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ABSTRACT Bridge crack is one of the critical optical and visual information to judge the health state of
bridges. The bridge crack detection methods based on artificial intelligence are essential in this field, but
the current approaches are not satisfactory in terms of speed and accuracy. This study proposes a novel
multi-scale crack detection network, called MSCNet, comprising a texture enhancement mechanism and
feature aggregation to enhance the visual saliency of the objects in the background for bridge crack detection.
We use Res2Net as the backbone network to improve the depth information expression ability of the cracks
itself. Because the edge property of bridge cracks is prominent, to make full use of this visual feature,
we use a texture enhancement module based on group attention to capturing the detailed information of
cracks in low-level features. To further mine the depth information of the network, we use a cascade fusion
module to capture crack location information in high-level features. Finally, to fully utilize the characteristic
information of the deep network, we fuse the low- and high-level features to obtain the final crack prediction.
We evaluate the proposed method compared with other state-of-the-art methods on a large-scale crack
dataset. The experimental results demonstrate the effectiveness and superiority of the proposed method,
which achieves a precision of 93.5%, recall of 94.2%, and inference speed of over 63 FPS.

INDEX TERMS Crack detection, deep learning, feature aggregation, grouping attention mechanism, texture
enhancement.

I. INTRODUCTION
Bridges are an important part of traffic lines and mainly used
for railways, highways, channels, pipelines, and people to
cross rivers, valleys, or other obstacles. However, bridges
suffer from damages due to various natural or human factors.
Among the damages, crack formation is a common problem
affecting bridge services. Cracks in a bridge accelerate corro-
sion of the armature, resulting in deterioration of the bridge
structure [1]. Furthermore, cracks affect the integrity, dura-
bility, and seismic performance of a bridge and considerably
reduce the bridge quality [2]. Hence, prompt detection and
repair of cracks are essential for the engineering commu-
nity, national government administrative services, and bridge
construction companies to maintain the bridges in a healthy
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state. Among the nondestructive evaluation technologies for
bridge health monitoring, visual inspection is the most used
method [3]. However, because the visual detection technol-
ogy alone is not sufficient to evaluate the internal condition
of bridge structural members, other in-depth methods should
be introduced for a more comprehensive inspection. Research
has shown that the surface crack is the most obvious index of
possible deterioration or damage of structures; therefore, the
detection of surface cracks is essential for timely evaluation
of the health status of bridges [4].

The conventional visual inspection method depends on the
naked-eye observation by maintenance personnel. This man-
ual crack detection method is not only time-consuming and
labor-intensive but also lacks in safety. In addition, the inspec-
tion results are highly dependent on the maintenance person-
nel’s subjective judgment, possibly leading to oversight or
inaccurate inspection [5], [6]. With the vigorous development
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of digital cameras and image processing technology, many
image-based crack detection methods have been proposed.
Sharma et al. [7] presented a model based on the support
vector machine to detect concrete cracks. Talab et al. [8]
used several simple image filters to design a multi-sequential
image filter to observe cracks. Santos et al. [9] presented a
mathematical morphology-based model for detecting cracks
on concrete structures. Prasanna et al. [10] developed an
automatic crack detection algorithm called STRUM (spa-
tially tuned robust multifeatured) classifier to detect cracks
on the bridge surface. Although these methods improve the
detection accuracy and speed compared with traditional crack
detection technologies, they cannot cover all the unforeseen
circumstances in complex environments.

Convolution neural networks (CNNs) have made signifi-
cant progress in object detection [11]–[15]. As an important
application of computer vision, object detection mainly aims
to locate an object of interest in an image and accurately judge
the object’s specific category. Many researchers have applied
the CNN to crack detection. Chen et and Jahanshahi [16]
presented a CNN combined with naive Bayes data fusion
(NB–CNN) to detect cracks; however, the crack detection
accuracy of this algorithm is low. To achieve higher detection
accuracy, Cha et al. [17] proposed a network based on the
Faster region-based CNN [18] to detect cracks. Dung and
Anh [19] proposed a fully convolutional network to detect
cracks. This paper designs a new visual recognition network
calledMSCNet to detect surface cracks. The research focuses
on improving the accuracy and speed of existing surface crack
detection methods, which is convenient to excellent good
performance in practical detection tasks.

The main contributions of this study are as follows:
• We present a simple but effective crack texture enhance-
ment module (TEM) to capture the details of cracks
in low-level features, which will increase the anti-noise
capability of the network.

