigation.

The implementation of 5G networks has paved many
new ways to optimize autonomous UAV navigation [16].
However, three-dimensional (3D) deployment, navigation,
and resource utilization of UAVs are only a few of
the engineering issues that have been explored in early
research contributions [17], [18]. To solve these fundamental
problems, powerful optimization methods such as convex
optimization [17], game theory [19], transport theory [20],
and stochastic optimization have been used. Although many
non-linear techniques have shown satisfactory results, they
are typically confined to primary and narrow habitats, such
as the countryside or indoor areas. It is impossible to
apply them specifically to large-scale complex environments
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because passively navigating significant barriers or con-
stantly constructing maps is impractical in large and complex
environments [21].

Various navigation methods have been proposed to date
and are categorized into three groups: inertial naviga-
tion, satellite navigation, and vision-based navigation [1].
Nonetheless, neither of these approaches is perfect; thus, it is
crucial to choose the optimal technique for autonomous UAV
navigation based on the mission at hand [1]. For the past
few years, researchers have been studying and attempting
to automate UAV navigation in which UAVs learn from
their surroundings. Autonomous navigation is one of the
most critical aspects of UAV automation. One of the main
challenges of autonomous UAV navigation is the avoidance
of obstacles to reach the desired destination.

Artificial intelligence (AI) has become an essential
element of nearly every engineering-related study field
owing to recent advances in computer technology and
hardware. Al is an ideal tool for solving complex problems
where no specific solutions are available or conventional
solutions require a considerable amount of hand-tuning.
Automatic feature extraction, which eliminates costly hand-
crafted feature engineering, is a significant distinction
between Al and traditional cognitive algorithms. In gen-
eral, an Al task can spot anomalies, forecast potential
scenarios, respond to changing situations, gain insights
into complicated issues involving vast quantities of data,
and find patterns that a person might ignore [22]. It can
exploit and learn the surrounding big data to improve
UAV maneuvering. Moreover, Al can intelligently manage
onboard resources compared with traditional optimization
approaches.

Al methods can be divided into two groups based on
their level of intelligence. The first group are the most
fundamental, allowing the machine to react predictably to
the environment. This enables UAVs to perform according
to performance metrics. The second group of methods allow
UAVs to communicate with their surroundings, enabling
them to make decisions even when the environment is unpre-
dictable [23]. Thus, Al techniques are increasingly being
used to improve autonomous UAV navigation. There are
many parameters in autonomous UAV navigation, and some
are set using heuristic equations, because solid closed-form
solutions for their value do not exist or are computationally
expensive to find. AI can help with these problems by
forecasting parameters and calculating functions based on
available data [22]. Furthermore, artificial neural networks
(ANNs), a type of Al technique, can be used to model
the objective functions of nonlinear problems that involve
optimization or approximation [24].

Nonetheless, there are many challenges in applying Al
in autonomous navigation, such as reducing training time,
reducing computational power, reducing complexity, updat-
ing information for extended periods, and quick adaptation
to new environments [25]. Thus, many researchers have
investigated and proposed different solutions to overcome the
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challenges of autonomous UAV navigation while utilizing Al
efficiently.

A. EXISTING SURVEYS

The significant advancements in Al and the contribution of Al
to autonomous UAV navigation are the primary motivations
behind this study. Several surveys on UAVs in different
aspects have been published in the last decade. In [26],
Souissi et al. discussed several state-of-the-art methods for
UAV path planning, such as Dijkstra’s algorithm [38], A*
algorithms [39], particle swarm optimization (PSO) [40],
ant colony optimization (ACO) [41], probabilistic road-
mapping [42], rapidly-exploring random trees (RRT), and
multi-agent path planning [43], and outlined their advantages
and disadvantages. Moreover, the authors categorized UAV
path planning in terms of environmental modeling. UAVs
with environmental knowledge have a higher probability of
achieving an optimal or near-optimal solution compared with
the UAVs having no environmental knowledge, however, they
cannot deal with sudden changes in the environment.

Sujit et al. [27] analyzed five traditional path-following
algorithms:  carrot-chasing, nonlinear guidance law
(NLGL) [44], pure pursuit with line-of-sight (PLOS) [45],
linear quadratic regulator (LQR) [46], and vector field
(VF) [47] algorithms for fixed-wing UAVs. Moreover,
the authors simulated these algorithms using Monte Carlo
simulations and provided performance comparisons.

Pandey et al. discussed different single solution-based and
population-based meta-heuristic approaches in [28], includ-
ing simulated annealing (SA) [48], tabu search [49], evolu-
tionary computation, and swarm intelligence [40], [SO]. They
also analyzed various algorithms and highlighted research
gaps. Ghambari et al. performed an experimental analysis
and compared different meta-heuristic algorithms such as
PSO [40], differential evolution (DE) [51], artificial bee
colony (ABC) [52], invasive weed optimization (IWO) [53],
teaching learning-based optimization (TLBO) [54], grey wolf
optimization (GWO) [55], and lightning search algorithm
(LSA) [56].

Meanwhile, Zhao et al. [30] discussed computational
intelligence (CI)-based approaches for UAV path planning.
The authors highlighted the genetic algorithm (GA), PSO,
ACO [41], artificial neural network (ANN), fuzzy logic
(FL), and Q-learning based papers considering online/offline
planning and 2D/3D environments. However, research
works based on AI/ML were not included in the paper.
Radmanesh er al. carried out a comparative study of UAV
path planning algorithms for heuristic and non-heuristic
methods in [31]. The authors tested algorithms, such as the
potential field, Floyd-Warshall, GA, greedy algorithm, multi-
step look-ahead policy, Dijkstra’s, A*, Bellman-Ford, Q-
learning algorithms, and mixed-integer linear programming
(MILP), under three different obstacle scenarios in terms of
computational time and optimality.

In contrast, Lu et al. [1] surveyed vision-based methods
of UAV navigation while focusing on visual localization
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TABLE 1. Comparative analysis of the existing surveys and our work.

References Publisher Year of Scope Title
Publication
[26] IEEE Proceedings of 2013 2013 State-of-the-art of path planning in ~ Path Planning: A 2013 Survey
International Conference on the field of robotics automation.
Industrial Engineering and
Systems Management (IESM)
[27] IEEE Control Systems 2014 Path-following algorithms for Unmanned Aerial Vehicle Path Following: A
Magazine fixed-wing UAV Survey and Analysis of Algorithms for
Fixed-Wing Unmanned Aerial Vehicles
[28] IEEE Proceedings of Second 2017 Analysis of different meta-heuristic ~ Aerial Path Planning using Meta-Heuristics:
International Conference on optimization techniques for UAV A survey
Electrical, Computer and path planning
Communication Technologies
(ICECCT)
[29] IEEE Symposium Series on 2018 Simulation-based comparison of A Comparative Study Of Meta-heuristic
Computational Intelligence different meta-heuristic algorithms  Algorithms For Solving UAV Path Planning
(SSCDH for UAV path planning
[30] Knowledge-Based Systems 2018 Different approaches of Survey on Computational Intelligence-Based
Journal By Elsevier Computational Intelligence for UAV Path Planning
UAV navigation
[31] Unmanned Systems Journal of 2018 Heuristic and non-heuristic Overview of Path-Planning and Obstacle
World Scientific approaches for UAV navigation Avoidance Algorithms for UAVs: A
and obstacle avoidance Comparative Study
[1] Geo-spatial Information 2018 Vision-based approaches for UAV A Survey on Vision-based UAV Navigation
Science Journal by Taylor & navigation and obstacle avoidance.
Francis
[22] IEEE Wireless 2019 Machine Learning and Al Machine Learning for Wireless Connectivity
Communications approaches for handling wireless and Security of Cellular-Connected UAVs
and security challenges of
cellular-connected UAVs
[32] MDPI Sensors 2019 Application of Machine Learning A Survey on Machine-Learning Techniques
and Al in UAV-based wireless for UAV-Based Communications
communication
[33] IEEE Communications Survey 2019 Approaches for handling Survey on UAV Cellular Communications:
& Tutorials challenges related to interference, Practical Aspects, Standardization
cyber security, cellular Advancements, Regulation, and Security
connectivity, and practical Challenges
implementation in UAV wireless
communication
[34] IEEE Communications Survey 2019 Application and advantages of A Tutorial on UAVs for Wireless Networks:
& Tutorials UAVs in wireless communication Applications, Challenges, and Open Problems
networks
[35] IEEE Proceedings of the 1st 2019 Approaches of location UAYV Base Station Location Optimization for
International Conference on optimization of UAV base stations Next Generation Wireless Networks:
Unmanned Vehicle Systems in Next generation wireless Overview and Future Research Directions
(UVS) networks
[36] Computer Networks By 2020 Approaches and advancements of A Survey on Cellular-connected UAVs:
Elsevier 5G enabled UAVs. Design Challenges, Enabling 5G/B5G
Innovations, and Experimental Advancements
[37] IEEE Wireless 2021 AT approaches for deployment, Artificial Intelligence Aided Next-Generation
Communications trajectory design, and resource Networks Relying on UAVs
allocation of UAV base stations
Our - - Optimization-based and Artificial Intelligence Approaches for UAV
Survey learning-based approaches for Navigation: Present and Future Directions

