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ABSTRACT Heart valve disorder (HVD) analysis from heart sound is being well known for a long period
of time, and use of digital stethoscope gives opportunity to diagnose HVDs from phonocardiographic (PCG)
signal. An automatedHVDdetection technique from PCG signal can play a key role as a first-hand diagnostic
tool for the physicians. In this paper, in order to classify different HVDs, we propose to utilize the formant
characteristic of the PCG signal, which is an acoustic property of the heart sound. PCG signals exhibit
significant variations depending on different types of HVDs and thus conventional time frequency domain
features or statistical features are extracted from PCG signal for disease classification. However, direct PCG
signals are also used in sequential networks to classify HVDs. Similar to the formant peaks of voiced speech
signal, the spectrum corresponding to the PCG signal exhibits distinguishable peaks, especially in the voiced
part of the heart sound (lub-dub). Keeping this notable key point in consideration, Burg’s autoregressive
model is used to find the parametric spectrum of the PCG signal. The first two formants of the PCG signal,
that carry themost informative acoustic properties of the heart sound, are estimated from theBurg’s spectrum,
and are used for feature extraction. The magnitude, frequency and phase of each formant are considered to
evaluate these features. Instead of considering a long duration of PCG signal at a time, we consider the
overlapping sub-frames, and extract formants from each sub-frame, which generates a temporal variation
of the formants. Finally, we propose a PDF model fitting of the formant variation, and utilize the estimated
model parameters along with some statistical features to classify the HVDs. Two famous publicly available
PCG datasets are used to demonstrate the performance of the proposed method, that efficiently classify
the binary/five classes of heart sounds. The results reveal that the proposed method has the overall accuracy
values of 93.46% and 99.28% for the two datasets, which is better in comparison to other previously reported
state-of-the-art techniques.

INDEX TERMS Classification, formant, feature extraction, heart valve disorder, model fitting,
phonocadiogram.

I. INTRODUCTION
Early detection of heart valve disorder (HVD) may reduce
almost one-third mortality rate of our planet due to various
cardiac failures [1]. Every year, all over the world, this rate is
increasing alarmingly. The treatment cost of cardiovascular
diseases is predicted to be annually one trillion dollar by
2030 in the USA alone [2]. Stethoscopes are still used
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as a popular instrument to hear heart sounds from the
chest to primarily diagnose the cardiac health. In case of
a healthy person, two major heart sounds, namely S1 (lub)
and S2 (dub) are clearly audible through a stethoscope. The
first/fundamental heart sound (FHS), S1 (lub) occurs during
the systole, because of ventricular contraction, the instant of
mitral and tricuspid valves’ closure [3]. The instant of the
closure of the aortic and pulmonic valves generates a second
FHS, S2 (dub) during the diastole. There are some very weak
heart sounds, such as S3, S4, murmurs caused by turbulence
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of blood flow in the arteries, ejection clicks (EC) during
systole, opening snap (OS) during diastole, and mid-systolic
clicks (MC) [4]. The assessment of various heart diseases
through cardiac auscultation (typically heart sound heard by
stethoscope) is one of the most primitive methods, especially
to identify valve-related defects. The pitch and intensity of
the heart sounds are overheard in different positions of the
chest wall to make a quick assessment of normal/healthy
class (N) and heart diseases like aortic stenosis (AS), mitral
regurgitation (MR), mitral stenosis (MS) and mitral valve
prolapse (MVP). Along with medical and family history,
heart murmurs due to leaking of valves, clicking sounds,
lung congestion etc. are heard by the physicians to primarily
identify the valve related disorders [5]. Even in recent
days, because of inexpensive and non-invasiveness, detection
of valve related disorders from phonocardiographic (PCG)
recordings of the heart sound has become a popular diagnosis
method. With the advancement of digital signal processing
kits, digital stethoscopes are getting popularity to acquire
PCG, which helps to treat, analyze and interpret valve related
disorders. PCG based automated methods are taken into
account for developing intelligent stethoscopes with first
hand decision making facilities [6].

Until now many attempts in many ways have been taken
to classify HVDs. By the emergence of machine learning and
deep neural network (DNN), many new sequential networks
have been proposed with heavy memory costing [7]–[10].
An in a nutshell view of the earlier works are depicted
here to have a comparison with our proposed method. Heart
sound classification and segmentation methods are broadly
categorized into three groups: (i) Envelope/Envelogram based
methods (ii) Feature based methods and (iii) Sequential
networks.