• To balance accuracy and consumption of computa-
tion resources, we introduce a cascaded fusion mod-
ule (CFM) in the framework to reduce the complexity
of the deep aggregation network and collect location
information of cracks from high-level features.

• In addition, we adopt a feature aggregation mod-
ule (FAM) to aggregate the high- and low-level features
obtained from the CFM and TEM and consequently
express the higher-order relationship between the fea-
tures of both levels.

The rest of the paper is organized as follows. In section 2,
we review related work. In section 3, we present the details of
the proposed method. In section 4, experiments are designed
to evaluate the proposed network, and the results are pre-
sented. Finally, in section 5, a brief conclusion for the paper
is presented.

II. RELATED WORKS
Crack formation is the most common degradation phe-
nomenon and the primary problem of concrete bridges; thus,

accurate, and timely detection of bridge cracks is critical in
the daily maintenance of bridges. Based on crack detection,
the structural stability of bridges can be scientifically and
effectively evaluated and high-risk parts can be repaired.
Bridge crack detection methods based on image recognition
improve the efficiency of bridge crack visual detection.

Traditional bridge crack detection methods based on
image recognition mainly employ image preprocessing
technology and machine learning classification algorithms.
Chanda et al. [20] proposed a detection method of con-
crete surface cracks based on an image penetration model.
Zalama et al. [21] proposed a method based on the Gabor fil-
ter to detect longitudinal and transverse cracks. Shi et al. [22]
proposed a road crack detection framework based on random
structured forests. Although these traditional crack detec-
tion methods based on image recognition are considerably
effective compared with manual inspection, they are highly
dependent on complex classifiers and image processing, lead-
ing to low efficiency and weak generalization ability of the
methods.

With the development of artificial intelligence technol-
ogy, especially the breakthrough of deep learning technol-
ogy in computer vision, image-based crack detection has
a new development opportunity. The convolution layer in
the deep CNN can automatically learn the crack character-
istics from the image by using the error back propagation
of the gradient descent, which effectively separates the
crack from its background. Many crack detection algo-
rithms based on deep learning have been recently proposed.
Zhang et al. [23] designed a framework that can be directly
applied to the original crack image for automatic feature
extraction and classification, and the framework achieved
superior performance compared to traditional handcrafted
methods. Pauly et al. [24] improved classification accuracy
and recognition by adopting a deeper neural network to clas-
sify crack and non-crack patches. Qiao et al. [25] proposed
a framework called DFANet with a strong anti-interference
capability and improved robustness; the framework con-
sists of deep feature aggregation and attention mecha-
nism. Li et al. [26] processed CliqueNet, a network to
distinguish cracks rapidly and accurately from the back-
ground. Yang et al. [27] employed a multiscale feature pyra-
mid and hierarchical boosting-based network (FPHBN).
Zhou et al. [28] considered the semantic differences between
different feature layers to process a network for crack detec-
tion. Fan et al. [29] proposed a novel road crack detection
algorithm based on deep learning and adaptive threshold-
ing. T. Ahmad et al. [30] proposed a novel network based
on YOLOv1by modifying loss function and adding spatial
pyramid pooling layer. Zou et al. [31] proposed an end-to-end
trainable method to automatically detect cracks by taking
full use of the information of the encoder and decoder net-
work. Li et al. [32] designed a network composed of skip-
squeeze-excitation and the atrous spatial pyramid pooling
to detect cracks. Kim et al. [33] applied the semantic seg-
mentation technique to develop a hierarchical convolutional
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FIGURE 1. Structure of the proposed MSCNet, which consists of the feature extractor, TEM, CFM, and FAM.

neural network to improve the accuracy and rate of crack
detection.

Despite their advances, the existing crack detection
networks suffer from the following limitations. First, most
CNN-based networks overlook the importance of low-level
features, which often contain rich details and are beneficial
for distinguishing cracks. Second, most networks have poor
robustness, and the detection accuracy is easily disturbed
by the environment. Third, most networks adopt a simple
aggregation such as concatenation and addition for feature
fusion method for multi-layer feature fusion without consid-
ering the different roles of low-level and high-level features
in crack detection, which leads to a waste of computing
resources and cannot capture valuable information that are
strongly related to crack detection; thus, the detection meth-
ods inevitably have unsatisfactory performance. In order to
optimize the limitations of detection accuracy and detection
speed, we have designed a new and efficient bridge crack
detection network termedMSCNet.MSCNet adopts the TEM
to enhance the network’s ability to extract the low-level detail
information of cracks and strengthen the anti-interference
ability of the network. MSCNet adopts the CFM to reduce
the calculation resource consumption of the network for deep
feature reasoning and speed up the reasoning speed of the
network. Based on the above two modules, the network
adopts the FAM to strengthen the relationship between low-
level features and high-level features; it improves network
detection accuracy.