UAV Navigation since 2015

and mapping, obstacle avoidance, and path planning. Sub-
sequently, many authors analyzed all types of approaches,
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including Al-based approaches for handling challenges, such
as security, communication, interference, and localization,
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related to cellular-connected UAVs in wireless networks
in [22], [33], [34], [36], [57]. In addition, Liu et al. [37]
highlighted the Al-based approaches for resource allocation,
big data handling, dynamic deployment, and trajectory design
for UAV-aided wireless networks (UAWN).

The majority of the surveys focus on AI for UAV-
connected wireless communication or Cl-based solutions
for autonomous UAV navigation, explaining their future
applications. However, none of them focuses solely on Al
approaches for autonomous UAV navigation and future Al
potential approaches as shown in Table 1. Unassociated with
these works, this paper discusses the present and future
Al approaches for autonomous UAV navigation. This paper
provides a comprehensive survey of this crucial paradigm
of AI approaches covering all UAV navigation scenarios,
identifying the prevailing gap in the literature that inspired
the current research. This survey aims to help the researchers
to work in the direction of Al-based methods in autonomous
UAV navigation.

B. CONTRIBUTION

This study focuses on different Al approaches, such as deep
learning, mathematical optimization methods, reinforcement
learning, and transfer learning, for different types of UAV
navigation. After analyzing different Al techniques, future
research directions for UAV navigation are highlighted. The
main contributions of this study are as follows.

o Many authors have simulated and incorporated different
types of UAVs and their characteristics. Knowledge
of different UAV parameters is mandatory for imple-
menting different Al algorithms. These parameters
help researchers to develop appropriate system models
and simulation scenarios. Moreover, setting an rea-
sonable goal is very important for implementing Al
algorithms. Thus, the key characteristics and types
of UAVs are highlighted to familiarize the reader
with UAV architecture. A brief overview of the UAV
navigation system and application-based categoriza-
tion are provided, which will help new researchers
to easily understand the various methods of Al
implementation.

e Al is a vast area that includes different types of
learning and optimization algorithms. Thus, the Al
approaches for autonomous UAV navigation are divided
into two parts: optimization-based and learning-based
approaches. Different types of memory-free compu-
tational heuristic approaches are discussed in the
optimization-based part. In these types of approaches,
the Al agent has to perform all the necessary calculations
from the beginning every time to obtain the optimal
solution. Thus, optimization-based solutions have high
time complexity and require high computational power.
The memory-based computational learning approaches
are discussed. Here, the Al agent learns the surrounding,
obtains an optimal policy, and saves it for future use. The
agent can use and update the saved policy later if needed.
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FIGURE 1. Different types of UAVs: (a) fixed-wing, (b) helicopters,
(c) multi-copters, and (d) loons.

Therefore, the fundamentals and working principles
of several Al techniques implemented by different
researchers for autonomous UAV navigation in terms of
optimization-based and learning-based approaches are
presented in this paper, as shown in Fig. 4.

o A comparative study of different optimization-based
and learning-based Al approaches for autonomous UAV
navigation is conducted in this paper. Here, the features
of the approaches are identified and compared them in
terms of their complexity, hyper-parameters, and objec-
tives. Extended categorizations of the optimization-
based and learning-based Al approaches are included in
the comparative analysis.

« Finally, the open research challenges and future direc-
tions are highlighted to accelerate the current research
on autonomous UAV navigation in terms of the different
crucial parameters and features of the UAV. New
possible Al approaches for autonomous UAV navigation
are highlighted.

Il. UAV CHARACTERISTICS AND NAVIGATION MODEL
The realization of unmanned aerial systems have been a
significant challenge for engineers and scientists since the
invention of airplanes. There are many different types of
UAVs available today for military and civilian applications.
UAVs are often classified based on characteristics related to
shape, range, price, maximum take-off weight, and pricing
as shown in Table 2. One of the most crucial features of a
UAV is its payload. The maximum weight that a UAV can
carry, or payload, is a measurement of its lifting capabilities.
UAV payloads can range from a few grams to hundreds
of kilograms [33], [60]. The larger the payload, the more
equipment, and accessories can be carried at the price of the
UAV’s size, battery capacity, and flight time. Conventional
payloads include cameras, sensors, mobile phones, and base
stations for cellular assistance.

In general, UAVs can be categorized into four cat-
egories based on their flight mechanisms: fixed-wing,
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TABLE 2. Characteristics of different types of UAVs.

Types Characteristics Advantages Limitations
Fixed-wing [33] Weight: 0.5-2500 kg 1. Long Range. 1. Horizontal takeoff.
Range: up to 1850 km 2. High payload. 2. Requires more space.
Speed: up to 500 km/h 3. High Speed. 3. Low maneuverability.
Flight time: up to 2000 min 4. Long Flight time 4. Expensive.
Payload: up to 1500 kg
Power supply: LiPo/fuel
Helicopter [58] Weight: 25-200 kg 1. High maneuverability. 1. Expensive.

[}

Range: up to 400 km . Vertical payload lift.
Speed: up to 120 km/h 3. Easy deployment.
Flight time: up to 250 min

Payload: up to 65 kg

Power supply: LiPo/fuel

2. High maintenance.

Loon [59] Weight: up to 75 kg 1. Very long flight time. 1. Very low
Range: over 100 km 2. Vertical payload lift. maneuverability.
Speed: up to 30 km/h 3. Low maintenance. 2. Very expensive.
Flight time: up to 100 days 4. Ample power supply. 3. Very sensitive to wind.
Payload: up to 10 kg
Power supply: solar battery

Multi-copter [33]  Weight: up to 25 kg 1. Inexpensive. 1. Very low range.
Range: up to 10 km 2. Low weight. 2. Very short flight time.
Speed: up to 160 km/h 3. Very High 3. Sensitive to wind.
Flight time: up to 60 min maneuverability. 4. Low payload.
Payload: up to 5 kg 4. Easy deployment. 5. Limited power supply.