Envelope/envelogram based methods were mostly used
for both segmentation and classification purposes of the
PCG signals. Shannon energy envelogram [11], Shannon
envelogram on wavelet decomposed signal [12], Shannon
envelogram on S-transformed signal [13], envelogram from
Hilbert transformed signal [14], moment waveform envelo-
gram [15], squared energy envelogram [16] etc. are the most
commonly used available methods. In all these methods, total
number of recordings are less than 80 subjects with a variety
of sampling rates from 8000-44100 Hz, and are recorded
in various conditions with different sorts of devices. The
overall accuracy (OA) reported for these PCGs are as high
as 90-100% [3]. In these methods, having small datasets,
the authors specially focus on FHSs with reduced noise
components.

Features from amplitude and frequency [17], high fre-
quency components [18], instantaneous phase [19], fast
wavelet decomposition, autocorrelation [20], complexity-
based features [21], multilevel wavelet decomposition
coefficients [22], ensemble empirical mode decomposition
(EEMD), kurtosis-based etc. are proposed by many authors,
where 55 to 120 in house recordings are available in these
papers for evaluating valve defects. The OA revealed is

around 84%. By selecting non-Gaussian intrinsic mode
functions from EEMD from 11 normal and 32 patients an
OA of 83.05% is found [23]. For lub-dub recognition only
120 recordings are used, where 97% accuracy is found for
lub and 94% is found for dub [24].Wavelet synchrosqueezing
transform (WSST) [25] and chirplet transform (CT) [26]
are used to find magnitude and phase features from time-
frequency matrix (TFM) of the PCGs to detect multi-class
HVDs of 800 subjects of the github dataset [27]. The
time-frequency matrix evaluated from WSST and CT is used
to classify N, AS, MR and MS, by dropping MVP from
the dataset [25], [26]. Features from mel-frequency cepstral
coefficients (MFCC), discrete wavelet transform (DWT) and
combination of the former two are also checked on the same
dataset [28]. An OA of 91% to 98% are reported for these
multiclass HVD identification. Different statistical features
of tunable Q-wavelet transform (TQWT) are applied to least
square-support vector machine (LS-SVM), where an OA of
94.01% is achieved [29]. The fast and adaptive multivariate
empirical mode decomposition (FA-MVEMD) and TQWT
are reported in [6] to decompose the PCG signal and its
first derivative into frequency subbands. Shannon energy
envelope is then applied to extract the characteristic envelope
of the first two intrinsic mode functions (IMFs) and an
OA of 98.48% is achieved after classifying PCG system
dynamics for normal/abnormal classes with deterministic
learning theory (DLT). Efforts are also taken to identify S1
and S2 with hidden Markov models (HMM) on 80 subjects
and even on very less numbers of recordings [30], [31].
Hidden semi Markov model (HSMM), that uses logistic
regression with modified Viterbi algorithm for state selection
on 112 patients for segmentation of S1 and S2 under
noisy condition is also implemented. Approximately, 96%
average F1 score is testified so far for HSMM based
segmentation [32]. In [6], a time–frequency feature based
method is proposed to classify heart sounds into normal and
abnormal classes. From [33], only 944 recordings are taken
to extract 18 time–frequency features, and are used as inputs
to a binary SVM-based classifier, achieving 86% for 10-fold
cross validations.