III. OVERVIEW OF MSCNet
Fig. 1 demonstrates the overall crack detection framework
of the proposed MSCNet. It mainly consists of four parts: a
feature extractor, texture enhancement module (TEM), cas-
caded fusion module (CFM), and feature aggregation module
(FAM). In particular, the feature extractor is used to extract
features from input images. The TEM is applied to reduce
noise and enhance low-level representation cues of cracks.
The CFM collects the semantic and location information of
cracks in high-level features by utilizing progressive aggre-
gation. The FAM is designed to fuse low- and high-level fea-
tures obtained from the TEM and CFM for identifying cracks
accurately. As shown in Fig. 1, given an image I ∈ RH×W×3,
the feature extractor can obtain a set of feature maps xi, whose
resolution is H/2i × W/2i (i ∈ {1, 2, 3, 4, 5}). Then, x3, x4, and
x5 are fed to the CFM for fusion, generating a feature map T2.
Meanwhile, low-level features x2 and x1 are converted to
feature map T1 through the TEM. Subsequently, the feature
maps T1 and T2 are aggregated by the FAM. Finally, the 1×1
convolution is adopted to adjust the dimensions to predict the
detection result.

A. FEATURE EXTRACTOR
The input image consists of a relatively small proportion of
crack pixels and different bridge crack scales. The cracks
have diverse shape, making feature extraction of bridge
cracks considerably difficult. To enhance the multiscale fea-
ture extraction ability of the network, Res2Net [34] mainly
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uses multiple available receptive fields at a more fine-grained
level, unlike most other networks that adopt features with
different resolutions. Multiscale receptive fields in the human
visual system are experimentally proven to be beneficial to
focus on small objects [35]. This motivates us to consider
Res2Net-50 (without the top three layers) as the feature
extractor to highlight the regions of the cracks.

B. TEXTURE ENHANCEMENT MODULE
Crack pixels account for a small proportion of image pixels.
Their significant features, such as texture and shape, are eas-
ily disturbed by environmental noise, dramatically affecting
the detection accuracy. The original image and five-stage fea-
ture maps of the feature extractor are shown in Fig. 2. Among
them, the high-level feature layers pay more attention to the
semantic information of the crack, and the extracted features
are abstract, which is not conducive to accurate crack detec-
tion. By contrast, low-level feature maps (stage1 and stage2)
are rich in detail information, which plays an irreplaceable
role in the regression of crack detection. However, the back-
ground noise in the low-level features drastically interferes
with the extraction of crack texture information. Hence,
we introduce a TEM to enhance the crack texture information
captured from low-level features, resulting in improved and
effective extraction of crucial semantic information.

FIGURE 2. Original image and five-stage feature maps from Res2Net.

We adopt the grouping attention mechanism [36] to design
a TEM. As shown in Fig. 1, the TEM has two inputs, the
feature maps x1 and x2 from the feature extractor and the
output of the feature map, T1, which is enhanced by the TEM.
Specifically, global average pooling is used to reduce the
dimension of feature map x2 and obtain parameter z2 that only
retains the dimension of feature channels; this process can be
summarized as follows:

z2 =
1
WH

W∑
h=1

H∑
w=1

x2 (h,w) (1)

where z2 represents the parameter of the feature channel
dimension and x2 (h,w) is the channel vector of feature map
x2 at height H and widthW .

The relation coefficient y1 of feature map x1 can be calcu-
lated in terms of z2 as shown below:

y1 = A1 · z2 (2)

where A1 is the parameter for calculating the characteristic
relation coefficient of feature map x1.

The overall TEM mainly consists of the following four
stages:

1) Since features have different semantic concepts, group-
ing activation of the feature relation coefficients can effec-
tively avoid inhibition between different semantic features
and enhance similar semantic features. Feature map x1 and
the relation coefficient y1 of feature map x1 are divided into
k groups to generate feature map x l1 and relation coefficient
yl1; l ∈ [1, · · · , k].
2) To avoid the disappearance of the original feature infor-

mation as the relation coefficient tends to 0, the normalized
relation coefficient yl1 is added by 1.