Power supply: LiPo battery

helicopters, loons, and multi-copters, as shown in Fig. 1.
Fixed-wing UAVs can glide through the air, making them
more energy-efficient and capable of carrying heavier
payloads. In addition, fixed-wing UAVs can benefit from
gliding to go quicker. However, they require more space
to take off and land, and they cannot hover over a fixed
position. Helicopters are a combination of multi-copters and
fixed-wings. They can glide through the air with tail wings
and take off and land vertically. In contrast, loons depend
entirely on air pressure and have no motors for directed
movement [59]. Lastly, Multi-copters can take off and land
vertically and hover over a certain place. Thus, they are
excellent for any application because of their exceptional
maneuverability. However, multi-copters have limited flight
time and use a considerable amount of energy because they
always fly against gravity.

As flying is the main characteristic of UAVs, UAV
navigation can be categorized into four categories based
on application: outdoor navigation, indoor navigation, nav-
igation for SaR, and navigation for wireless networking,
as shown in Fig. 2. Here, outdoor navigation includes
applications, such as surveillance, good delivery, target track-
ing, and crowd monitoring, and indoor navigation includes
applications, such as indoor mapping, factory automation,
and indoor surveillance. In addition, the UAV navigation can
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FIGURE 2. Application-based categorization of UAV Navigation.

be categorized based on navigation parameters: inertia-based,
signal-based, and vision-based navigation. For inertia-based
navigation, UAVs mainly use gyroscopes, accelerometers,
and altimeters to guide the onboard flight controller [62].
UAVs use GPS modules and a remote radio head (RRH) in
the case of cellular connectivity for signal-based navigation
and cameras for vision-based navigation.
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FIGURE 4. A taxonomy of the artificial intelligence approaches for UAV
navigation.

Initially, the altitude and horizontal controllers receive
feedback from these sensors and guide the pitch and yaw
controllers depending on the desired path planning. Then, the
pitch and yaw controllers guide the elevators and ailerons
to maneuver the UAV depending on the feedback of these
sensors, as shown in Fig. 3 [61]. UAVs obtain the desired path
planning in case of autonomous navigation, as shown in Fig. 3
utilizing various Al techniques. Thus, this paper focuses on
different Al approaches implemented by different researchers
for UAV navigation.

lll. OPTIMIZATION-BASED APPROACHES

Optimization-based approaches cover the traditional
mathematical-based problem-solving algorithms of Al
These algorithms can achieve near-optimal solutions for
any given non-deterministic polynomial-time hard (NP-hard)
problems. However, these algorithms are quite complex in
terms of time and space. This section briefly discusses
the most widely used optimization-based AI approaches
for autonomous UAV navigation, namely PSO, ACO, GA,
cuckoo search (CS) algorithm [63], SA, DE, pigeon-inspired
optimization (PIO), Dijkstra’s algorithm, A* algorithm, grey-
wolf optimization (GWQO) [64], and other miscellaneous
algorithms. Moreover, Table 3 shows a comparative analysis
among of these optimization-based Al approaches where
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their main features, time complexities with a number of m
operations, and hyper-parameter counts are highlighted.

A. PARTICLE SWARM OPTIMIZATION (PSO)

Eberhart and Kennedy introduced PSO in 1995 [40]. PSO is
a population-based search algorithm that simulates different
animal groups, such as birds and bees. In PSO, each animal
can be represented as a vector particle in a 3D space. PSO
determines the movement of a particle depending on its
current position and velocity. The velocity of the particle
continues to update based on the optimal position vector
explored by it (Ppesr) and the swarm (Gpesr), as shown in
Fig 5. PSO reaches the optimal point when it achieves its goal
or minimum error possible.

In UAV navigation, PSO considers UAVs as particles and
controls their movement in a 3D space. In [65], Autor Jalal
modified the conventional PSO for offline UAV navigation
while avoiding obstacles. The modified PSO (MPSO)
functions like the conventional PSO; however, an additional
error factor is modeled to ensure convergence. The main
function of the error factor is to convert the infeasible paths
generated by PSO into feasible paths. MPSO relocates and re-
initializes particles that fall within an obstacle boundary for
confirmed optimality. The authors ensured the efficacy of the
MPSO by simulating single and multiple obstacle scenarios.

Similarly, Phung et al. modified the conventional continu-
ous PSO into discrete PSO (DPSO) to solve the UAV path
planning problem in [66]. The authors modeled the UAV
path planning problem as a traveling salesman problem (TSP)
while considering discrete 3D space and obstacles. Moreover,
deterministic initialization, random mutation, edge exchange,
and parallel implementation of GPU techniques were used to
speed up the convergence of the DPSO. In 2018, Huang ez al.
proposed a competition strategy-based PSO (GBPSO) for
selecting the global best path for UAVs in [67]. The proposed
competition strategy compares the current global path with
other global path candidates to select the optimal path for
particles.

B. ANT COLONY OPTIMIZATION (ACO)

Colorni et al. first proposed ACO in 1991 [41] to solve NP-
hard optimization problems. As the name suggests, the food-
searching technique of ants inspired ACO. In the search for
foods, ants use a legacy volatile chemical called pheromone
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FIGURE 6. Ant colony optimization (ACO).

to communicate and collaborate. Initially, ants start searching
for paths towards the source of food and release pheromones
on the way to the source of food. Once an ant reaches the
food source, other ants follow the pheromone traces and
discover other paths to reach the food source. Thus, the
shortest path discovered by the ants will have a higher con-
centration of pheromones, as shown in Fig 6. Moreover, the
concentration of pheromones on the abandoned paths decays
with time.

For autonomous UAV navigation, Cekmez et al. proposed
a multi-colony ACO-based solution while avoiding obstacles
in a 3D space in [68]. According to the authors, multi-colony
ACO overcomes the premature convergence problem caused
by single-colony ACO. Initially, the authors formulated the
UAV navigation problem as a TSP problem, and then multiple
UAV groups searched for optimal routes to the destination.
In multi-colony ACO, the UAVs are responsible for not
only intra-colony but also inter-colony pheromone value
exchange. Similarly, Guan et al. proposed a double-colony
ACO in which pheromones are generated exploiting the GA
in [69].

Jin et al. [70] proposed a combination of an artificial
potential field (APF) and ACO named potential field
ACO (PFACO) to overcome the premature convergence
problem. APF is an obstacle avoidance algorithm that ensures
the optimal speed and safety of the UAV in an environment
with gravitational and repulsive forces. Furthermore, the
APF manipulates the transition probability of a UAV from
one node to another in ACO to improve global searching.
Moreover, the authors used the min-max ant system (MMAS)
to find the best path and the worst path and weaken the worst
path while updating the global pheromone value for faster
convergence.

C. GENETIC ALGORITHM (GA)

The GA is a stochastic optimization algorithm that starts with
a population of randomly produced chromosomes known as
the starting population. Each chromosome gene is a series
of numerical numbers. Each chromosome or individual in
this study reflects a UAV trajectory that is restricted by
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the UAV dynamics. Genetic operations, such as crossover,
mutation, selection, insertion, and deletion, will alter the
population periodically in each generation; the modified
chromosomes will be selected according to a fitness function.
This procedure aims to reduce the fitness function as much
as possible by identifying the chromosome with the near-
minimal fitness value. Thus, the chromosomes achieve a near-
optimal solution. The GA method is thoroughly explained
in [71].

In [71], Bagherian implemented GA to solve the NP-hard
problem of UAV navigation. First, the author encodes the
3D position of the UAV into chromosomes that consist of
the acceleration, climbing angle rate, and heading angle rate
at discrete time steps of a UAV as shown in Fig 7. At the
present time-step, this chromosome is decoded to get 3D
coordinates at the next time-step for the UAV. Then the 3D
coordinate is evaluated using a fitness function that considers
the costs of the distance between two points, total path length,
height, and obstacles. Afterward, the genetic operations are
performed where selection refers to selecting paths, crossover
refers to exchanging path information, mutation deals with
the information loss, and insertion and deletion handle the
path information management.

Tao et al. improved the GA by designing a temporary path
based on the encoding vector, with each individual guidance
including not only the guide point location information but
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FIGURE 8. UAV navigation problem solved with simulated annealing (SA).

also the status variables in [72]. Thus, it keeps track of
whether the guiding point is feasible if it meets the constraint
condition, and whether the path between the connecting point
and the next guide points had the lowest performance cost.
The temporary path is practicable if all the guiding points are
reliable. The encoding method is based on the change in the
UAV yaw angle sequence.

Yang et al. proposed a hierarchical recursive multi-agent
GA (HR-MAGA) in [73]. During the evolution process of
HR-MAGA, agents can detect the environment, communicate
with their neighbors, and decrease their loss by employing
the corresponding operators, who discover a good solution
instantaneously. Moreover, HR-MAGA can optimize the
local path to obtain a more refined path using the hierarchical
recursive process.

Meantime, Gao et al. proposed the opposite and chaos
searching GA (OCGA) to speed up the convergence in [74].
An opposite and chaotic search is used to produce a high-
quality initial population. Chaos searching can span a specific
range of solutions. On the basis of chaotic searching, opposite
searching can provide more suitable reverse sequences.
The convergence speed is also an essential parameter in
optimization. Thus, to accelerate convergence, the authors
proposed a unique crossover technique based on the teaching-
learning-based optimization learning mechanism (TLBO).
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D. SIMULATED ANNEALING (SA)
SA is a continuous-time approximation approach that tends
to converge with the global minimum [48]. Annealing is a
controlled heating and cooling process for metals that mini-
mize the defects at the atomic level. When the metal is heated,
the atoms vibrate and reconfigure themselves with minimum
energy. Afterward, the metal is cooled slowly to ensure that
the configuration has minimum energy. Otherwise, the atoms
can become stuck in a configuration with a local minimum
internal energy. The SA algorithm emulates the same process
to obtain a global minimum for NP-hard problems. The
fundamental strategy for implementing the SA is to select
random points in the surroundings of the present best point
and quantify the cost functions [75]. Then, the UAVs move
from one point to another, comparing the present and next
point values. The Boltzmann-Gibbs distribution probability
density function value named temperature, which determines
the acceptability of a point. Initially, the temperature is
initialized with a very high value, and then it decreases
with each iteration. As the temperature decreases, the
acceptance probability gradually reduces until it reaches zero,
as shown in Fig 8. Thus, UAVs achieve their goals. However,
SA optimization is a time-consuming process.

In [76], Behnck et al. proposed a modified SA algorithm
that interprets multi-UAV navigation problem as multiple
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TSP (mTSP). The authors stochastically chose the points of
interest so that UAVs travelled smaller distances. Moreover,
the energy consumption was considered within the tempera-
ture value. Later, Liu and Zhang [77] incorporated SA with
ACO to solve the navigation problem, where the temperature
value of SA depends on the pheromone value of ACO. In their
approach, the optimal path must satisfy both ACO and SA
conditions, ensuring an obstacle-free shortest path for the
UAVs. Recently, Xiao et al. proposed a UAV path planning
algorithm utilizing SA and a grid map in [78]. Their primary
goal was to develop a 3D reconstruction of an area using
multiple UAVs circulating on an optimized path energy-
efficiently. However, the authors considered UAVSs flying at a
fixed altitude and did not consider obstacles while optimizing
the flying paths.

E. PIGEON-INSPIRED OPTIMIZATION (PIO)

Pigeons are the most common bird on the planet, and
Egyptians previously employed them to deliver messages and
numerous military operations. Pigeons use three homing aids
to find their way home: the magnetic field, the sun, and
landmarks [79]. Similarly, the fundamental PIO algorithm
is based on the phenomena of pigeon self-navigation and is
primarily determined by two operators: the map and compass
operator and the landmark operator. Pigeons in the wild
go through several stages of nerve feedback when homing
and use magnetic fields and landmarks to locate their flight
path. The magnetic field factor, which occurs in the initial
stages, is represented by the map and compass operators [80].
The map and compass operator helps the virtual pigeons
locate themselves and calculate their velocity. The landmark
operator helps to identify the global center coordinates for
autonomous navigation as shown in Fig 9. Although the
standard PIO has been shown to be superior in several areas,
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it still has significant flaws, such as a lack of diversity and
immaturity.

In [81], Zhang et al. proposed a social-class PIO (SCPIO)
to overcome the shortcomings of traditional PIO for
autonomous multi-UAV navigation. The authors divided
the pigeons into different layers of classes, where lower-
class pigeons followed the top-class pigeon. Pigeons can
also go from one class to another, depending on the
obtained optimal path. Hu er al. [82] proposed an adaptive
operator quantum-behaved PIO (AOQPIO) with adaptive
operators to overcome the problems of PIO for autonomous
UAV navigation. Moreover, the authors introduced chaotic
strategies to generate initial solutions in advance to obtain
a wider solution space coverage. Chaos is an apparently
random motion that appears in a critical dynamic system.
The features of chaotic motion are (1) high sensitivity to
starting values, (2) ergodicity of motion trajectories, and (3)
randomization.

F. CUCKOO SEARCH (CS) ALGORITHM

The CS algorithm replicates the natural egg-laying strategy of
the parasitic cuckoo birds. The cuckoo searches for a nest by
random walk, utilizing Levy flight, and lays eggs. Frequent
short flights and infrequent long flights utilizing the Levy
distribution are considered to be Levy flights [83]. The CS
algorithm mainly follows three rules: each cuckoo randomly
chooses a nest and lays one egg at a time, the nest with
the best quality egg is passed to the next generation, and
the total number of host nests is fixed with egg uncertainty
probability [0, 1] [63]. Egg uncertainty refers to discovering
of the cuckoo eggs by a host bird. In this case, the host can
throw eggs or leave the nest for good. In the case of UAV
navigation, UAVs are the cuckoo, and the coordinates are the
nests. UAVs randomly choose a nest or coordinate to reach
the target location. Target location can remain same or change
depending on the UAV’s mission. If the coordinate is blocked
by an obstacle, the UAV chooses another nest or coordinate
to reach the target. Otherwise, the coordinate is considered
as the best solution and carried to next generation, where its
used to find the next coordinate.

Xie and Zheng proposed an improved CS algorithm
combining genetic operators for UAV path planning in [84].
The authors incorporated crossover and mutation operators of
the GA with the CS algorithm to speed up the convergence of
the algorithm and avoid local optimums. In contrast, Hu et al.
implemented a conventional CS algorithm for UAV trajectory
planning in an urban area where each egg represents a
trajectory and each trajectory includes multiple coordinates
in [85]. To reduce the computational load, the authors used
the Chevyshev collocation points to represent the coordinates.
Moreover, they showed that with optimal parameters, the CS
can outperform the PSO algorithm.

G. DIJKSTRA'S AND A* ALGORITHMS
Dijkstra’s algorithm is a weighted graph method that calcu-
lates the shortest distance between two nodes. Edsger Wybe
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FIGURE 10. A* algorithm.

Dijkstra, a Dutch mathematician and computer scientist,
created this algorithm. Algorithms are employed in a variety
of applications, including navigation [86]. A starting point is
chosen in the Dijkstra’s algorithm. All the other nodes are
regarded as infinitely distant. As the nodes are approached,
the distances are updated. Dijkstra’s algorithm examines
neighbors leaving a node at each step, and if a shorter path
is discovered, the distances are updated.