3) Grouping activates the feature relation coefficient and
enhances feature map x1. The operation can be summarized
as follows:

x̂ l1 = x l1 ·
(
1+ S

(
yl1
))
, l ∈ [1, . . . , k] (3)

where x̂ l1 represents the l-th group enhanced features of fea-
ture map x1, x l1 is the feature of the l-th group of feature map
x1, yl1 represents the relation coefficient of the l-th group of
feature map x1, and S (·) is the SoftMax activation function.

4) The obtained enhanced feature x̂ l1 is concatenated to
generate T1, as shown below:

T1 = concat(x̂ l1), l ∈ [1, . . . , k] (4)

C. CASCADED FUSION MODULE
Fig. 3 shows the performance of the output at different
stages in the feature extractor. In Fig. 3, maxF represents
the maximum F-measure of the five-stage outputs of the
original Res2Net in the crack forest dataset [22], and we
set the inference time of the backbone as 1 and indicate
the inference time of the output of each stage. In order to
highlight the performance of low-level features in the process
of network depth feature aggregation, we arrange the abscissa
from large to small in flashback when making charts. As the
Fig. 3 shows, the feature extraction performance saturates
rapidly as features are aggregated from the high-stage 5 to the
low-stage 1. Moreover, the integration of low-level features
with high-level features significantly increases computational
complexity. As suggested in [35], high-level features with
a low resolution represent semantic information, while low-
level features with a high resolution represent spatial details.
To improve the accuracy and reduce the consumption of
computing resources, we design the CFM to aggregate the
top three high-level feature maps.

As shown in Fig. 1, the CFM mainly adopts convolution,
batch normalization, and ReLu (CBR) and a resize operation
for fusion pretreatment. In addition, it employs concatena-
tion and the Hadamard product to fuse different features.
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FIGURE 3. Performance of the feature extractor at different stages.

The process, as shown in Eqs. 5–7. First, feature map x5 is
resized and passed through two CBRs to obtain x15 and x25 .
Then, x15 is concatenated with feature map x4, and the result
is passed through a CBR for smoothening it, yielding feature
map x45.

x15 = c1 (x5) (5)

x25 = c2 (x5) (6)

x45 = c
(
concat(x15 � x4, x

2
5 )
)

(7)

Using the same process, other feature maps are fused by
resizing feature maps x5, x4, and x45 to the same size as x3 and
smoothing them with different CBRs. Then, the smoothed
results of x5 and x4 are multiplied with x3, and the smoothed
result of x45 is concatenated. Finally, the concatenation result
is fed to the CBR to reduce the dimension and obtain T2. The
process can be summarized as follows.

T2 = c(concat(c(x5)� c(x4)� x3, c(x45)) (8)

D. FEATURE AGGREGATION MODULE
To explore the high-order relationships between the low-level
local features of the TEM and the high-level cues of the CFM,
we adopt the FAM to inject detailed appearance features into
high-level semantic features. The structure of the FAM is
shown in Fig. 4.

Self-attention is used to fuse feature map T2 containing
high-level semantic information and feature map T1 con-
taining rich textural details. For T2, two 1 × 1 convolutions
CA (·) and CB (·) are adopted for linear mapping to reduce the
dimension and obtain feature maps Q and K , as given below.

Q = CA (T2) (9)

K = CB (T2) (10)

By contrast, a 1 × 1 convolution CC (·) is used to reduce
the channel dimension of T1 and interpolate it to the same size
as T2. Then, the SoftMax function is applied to the channel

dimension, and the second channel is selected as the attention
map to obtain T ′1, as shown in Eq. 11.

T ′1 = S (CC (T1)) (11)

To assign different weights to different pixels and increase
the weight of edge pixels, the Hadamard product between
K and T ′1 is calculated. Subsequently, an adaptive pooling
operation is adopted to limit the displacement of features, and
a center crop operation is performed to obtain feature map V ,
as shown in Eq. 12.