Similarly, the A* algorithm is a hybrid of Dijkstra’s
algorithm and the greedy best-first-search because it can
not only discover the shortest path but also employ a
heuristic to steer itself [87]. The A* combines the information
used by Dijkstra’s algorithm (favoring vertices near the
beginning point) with the information used by greedy best-
first-search (favoring vertices close to the target) as shown in
Fig 10. Many authors in [88]-[90] have proposed different
modified versions of the Dijkstra’s and A* algorithms that
consider target tracking, and real-time environment updates
for obstacle avoidance for autonomous UAV navigation.
However, these two algorithms are quite complex compared
to other optimization-based approaches.

H. DIFFERENTIAL EVOLUTION (DE)

Differential evolution (DE) is a population-based optimiza-
tion method that was first proposed in 1997 [51]. It combines
the parent or initial points with a few additional points
from the overall population of paths to create new solutions.
Each solution has a group of variables that are subjected
to mutation, selection, and crossover search operators to
generate new solutions, as shown in Fig 11. DE only
considers solutions that are better than their parents and
passes them to the next generation. DE is straightforward to
implement in real-life applications, such as UAV navigation,
owing to its minimal control parameters.

Ghambari et al. proposed a hybrid evolutionary algorithm
combining A* and DE algorithms to optimize the NP-hard
problem of UAV navigation in [91]. Here, the DE algorithm
is responsible for exploring and exploiting the entire flying
space, and generating multiple connected regions between
the start and destination points while ensuring the shortest
distance from the straight-line path in an admissible space.
In contrast, the A* algorithm searches for the shortest paths
in every region generated by the DE algorithm. Although
this hybrid method decreases the overall computational
time, higher computational power is required to compute
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FIGURE 11. Differential evolution (DE) for UAV navigation.

the two algorithms simultaneously. In [92], Yu er al
proposed a constraint DE (CDE) to solve the UAV path
planning problem in disaster scenarios where a mutation is
performed selectively for better convergence. They modeled
the UAV path planning with different nonlinear constraints
and ranked all the probable traveling points depending on
the fitness values and constraint violation. The CDE only
selects points that have high fitness values and minimum
constraint violations. Then, the authors proposed the knee-
guided DE algorithm (DEAKP) for autonomous UAV
navigation in [93], where the knee point depends on minimum
Manhattan distance (MMD). The DEAKP algorithm reduces
the overall computational complexity by focusing on knee
solutions instead of Pareto front solutions in constrained
multi-objective optimization scenarios. It identifies the knee
solution based on MMD and generates offspring for next-
generation combing with non-dominated points.

I. GREY WOLF OPTIMIZATION (GWO)

Grey wolf optimization was first proposed in [64] in
2014 based on the prey hunting strategy of grey wolves. Grey
wolves have a social hierarchy where they are divided into
alpha, beta, delta, and omega groups. Alpha group wolves
are the leaders, and other groups follow and help them make
decisions. Initially, the alpha, beta, and delta groups start
searching for the static target stochastically, and the omega
wolves wait for the order to join. The decision to find the
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FIGURE 12. Grey-wolf optimization (GWO).

target of the alpha group has the highest priority compared
to the beta and delta groups. To identify the exact position
of the target, the alpha, beta, and delta wolves estimate the
distance between their current position and the target position
as shown in Fig 12. After locating the target, the wolves send
signals to other wolves to join them during target hunting.
GWO has only two parameters, A, which is responsible for
exploration, and exploitation and C, which helps the wolves
avoid obstacles during the search.

In [94], Zhang et al utilized conventional GWO to
solve the 2D path planning problem of unmanned combat
aerial vehicles (UCAVs) while ensuring minimum fuel usage
and zero threat. The authors compared GWO with other
optimization algorithms such as ACO, PSO, and CS in
three different scenarios. Following this, Dewangan et al.
implemented conventional GWO to solve the 3D path
planning problem of UAVs while avoiding obstacles in [95].
The authors compared 3D GWO with other optimization
methods for three different maps. Qu et al. proposed a
hybrid GWO algorithm that combines a modified symbi-
otic organisms search (MSOS) named HSGWO-MSOS for
UAV path planning in [96]. The authors combined GWO
and MSOS for fast convergence and efficient global and
local environmental exploitation. Finally, they analyzed the
complexity of HSGWO-MSOS and showed that HSGWO-
MSOS outperformed the SA algorithm.

J. MISCELLANEOUS ALGORITHMS

In addition to the aforementioned optimization-based
approaches, several Al techniques are available, and are
discussed in this section. However, there has been very little
or no significant and simple study utilizing these methods in
recent years.

1) IMPROVED INTELLIGENT WATER DROP ALGORITHM
The water drop visits only neighboring cells instead of soil
probability-based movement. This algorithm utilizes both
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soil and the distance from the destination to guide the water.
Moreover, the global soil update rate increases with the
evolution of the water-dropping path, affecting local and
global path searching [97].

2) APF-BASED RRT-CONNECT

The APF-based target attraction function is integrated with
the bare rapidly exploring random tree (RRT) connect
algorithm that helps a random tree grow in the direction
of the goal. This function reduces the overall search space
and complexity of the algorithm, which ensures near-optimal
convergence of the path planning problem [98].

3) FUZZY LOGIC

A fuzzy logic-based solution is proposed to control the
leader-follower formation of a swarm of homogeneous UAVs
and enable the swarm to avoid collisions and maintain the
formation depending on the leader’s moves [99].

4) FIREFLY FUZZY LOGIC

A hybrid firefly fuzzy controller is proposed where the
firefly algorithm estimates the intermediate turning angle
considering the Euclidean distance from the obstacles and
goal. Finally, the fuzzy logic confirms the final turning angle
and speed, validating the measured distances using the firefly
algorithm [100].

5) GLOW-WORM SWARM OPTIMIZATION

In glow-worm optimization, worms move toward another
worm with a higher luciferin content. UAVs first identify the
obstacles around them and search for higher luciferin content
in the neighboring points in the case of navigation. The point
nearest to the goal has the highest luciferin content. The
luciferin content is distributed randomly initially, and then it
decays and gets updated with time [101].

6) MODIFIED CENTRAL FORCE OPTIMIZATION

The central force optimization (CFO) method depends on the
law of gravity among particles. In UAV navigation, each point
acts as a particle, and higher mass particles attract the UAV.
However, CFO tends to become stuck in local minima and has
a poor memory-less searching capability. The search strategy
of the PSO and mutation capability of the GA are introduced
in the modified CFO to mitigate the shortcomings [102].

7) UNSUPERVISED SA

The UAV flying area is divided into multiple small areas for
multiple UAVs. Then, the target points of the entire flying
area are clustered using the k-means algorithm. Finally, each
UAV autonomously flies towards the targets using the SA
algorithm in each flying area [103].

8) IMPROVED T-DISTRIBUTION EVOLUTION ALGORITHM
An evolutionary algorithm based on an improved
T -distribution is proposed for autonomous UAV navigation
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with little or no prior knowledge of the flying area.
A directional perturbation operator obtained by the Sigmoid
function is introduced to the improved T-distribution
evolution algorithm to reduce the computational complexity,
increase the convergence rate and make the algorithm more
robust [104].

9) BIO-INSPIRED PREDATOR-PREY

The main concept of the predator-prey algorithm is that in a
search space, there are many prey representing solutions, and
the predators (e.g., UAVs) search for prey with the highest
fitness value. Whenever the predator consumes a solution,
new solutions are generated around the predator. Moreover,
mutation and crossover are the main parameters that help the
predators reach the optimal solution [105].

10) PREDATOR-PREY PIO

The predator-prey characteristics are incorporated with the
traditional PIO to find the best optimal path and speed up
the convergence of the algorithm. The goal of predator-
prey is to eliminate the solutions with the most negligible
fitness value in the neighborhood, increasing the diversity of
the population. Thus, UAVs tend to find optimal solutions
faster [106].