V = AP
(
K � T ′1

)
(12)

where AP (·) represents the adaptive pooling and crop opera-
tion.
Then, an inner product is used to establish connections

between each pixel in V and K to obtain the correlation
attention map g:

g = σ
(
V ⊗ KT

)
(13)

where ⊗ is the inner product operation and KT is the
transpose of K .
Next, feature map Q multiplied with the correlation atten-

tion map g is fed to the graph convolutional network (GCN)
layer [37]. The graph domain features are reconstructed into
the original structural features by calculating the inner prod-
uct between g and the output of the GCN layer:

D = gT ⊗ GCN (g⊗ Q) (14)

To obtain the final result Z of the FAM, the dimensions of
the reconstructed feature map D are updated and the recon-
structed feature map D is combined with feature map T2:

Z = T2 + D (15)

E. LOSS FUNCTION
The loss function for the proposed network is calculated
between the final detection result P and the ground truth G,
as follows:

L = LwIOU (P,G)+ L
w
BCE (P,G) (16)

where LwIOU (·) is the weighted intersection over union (IOU)
loss [38] and LwBCE (·) is the weighted binary cross-entropy
(BCE) loss [39]. Compared with the standard IOU and BCE
losses, which treat all pixels equally, LwIOU (·) and L

w
BCE (·)

consider the importance of the individual pixel and focus
on hard pixels. Both weighted loss functions can restrict the
prediction map in terms of the global structure (object level)
and local detail (pixel level) perspectives.

IV. EXPERIMENTS AND RESULTS
This section first introduces the related content of the imple-
mentation (i.e., datasets, evaluation metrics and he network
training of the proposed MSCNet). Then, the performance of
MSCNet is evaluated through experiments and by comparing
it with other baseline methods. Furthermore, the ablation
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FIGURE 4. Structure of the feature aggregation module.

experiments conducted to determine the effectiveness of the
threemodules ofMSCNet, namely the TEM,CFM, and FAM,
are described. Finally, the experimental results are summa-
rized and analyzed.

A. IMPLEMENTATION DETAILS
To make the network achieve excellent results in the actual
detection task of bridge cracks, we study the experimental
platform of network operation, the data sample size required
for training, the parameter setting of the learning rate, and the
gradient descent method.

1) DATASET AND COMPUTER ENVIRONMENT
The occurrence of cracks on bridge structures is random to
a certain extent. The types and forms of cracks are diverse,
leading to problems such as the original data samples having
partial information and low credibility as well as lacking
balance between different classes and data in the unique stan-
dard environment. In the object detection field, the amount
of image data affects the detection accuracy of the network.
According to the conclusion of [40], we adopted the method
of homogeneous sample fusion to expand the data according
to the visual semantic features of the color, shape, size, spatial
location, and other aspects of the crack image.

In this study, two crack datasets were used as samples:
the SDNET dataset [41] and CCIC dataset [42]. The SDNET
dataset contained more than 56,000 images of walls, roads,
and bridge surfaces, which were classified into cracked and
non-cracked images. The CCIC dataset contained 40,000
crack and non-cracked images of crack and non-cracked
images. The neural network training needs to invest many
data samples. We analyze the data distribution characteris-
tics and sample label types of SDNET dataset and CCIC
dataset and combine the data samples of similar labels in

the two datasets into one dataset. To better train the network,
we adopted 240×240 fixed-size windows slide without over-
lap on the crack image and selected 16,000 images from the
SDNET dataset and 14,000 images from the CCIC dataset,
combining them into a large crack dataset called the WCD
dataset. The samples in WCD data set are divided into train-
ing set, verification set and test set according to the ratio of
6:2:2. Specifically, 18,000 images in the training set were
used for training the network, 6,000 images in the validation
set were used to optimize the network weight parameters, and
6,000 images in the test set were used to evaluate the detection
performance of the network.

Bridge crack detection is typically performed in the field
environment, which is difficult to achieve through a large
workstation in the laboratory. The algorithm must generally
run on a small-scale computing platform and achieve a real-
time processing effect for the algorithm to be applied effec-
tively. Therefore, in this study, we selected aDell laptop as the
platform for executing the algorithm; the specific parameters
of the platform are listed in Table 1.

TABLE 1. Specific index parameters of the platform.

2) NETWORK TRAINING
We compared three common gradient descent methods in
object detection, namely the batch gradient descent (BGD),
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FIGURE 5. Curves of (a) training loss and (b) accuracy with different learning rates.