IV. LEARNING-BASED APPROACHES

Learning-based approaches cover the traditional model-
based Al algorithms. These algorithms can achieve near-
optimal solutions for any given NP-hard problem with
very low complexity. This section briefly discusses the
most widely used learning-based Al approaches for UAV
navigation: reinforcement learning (RL), deep learning
(DL), asynchronous advantage actor-critic (A3C), and deep
reinforcement learning (DRL) utilizing the Markov deci-
sion process (MDP), Partially Observable MDP (POMDP),
or convolutional neural network (CNN). Moreover, Table 4
summarizes their main features, goals, time complexities with
a number of operations m, number of layers, and number
of hyper-parameters and presents a comparative analysis of
these learning-based Al approaches.

A. REINFORCEMENT LEARNING (RL)

Reinforcement learning is an effective and widely used Al
technique that learns about the environment by performing
various actions and determining the best operating strategy.
An agent and environment are the two fundamental com-
ponents of RL. Using the MDP, the agent interacts with
the environment and determines which action to take [107].
At each time step ¢, the agent observes its current state s’ in
the environment and takes action a’, as depicted in Fig. 13.
The environment then rewards the agent with reward r’.
Thereafter the agent moves to a new state s'*!. The agent’s
principal aim is to establish a policy m that collects the
possible reward from the environment. The agent also seeks
to maximize the predicted discounted total reward defined by
max[ZtT:0 8rl(s', m(s"))] in the long run, where the discount
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FIGURE 13. Reinforcement learning (RL) [108].

factor 6 € [0, 1]. When the state transition probabilities are
known in advance, a Bellman equation called the Q-function
(1) is built using the discounted reward. Initially, the agent
investigates each state of the environment by performing
various actions and creating a Q-table for each state-action
pair using the Q-function. The agent then begins to exploit
the environment by performing actions that have the highest
Q-value in the Q-table.

O, a)=(1—a)x Q(s", a")
+alr + 8(max Q*(s' L, a' )], (1)

Because of its self-learning capabilities and energy effi-
ciency, RL is an excellent option for autonomous UAV nav-
igation systems. The autonomous UAV navigation systems
that have been used in the past are inefficient and sluggish.
If RL is employed, each UAV acts as an agent and tries to
fly towards the target. The target can be fixed or dynamic
depending on the system model. The closer the UAV gets to
the target, the more rewards it receives from the environment.

Therefore, Pham et al. proposed a Q-learning algorithm
in [109] for autonomous UAV navigation where Q-learning
controls the proportional—-integral-derivative (PID) controller
parameters to navigate the UAV in a 2D indoor space. Later
in [110], the authors upgraded Q-learning with function
approximation based on fixed sparse representation (FSR)
for better convergence. In contrast, Chowdhury et al. [111]
proposed a received signal strength (RSS)-based Q-learning
algorithm utilizing e-greedy policy for indoor SaR. To make
the UAVs more efficient, Liu er al. [112] proposed a double
Q-learning solution for navigating a UAV base station
autonomously to serve ground users in 2D space. In [113],
Colonnese et al. implemented a Q-learning algorithm
for UAV path planning to improve the quality of expe-
rience (QoE) of ground users. The authors considered
autonomous visits to charging stations to maintain inter-
rupted communication. Liu et al. proposed a multi-agent
Q-learning algorithm for UAV deployment and navigation
to satisfy user QoE in a 3D space [114]. The authors
separated the flying zone of each UAV by utilizing the
GA and k-means algorithms. Furthermore, in [115], the
authors incorporated the prediction of user movement for
advance path planning utilizing an echo state network. Later,
Hu et al. proposed a multi-agent Q-leaning-based real-time
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TABLE 3. Comparative study of different optimization-based Al approaches.

Hyper-
Algorithm Reference | Type Feature Complexity parameter
Count
(65] MPSO Cov.en the 1nfea§1ble paths generated by PSO into O(mn?) 6
PSO feasible paths using an error factor
(6] DPSO Takes dlSC%‘ete steps to propagate and multiple O(mn + mn?) 5
augmentations are done for better convergence
: 3
(67] GBPSO Compares‘ the current global path with the other global O(2m2n 7
path candidates to select the optimal one +mn?)
(68] Multi-ACO Solves the TSP problem and both 1.ntra-colony and inter- O(mn?) 8
ACO colony pheromone values are considered
[69] Double-ACO Utilizes GA to generate the initial population O(mn?) 9
(70] PEACO Utilizes MMAS and APF for better global searching, O(mn?) 4
fast convergence
Chromosomes are made up of the acceleration, climbing 9
(711 GA angle rate, and heading angle rate of the UAVs O(mn?) N/A
GA (72] Improved-GA Consists of an encoding vector based on the UAV yaw O(mn?) 5
angle sequence
[73] HR-MAGA Uses a hierarchical recursive process to determine a refined path | O(mn?) 7
[74] OCGA Utilizes TLBO and OC searching for fast convergence O(mn?) 4
[76] Modified-SA Stochastically chooses the POIs O(mn) 4
SA [77] SA-ACO Hybrid algorithm O(mn?) 8
[78] Grid-based SA | Grid map based SA for 2D UAV navigation O(mn?) 4
[91] ADE Hybrid algorithm O(mn +mn?) | 4
DE (92] CDE Mutation is done selectively for better convergence and O(2n + log(n) 6
multiple ranked constraints are considered +nd)
(93] DEAKP Focuse§ on knee .solu.tlor'ls mste.ad.of t.he Pareto front in O(mn?) 4
constrained multi-objective optimization scenario
PIO [81] SCPIO Hierarchy social class is utilized O(mn?) 7
(82] AOQPIO ngh sen'smwty to startlr.lg v.alues, ergodicity of motion O(2mn?) 6
trajectories, and randomization
cs [84] Improved-CS Utilizes crossover and mutation operators of GA O(mn) 7
(85] cs Use's Chevyshev collocation points to represent the co- O(2mn?) 4
ordinates
A [88] Dijkstra Uses Hamiltonian and Eulerian path model O(mn +mn?) | N/A
. . . O(mn3+
k
and Dijkstra | [89] DEA Hybrid algorithm mn? + mn) N/A
[90] A* Real-time A* with multi-step search O(2mn?) 5
[96] ;séc(;)\;vo- Hybrid algorithm O(mn?) 3
GWO [94] 2D-GWO Ensures minimum fuel usage and zero threat O(2mn* +mn) | 2
[95] 3D-GWO Localization and obstacle avoidance O(mn +mn?) |2

decentralized trajectory planning algorithm in which multiple
UAVs perform sense-and-send tasks assigned by the nearest
BS in [116]. For better convergence and low complexity,
the authors reduced the state-action space and incorporated
a model-based reward system. Zeng and Xu proposed a
Q-learning algorithm utilizing the temporal difference (TD)
method to achieve an optimal solution for cellular-connected
autonomous UAV navigation in [117]. In addition, the authors
discretized the state-action space and introduced a linear
function approximation with tile coding to handle large state-
action space.

B. DEEP REINFORCEMENT LEARNING (DRL)

Deep reinforcement learning (DRL) uses Q-values in the
same way as Q-learning, except for the Q-table component,
as illustrated in Fig. 14. The Q-table is replaced with a deep
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FIGURE 14. Deep reinforcement learning (DRL) [108].

neural network (DNN) to ensure RL scalability. The primary
objective of the DNN is to learn from the data to avoid
performing manual calculations every time. A DNN is a non-
linear computational model that can train and execute tasks
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TABLE 4. Comparative study of different learning-based Al approaches.

Number Hyper-
Algorithm | Reference | Type Feature Goal Complexity parameter
of layers
count
A fixed rewarding system, e-greedy policy, co-ordinate
[109] . based state-action space, Q-learning controls the PID controller . -
[110] Q-learning parameters to navigate, 2D space, includes function approximation Indoor navigation O(mn?) N/A 6
based on FSR
RL [112] Double ] A dynan?lc rewarding system, e-greedy policy, goal-based Temporary BS O(mn) N/A 3
Q-learning state-action space, 2D space support
[113] Q-learning A dyna[plc rewarding system, e-greedy pollF}'/, goal—bas;d ] Improving QoE N/A N/A N/A
state-action space, 2D space, autonomous Vvisit to charging points
. Real-time decentralized path planning, model-based rewarding
Multi-agent . - Perform sense .
[116] - system, e-greedy policy, location-based reduced state- O(mn) N/A 3
Q-learning . and send tasks
action space, 3D space
. Selects trajectory predicting user movement, co-ordinate based Data transmission
[114] Multi-agent . . . . .
- state-action space, considers energy consumption, slow convergence, | with minimum O(mn) N/A 3
[115] Q-learning X R
dynamic rewarding system power
[17] D learning Dpcre}e statf:—acuon space, includes a linear funcl%on approximation UAY—BS O(mn?) N/A 4
with tile coding for large state-space, e-greedy policy navigation
[11] O-learning RSS—baseq state-action space, dynamic rewarding system, e- Indoor SaR O(mn?) N/A 3
greedy policy, obstacle avoidance
MDP-based Discrete action space, action approximation using ANN, duel neural Slm'ulta'neous uav
[118] . navigation and N/A 4+5 3
Dueling DDQN | network . .
radio mapping
[119] MDP-based RSS-based state space, e-greedy policy, dynamic rewarding MIMO-based N/A 6 3
DQN system UAV navigation
MDP-based Discrete action space, depends on number of UAVs dispatched, Urban vehicular
[120] . S L N/A 4 5
DQN e-greedy policy, prioritized replay memory connectivity
DRL MDP-based Centralized training, e-greedy policy, multiple agent shares
21] MADQN individual locations, discrete action space Aol-aware WPCN | N/A 4 4
MDP-based Extremely sparse rewarding system, obstacle avoidance, LwH for UAV navigation
[21] in complex N/A 6 7
DQN better convergence .
environment
MDP-based - - . . UAV Coverage
[122] DDON Utilizes CNN, map-based navigation, considers energy consumption Path Planning N/A 8 7
[123] MDP-based Object detection aided, object-based state space, binary rewarding Collision free N/A 16 3
DQN system, e-greeady policy UAV navigation
MDP-based Considers user daFa freshness, UAV power consump}lon along with UAV-BS
[124] DON UAV coordinates in the state space, utilizes stochastic Navieation N/A 4 8
gradient descent to train DRL g
[125] MDP-based TD3fD based policy improvement, CNN-based DQN, obstacle Obstacle free N/A 10 8
DQN avoidance UAV navigation
POMDP-based | Both MDP and POMDP is utilized for global and local planning, -
[126] DRL TRPO handles the policy improvements Indoor navigation N/A 4 6
CNN-based DQN, map-based navigation, modified Q-function, Autonomous
[27] EDDQN obstacle avoidance UAV exploration N/A 14 7
POMDP-based . L . UAV-assisted .
[128] DDON CNN-based DDQN, grid-based navigation and searching data harvesting N/A 10 6
[129] A3C-based Prioritized experience replay, multi-agent DDPG for policy UAV-assisted N/A 5.6 .
[130] DRL improvement, pre-defined UAV navigation pattern MEC 9 °
A3C —
UAV navigation
[131] Fast-RDPG LSTM-based DRL, fast convergence, online algorithm in complex N/A 6 7
environment
[132] A3C-based Modified policy gradient, considers energy consumption, e- Distributed Multi- N/A 4 .
DRL greedy policy, decentralized multi-UAV navigation UAV navigation °
UAV navigation
[133] CNN IDSIA dataset, CNN with ReLU activation within unstructured | N/A 9 5
DL Eii/ Trail
[134] CNN Trail following, disturbance recovery, obstacle avoidance Lo N/A 6+6 5
Navigation
[135] DNN IDSIA dataset, trail following and steering UAV navigation | 1)\ 12 5
within forest
[136] DCNN-GA Xcepthn—bas_ed model, GA—ba'sed hyper-parameter tuning, Inonr _UAV N/A 78 6
navigation using transfer learning navigation

such as decision-making, prediction, classification, and visu-
alization, similar to the human brain structure [108]. Unlike
RL, there are different decision-making processes in DRL:

1) MARKOV DECISION PROCESS (MDP)
DP is a decision-making process generally utilized by RL.
However, DRL can also utilize the MDP environment for

VOLUME 10, 2022

UAV navigation. In this case, two DNNs are used to train
the agent. One DNN acts as the target DNN, and the other
is the policy DNN. Zeng et al. implemented an MDP-based
dueling deep DQN algorithm in [118] for simultaneous UAV
navigation and radio mapping in 3D space. The authors
discretized the action and used the ANN to approximate
the flying direction. In contrast, Huang ef al. [119] utilized
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massive MIMO communication to guide UAVs on their
optimal path using MDP-based DRL. Similarly, in [124],
Abedin et al. proposed an MDP-based DRL approach
for UAV-BS navigation considering data freshness and
energy-efficient. The authors derived the UAV-BS navigation
problem as an NP-hard problem using DRL with experience
reply memory.

Oubbati et al. proposed an MDP-based DRL algorithm
for the urban vehicular network to minimize the average
energy consumption and maximize the vehicle coverage with
multiple UAVs [120]. They considered centralized training
of the UAVs to cover as many vehicles as possible with
the minimum number of UAVs while avoiding obstacles
and collisions. Oubbati et al. also proposed an MDP-
based multi agent DQN (MADQN) algorithm where two
UAVs fly over several Internet of Thing (IoT) devices to
minimize the age of information (Aol) and enable wireless
powered communication networks (WPCN) [121]. They
utilized centralized training of the UAVs to maximize energy
efficiency and avoid a collision.

Moreover, Wang et al. [21] proposed an autonomous UAV
navigation system while avoiding obstacles by utilizing
MDP-based DRL with extremely sparse rewards utilizing
non-expert helpers (LwH). LwH generates a policy before
DRL training, which helps the agent to reach optimality by
setting dynamic learning goals. Theile et al. [122] proposed
a CNN-based double DQN (DDQN) for UAV coverage path
planning considering energy consumption and map-based
movement. In contrast, He et al. proposed a vision-based
DRL algorithm is used to solve the navigation problem
in which the navigation problem is modeled as an MDP,
a CNN is used, and a twin delayed deep deterministic
policy gradient (TD3) from a demonstration is used [125].
Chen et al. proposed an object detection-assisted MDP-based
DRL for collision-free autonomous UAV navigation in [123].
The authors considered the positions of the objects, UAV
orientation angle and velocity, and 2D coordinates in the state
space for faster convergence.

2) PARTIALLY OBSERVABLE MARKOV DECISION

PROCESS (POMDP)

POMDP is an extension of the MDP, where the agent
can observe the environment without knowing the actual
state and take action. POMDP considers all possible
uncertainties of the environment to estimate the actions.
POMDP comprises observation space, state space, and action
space. It is a time-consuming process and can provide
precise optimality compared with MDP. Thus, Walker et al.
proposed a POMDP-based DRL framework for autonomous
UAV indoor navigation in [126]. Here the agent utilizes
MDP for global and POMDP for local path planning while
avoiding obstacles. In addition, the authors used trust region
policy optimization (TRPO) to control the policy upgrading
during learning. In [127], Pearson et al. used POMDP to
develop vision-based DRL algorithm for autonomous UAV
navigation. The authors proposed an extended double deep
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Q-learning (EDDQN) method, including a modified
Q-function that uses the surrounding image to navigate the
UAV to explore the environment. Similarly, Theile et al.
proposed a POMDP-based DDQN for autonomous UAV
navigation. The main goal of the UAV is to move around and
harvest data from a certain area by utilizing the map of the
area.