FIGURE 6. Comparison of output results at different epochs; the red boxes locate the missing detection parts of the detection results and the blue boxes
locate the false detection parts of the detection results.

stochastic gradient descent (SGD), and mini-batch gradient
descent (MBGD). In the BGD process, the training speed was
too low to meet the timeliness requirement of the detection
task. Meanwhile, although the SGD selects fewer samples
in each iteration, which improves the update speed of each
round of parameters. The gradient update direction can-
not consider other samples, so the accuracy is low. Hence,
we adopted the MBGD with a batch size of 16 and a weight
decay of 0.0001 to balance the speed and accuracy.

The learning rate is one of the critical parameters in net-
work training. An unreasonable learning rate will lead to
gradient explosion or gradient disappearance of the network,
resulting in incomplete training. We compared the training

loss with different learning rates. As Fig. 5a shows, when
the learning rate is 2e−4 or 2e−5, the curve decreases faster
and the loss value in the steady state is lower. As Fig. 5b
shows, when the learning rate is 2e−5, the training accuracy
of the network reaches the stable state fastest and the accuracy
value is higher. Therefore, we adopted 2e−5 as the initial
learning rate. To intuitively understand the process of network
training, we visually display the detection results of a sample
in the training process.

During network training, we extracted the network and
visually displayed the detection results of a sample under
different epochs. An epoch means that all training samples
are sent into the network and complete forwarding calculation
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TABLE 2. Qualitative performance results of different networks on the WCD dataset.

and back propagation. With the increase of the number of
epochs, the number of weight update iterations increases,
and the network’s performance in the article changes from
the initial non-fitting state to the optimal fitting state. Fig. 6
shows the detection effect of a data sample under different
epochs during network training. The first row shows the
original image in the data set, and the second row shows
the detection results of different epochs. When the number
of iterations is small (10 and 50 epochs), the network is
in the state of underfitting and the detection effect is poor,
both resulting in seven missing detection parts in the results.
As the number of iterations increases to 150 epochs, the
detection effect of the network gradually improves, the detec-
tion accuracy of the network is improved to a certain extent,
and the missing detection parts are reduced to 5. When the
network is in the state of under-fitting, the network’s learning
ability is insufficient, unable to learn the general law of
target characteristics and accurately identify objects. Hence,
there is a situation of missed detection. When the number of
iterations reaches 200 epochs, the detection accuracy of the
network is obviously enhanced. However, due to the small
crack size, one part is still missing. When the number of iter-
ations increases from 200 to 250 epochs, When the number
of weight learning iterations is too many and the network is
in the over-fitting state, the noise in the training sample and
the unrepresentative features in the training sample are fitted.
Currently, the network is straightforward to identify the non-
target features as the target features mistakenly, so there is a
false detection. This indicates that the network tends to over-
fit, and the non-crack region is marked as the object region.

B. EVALUATION INDICATORS
While image classification only considers the accuracy and
recall rate, object detection must classify and identify the
object as well as accurately locate the object position. There-
fore, the performance of the algorithm should be evaluated
comprehensively considering many aspects. The following
evaluation indexes were used to accurately assess the pre-
dicted results of the model: the precision rate (Pr), which
measures how many of the samples that the model judges to
be positive are positive samples; the recall rate (Rr), which
represents the proportion of true positive samples that are
predicted to be correct; accuracy (Acc), which predicts the
exact ratio of positive and negative samples; F1-score (F1),

which comprehensively considers the output results of the
precision rate and recall rate; and IoU. These indexes are
defined as follows:

Pr =
(TP)

(TP+ FP)
(17)

Rr =
(TP)

(TP+ FN )
(18)

Acc =
TP+ TN

TP+ TN + FP+ FN
(19)

F1 = 2
(Pr×Rr)
(Pr+Rr)

(20)

IoU =
area

(
Bdet ∩ Bgt

)
area

(
Bdet ∪ Bgt

) (21)

where TP, TN, FN, and FP are the indicators in the confusion
matrix; TP represents true positive (a positive sample pre-
dicted to be positive), TN indicates true negative (a negative
sample predicted to be negative), FN represents false negative
(a positive sample predicted to be negative), and FP indicates
false positive (a negative sample predicted to be positive).Bdet
represents the size of the detection box, Bgt represents the
size of the calibration box of the detection object, area(Bdet∩
Bgt ) represents the overlapped area of the two boxes, and
area(Bdet∪Bgt) represents the total area of the combined two
boxes.

The higher the correlation, the higher is the IoU [3]. In the
process of model training, different thresholds of the IoU
were set to measure the detection accuracy of the model.
Fig. 7 shows the P-R curves under different IoU thresholds.
By analyzing the results, we know that when the threshold of
IoU is 0.5, the network’s performance reaches the best after
early training.

C. COMPARISON AND RESULTS
Considering the limited computing capacity of the bridge
crack detection platform, six crack detection networks,
namely FPHBN [27], DeepCrack [31], CliqueNet [26],
SSENets [32], LDCC-Net [33], and DFANet [25], were
selected for comparison. All the networks were trained and
tested on the same experiment setup and dataset. The quanti-
tative analysis results of each of the methods are shown in
Table 2, and some results after visualization are shown in
Figs. 8 and 9.
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FIGURE 7. P-R Curves under different thresholds of IoU.

The five-evaluation metrics discussed in Section 4.1 were
used to quantitatively compare the performance of the various
networks. Table 2 indicates that FPHBN and DeepCrack
were inferior to other algorithms in detection accuracy and
detection speed. Although CliqueNet, SSENets, LDCC-Net,
and DFANet performed better than FPHBN and DeepCrack,
balancing the detection accuracy and detection speed was
difficult for these algorithms. By contrast, the proposedMSC-
Net achieved superior performance both in detection preci-
sion and detection speed, with 93.8% F1-score and 63.8 FPS,
respectively.

For the in-depth analysis of the performance of the algo-
rithm on difficult samples, we selected four types of crack
samples under different backgrounds for depth visual feature
analysis. Fig. 8 shows the detection results of the algorithm
under five backgrounds: a rough cement pavement (row 1),
a region with cluster interference (row 2), a stable back-
ground (row 3), a rough zebra crossing (row 4) and a rough
lane line (row 5). The detection results of crack samples
in the rough cement pavement background (row 1) indicate
the weak performance of FPHBN and DeepCrack in noise
reduction, which undoubtedly poses a challenge for later
classification processing. Although other methods showed
improved noise reduction ability to a certain extent, they
are still not ideal. Only from the aspect of key information
extraction, DFANet and MSCNet have obvious technical
advantages in combating noise consistently. The detection
results of the input images with obvious cluster interference
regions (row 2) indicate an ineffective performance of our
method in successfully eliminating the non-crack areas. How-
ever, comparedwith othermethods,MSCNet showed obvious
visual effect improvement in noise reduction, which implies
that for object detection, achieving anti-interference and anti-
noise capability is a serious challenge. In case of the input
image with a relatively clear object in a stable background
(row 3), although there were shadows of two cables on it,
the numerical gradient of the interference in the image data

was not large; therefore, each of the networks resulted in
a good processing effect. In case of the input image with
a rough zebra crossing (row 4), owing to a strong visual
discrimination from the background, the feature optimization
results were not perfect irrespective of the network. Different
from the interference of rough zebra crossing (row 4), the
area of lane crossing interference is more prominent (row 5),
and the crack shape of the selected sample is more complex,
which poses a challenge to the network. For the image with
rough input lane lines (row 5), the ability of the network
to extract crack features is reduced due to the influence of
solid background interference, and the detection effect is not
ideal. From the above-mentioned processing results of the
five complex samples, the proposed network achieved rela-
tively stable optimization results in strengthening the object
and weakening the interference. However, in general, in the
object detection under complex background, the interference
information can only be weakened and cannot be eliminated.
This implies that the visual distinguishability between the
object and the background plays an important role in the
detection results.

In fact, although the structural characteristics of bridge
cracks cannot be identified as effectively as in case of object
detection with edge information as key information, such
as fingerprint recognition [43] and iris recognition [44],
bridge cracks still have their structural characteristics such
as poor smoothness and weak consistency of the crack scale.
Because describing these visual features with randomness in
a complete sense is difficult, we consider that these features
comprise some consistency that cannot be described but can
be well explored using deep learning theory. We extracted
five common crack structures: the longitudinal crack, trans-
verse crack, cross crack, network crack and cross network
crack. We used depth vision feature analysis to determine
the ability of the networks to extract texture information
such as crack shape and scale as well as the ability to
resist breakpoints in the extraction process. Fig. 9 visually
shows the detection results of the five crack structures by
different networks. The geometry of crack samples in the
first and second columns in the Fig. 9 are relatively sim-
ple, and all networks could effectively extract continuous
and complete texture information. By contrast, the struc-
tural complexity of the input images in the third, fourth and
fifth rows is greater than that of the first two columns of
samples, and all networks were affected to a certain extent.
This phenomenon was particularly prominent when the net-
works detected mesh cracks. Comparison and analysis of the
results of the five rows indicate that DFANet and MSCNet
maintained good texture information extraction ability and
strong anti-breakpoint ability in the process of crack feature
extraction.