C. ASYNCHRONOUS ADVANTAGE ACTOR-CRITIC (A3C)
A3C is an advanced DRL algorithm where each agent
consists of two networks: an actor network and critic network.
A3C is commonly used in multi-agent environments. The
actor network is responsible for observing the current state
of the environment and selecting actions. After executing
the actions, the agents obtain rewards. Collecting all the
states, actions, rewards, and next states of all UAVs,
the critic network produces the Q-values and updates the
actor network using a deep deterministic policy gradient
(DDPG). A3C is highly efficient in multi-UAV scenarios.
Thus, Wang et al. [129], [130] proposed an A3C-based DRL
framework for autonomous UAV navigation to support
mobile edge computing. Each UAV consists of a critic and
actor network. All the actor networks in the UAVSs are trained
using the same data from the entire network. However, critic
networks are trained using individual UAV data utilizing a
multi-agent DDPG. Moreover, Wang et al. [131] proposed a
fast recurrent deterministic policy gradient algorithm (fast-
RDPG) to navigate UAVs in a large complex environment
while avoiding obstacles. Fast-RDPG is an A3C-based DRL
online algorithm that can easily handle POMDP problems
and converge faster. In contrast, Liu ef al. proposed a an
A3C-based DRL algorithm for decentralized energy-efficient
autonomous UAV navigation for long-term cellular coverage
in [132]. The authors used a modified policy gradient to
update the target network by considering the observations of
the actor network.

D. DEEP LEARNING (DL)

Deep learning is the common tool for vision-based UAV
navigation. Deep learning comprises only the deep neural
network (DNN) part of the DRL. Considering recent
improvements in a variety of tasks such as object iden-
tification and localization, image segmentation, and depth
recognition from monocular or stereo images, the DNN
method has been successfully utilized by several researchers
for the identification of roads and streets on key routes and
metropolitan regions by focusing on achieving a high level
of autonomy for self-driving cars [133]. DNNs can be used
to achieve autonomous navigation for UAVs in extremely
difficult environments. There are different types of DNNs,
such as fully connected NN (FNN) and CNN.

Menfoukh [133] proposed an image augmentation
method utilizing a CNN for vision-based UAV navigation.
Back et al. proposed vision-based UAV navigation utilizing
CNN in [134], where UAVs perform trail following,
disturbance recovery, and obstacle avoidance. In contrast,
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Pearson et al. [135] proposed autonomous trail following
and steering for UAVs by utilizing real-time photos and
CNN. For indoor navigation, Chhikara et al. proposed a
GA-based deep CNN (DCNN-GA) architecture in which the
hyper-parameters of the neural network are tuned using GA.
The trained DCNN-GA was utilized for autonomous UAV
navigation using transfer learning.

E. MISCELLANEOUS LEARNING ALGORITHMS

In addition to the aforementioned learning-based approaches,
several other Al techniques exist. For example, proximal pol-
icy optimization [137], Monte Carlo [138], linear regression,
and deep deterministic policy gradient. However, there are
limited and insignificant studies utilizing these methods.

V. FUTURE RESEARCH DIRECTIONS

This section discusses and highlights future possible research
directions based on the present research trends described in
the previous sections. Previous sections have summarized and
presented a comparative study of different AI approaches
implemented by researchers. The Al sector is growing, and
many efficient Al approaches have not yet been explored
adequately for autonomous UAV navigation. The open
research issues are summarized below.

o New approaches: Federated learning (FL) is at the
top of the list of new approaches. The goal of FL is
to train an Al model in a distributed manner across
multiple devices using local datasets without sharing
them. In addition, FL prevents cyberattacks naturally,
as UAVs do not require any data sharing. FL can be
integrated with any Al algorithms for autonomous UAV
navigation, and it reduces the space and time complexity
by utilizing central learning. However, FL has not yet
been implemented yet for autonomous UAV naviga-
tion, which necessitates its exploration. In addition,
the implementation of ontology-based approaches for
navigating a UAV swarm is still not explored properly.
Karimi et al. utilized an ontology-based approach to
navigate robots in a construction site in [139] which can
be modified to use in UAV swarm navigation in future
research.

o Energy consumption: UAVs use batteries as their
primary power source to support all activities, including
flight, communication, and processing. However, the
capacities of UAV batteries are insufficient for extended
flight. Many researchers have applied different algo-
rithms, such as sleep and wake-up schemes, incorporat-
ing mobile edge devices for external computing, and use
of solar, to optimize the energy usage of UAVs [140].
Solving the energy issue using energy harvesting while
flying is a direction for future research. However,
an autonomous visit to a charging station utilizing Al
can also solve this issue.

o Computational power: UAVs are very small in size
compared to other vehicles. Thus, their memory and
energy capacities are low, which gives them a low
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computational power. In contrast, the implementation
of both the optimization-based and learning-based Al
approaches requires high computational power. Over-
coming this issue remains an open research problem.
Developing efficient Al approaches with low compu-
tational power consumption can be a key solution to
this problem. Thus, this area needs to be explored
adequately.

« Physical threats: Physical threats are very recurrent
when it comes to surveillance and SaR UAV missions.
Many Al approaches have been previously imple-
mented for obstacle avoidance. However, there is no
existing solution that avoids sudden physical threats.
Consequently, Al-based solutions for physical threat
avoidance require an in-depth investigation.

o Fault handling: Faults occur frequently in moving
vehicles. The handling of software faults is very easy to
achieve with an onboard emergency program. However,
Al-based solution for faults that are difficult to handle
are lacking, such as hardware problems, equipment
failures, and inter-component communication failures.
Therefore, this area remains an open research problem.

VI. CONCLUSION

Autonomous UAV navigation has introduced great flexibility
and increased performance in complex dynamic surround-
ings. This survey highlights UAVs’ essential characteristics
and types to familiarize the reader with the UAV architecture.
Furthermore, the UAV navigation system and application-
based classification were summarized to make it easier for
researchers to grasp the concepts introduced in this survey.
In terms of optimization-based and learning-based methods,
the fundamentals, operating principles, and critical features
of numerous Al algorithms applied by different researchers
for autonomous UAV navigation were described. Different
optimization-based approaches such as the PSO, ACO, GA,
SA, PIO, CS, A*, DE, and GWO algorithms were analyzed
and highlighted. Many researchers have modified these
methods according to their requirements to achieve optimal
objectives.

In addition, this survey categorized and analyzed learning-
based algorithms such as RL, DRL, A3C, and DL. The
researchers utilized different neural networks, learning
parameters, and decision-making processes to fulfill their
objectives. After analyzing all Al approaches, comparative
studies were presented comparing all the methods from the
same ground. In summary, various resources and data related
to autonomous UAV navigation and Al are available to
further research and development. Furthermore, there is a
scope of improvement and novel ideas in different scenarios,
such as big data processing, computing power, energy
efficiency, and fault handling. Thus, this survey highlights
future research directions to speed up the present research
on Al-based autonomous UAV navigation. Finally, Al can
be computationally expensive, but it increases the overall
performance of UAVs in terms of significant parameters,
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such as energy consumption, flight time, and communication
delay, in a complex dynamic environment for any critical
mission.
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