The results presented in Table 2, Fig. 8, and Fig. 9 con-
firm that DFANet and MSCNet have better processing
results in terms of the visual expression of depth fea-
tures. From the perspective of the processing mechanism
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FIGURE 8. Comparison of the visualization of detection results of various networks under different environmental situations.

of the two object detection algorithms, these results con-
firm their better superior data support for classification
processing, leading to higher accuracy of detection results.
However, the reasoning speed of the proposed MSCNet is
superior.

D. ABLATION EXPERIMENT
In our crack detection framework, the performance of the
three optimization modules determines the final pixel-level
crack detection. We further explored how each optimiza-
tion module affects the performance of crack detection by
removing or replacing each of them. Three experiments were
designed to verify the effectiveness of the TEM, CFM, and
FAM.

To prove the effectiveness of the TEM, an experiment was
conducted on the test set, and the intuitive results are shown
in Fig. 10. The confusion matrix [45] in Fig. 10a shows that
MSCNet without the TEM misclassified 312 (out of 1500)
crack regions of interest (ROIs) as background ROIs and 522
(out of 4500) background ROIs as crack ROIs. By contrast,
as shown in Fig. 10b, using MSCNet with the TEM, the
instances of misclassification sharply decreased, with only 35
(out of 1500) crack ROIs and 78 (out of 4500) background

ROIs that were misclassified. These results demonstrate
that the introduction of the TEM enhances the network’s
extraction efficiency of low-level features and ability to resist
environmental noise.

To demonstrate the effectiveness of the CFM, we con-
ducted experiments to compare the performance of different
networks, including MSCNet without and with the CFM,
in terms of mAP and FPS on the experiment platform.
As shown in Fig. 11, MSCNet with the CFM achieved the
fastest and highest accuracy results, achieving 63.8 FPS
and 93.5%, respectively. By contrast, the performance of
MSCNet without the CFM sharply decreased both in terms
of speed and accuracy, with the values being 38.1 FPS
and 88.6%, respectively. These results show that CFM
fusion method avoids the direct fusion of low-level fea-
tures and high-level features, and uses cascade fusion to
refine the weak semantic information of high-level features.
The CFM reduces the network’s consumption of comput-
ing resources. Achieving a balance between accuracy and
computing resource consumption is beneficial to improve the
accuracy and speed of the network.

To examine the effectiveness of the FAM, we conducted
experiments by replacing it from the standard MSCNet with
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FIGURE 9. Comparison of the visualization of detection results of various networks for different types of cracks.

FIGURE 10. Confusion matrix constructed based on the results of (a) the MSCNet without the TEM and (b) the MSCNet with
the TEM.

an element-wise addition operation, which is denoted as
MSCNet (w/o FAM). The results shown in Fig. 12 indicate
that the FAM, which is equipped with non-local and graph

convolution layers to mine local pixels and global seman-
tic cues from crack areas, incorporates detailed appearance
features of global attention into high-level semantic features
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FIGURE 11. Comparison results of detection accuracy and reasoning
speed of different networks.

FIGURE 12. Comparison of visualization of the results of different
networks to examine the effectiveness of the FAM.

and thus effectively aggregates high-level and low-level
features.

V. CONCLUSION
In this study, we proposed a novel and effective crack detec-
tion framework, called MSCNet, which uses a Res2Net
backbone to extract features. The proposed network incor-
porates three modules, namely the TEM, CFM, and FAM,
to effectively extract low-level features, reasonably balance
accuracy and computational resource consumption, and fully
integrate high- and low-level features to obtain the final out-
put. A series of ablation experiments verified the effective-
ness of these modules. Furthermore, extensive experiments
demonstrated that MSCNet outperformed other state-of-the-
art crack detection networks considered for comparison on
the same dataset. Specifically, MSCNet achieved 93.8%
F1-score and 63.8 FPS, which exceed the accuracy and

speed of other networks significantly. Although the proposed
MSCNet method can obtain more satisfactory performance
than other methods, compared with the computing power
of current portable computing terminals for bridge crack
detection, the complexity of neural network structure and the
redundancy of feature mapping is unbearable. We will focus
on these issues in future research.
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