Machine learning (ML) algorithms are widely used to
detect the anomalies in the heart valves of unknown subjects
utilizing features extracted from the 1-d PCG heart sounds.
It has become a state-of-the-art technique for today and days
to come for high fidelity detection of HVDs. By the grace of
ML and ease of availability of advanced graphics processing
units (GPUs) many architectures are proposed. The K -means
clustering and homomorphic filtering are widely used for
segmenting the cardiac cycle [34]. In addition to this, feature
vectors extracted from diversified domains are applied to
various machine learning tools, such as, SVM, random forest
(RF), multiclass composite classifier (MCC) and k-nearest
neighbor (KNN) to solve multiclass diseases [25], [26], [28].
Deep learning based networks are also used for PCG signal
segmentation as well as abnormal heart sound detection [9],
[35]–[37]. In [8], the raw PCG signal is down-sampled at
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500 Hz and processed through Savitzky–Golay filter to sup-
press the high-frequency noises by data point smoothening.
One-dimensional convolutional neural network (1d-CNN)
and feed-forward neural network (FNN) are used to classify
these smoothed data and claimed an OA of 85.65% [8]. At the
same time, improvisation of convolutional and recurrent
neural networks [38] are also used as the state-of-the-art tool
to achieve highest level of accuracies without considering
model complexity and computational cost. In [39], deep CNN
are used on the preprocessed dataset [33], where heart sounds
are segmented using U-net. Later on, classification of heart
sounds is done through CNN and AdaBoost on 301 data.
The OAs are reported as 87.30% and 76.1%, respectively.
In [40], both Electrocardiogram (ECG) and PCG are used for
feature extraction through long short-term memory (LSTM),
and genetic algorithm (GA) is used for feature selection.
In [41], the authors achieve 91.50% OA by setting a
threshold (gradient-based method) to maximize prediction
error, introducing a self-engineered mathematical formula
for classification on [33]. For the same normal/abnormal
classes, use of deep learning and ensemble learning with a
Savitzky-Golay filter on the whole dataset generate an OA of
86.05% [42].

However, the deep-learning based heart disease classifica-
tion methods mostly deal with the architectural modifications
to get better performance without focusing on explainable
characteristics for getting differences among various classes.
It is very important to identify distinguishable characteristics
among various heart diseases and obtain physiological rele-
vance corresponding to those extracted characteristics. One
possible way could be to analyze the acoustic properties of
various sounds corresponding to different heart diseases and
find out suitable features that follow the physiological aspects
of these diseases. Automatic heart disease classification
from PCG signal based on proper acoustic modeling of the
given heart sound is still a very challenging task and rarely
attempted.

In this paper, we propose a method that considers acoustic
features (formants), computed by PDF model fitting along
with statistical features and time series data. The detailed
of our method is described in the next sections with proper
justification and jurisdiction. The rest of the texts are arranged
in the following manner. A concise yet clearly described
step-by-step procedure of the proposed technique has been
presented in Section III. In Section IV, we present and
compare the results obtained from different platforms by
providing a rational justification. Finally, concluding remarks
are stated in Section V with future probable progress.

II. DATASETS
For classification and segmentation algorithms, reliable
datasets like PhysioNet/CinC 2016 [33], and datasets
developed by [27] have been used since their inception.
In PhysioNet/CinC 2016, the dataset is composed of heart
sound recordings, collected from different sources of the
world by multiple research groups. Both healthy and diseased

TABLE 1. Duration and frequency of the heart sounds.

subjects are included in the dataset comprising children and
adults. The recordings are sampled at 2 kHz, and shared
in a standard .wav file format. In total 3240 heart sound
recordings from 764 subjects/patients are available in six
training sets. The duration of the recordings vary from 5 s
to 120 s. This dataset provides the detailed descriptions of
the population (764 subjects), age and sex of some subjects
(out of 2766 trials, 2284 male and 482 female and the
age range varies 10-88 years). In the second dataset, one
thousand (1000) PCG recordings of five different classes
of heart sounds: one normal or healthy class (N) and four
common types of heart valve disorders, namely aortic stenosis
(AS), mitral regurgitation (MR), mitral stenosis (MS) and
mitral valve prolapse (MVP) are sampled at 8 kHz, and
are also available in standard .wav format. For each of
these five classes, there are 200 recordings. The duration
of the PCG signals varies in between 1.156 s to 3.993 s,
and each recording contains 3 cardiac cycles. Thus, from
1000 recordings there are in total 3000 cardiac cycles
available for the purpose of analysis. A detailed description
of the datasets can be found in [4] and [28], respectively.

III. PROPOSED METHOD
Major steps involved in the proposed scheme are presented
in the block diagram shown in Fig. 1. It involves three
major operations: data preparation and preprocessing, feature
extraction to form a feature dictionary and supervised
classification. In the preprocessing stage, filtering, nor-
malization and windowing operations are performed. The
feature extraction stage is designed based on estimating the
formants from the PCG signal and utilizing the temporal
variation of the extracted formants. Finally, binary/five-class
classification is performed using a supervised classifier.
In what follows, the step-by-step procedure is described.

A. DATA PREPARATION AND PREPROCESSING
Generally, the frequencies of the heart sounds S1, S2,
S3 and S4 lie within the range of 20-200 Hz [19]. The
duration and range of frequencies are presented in Table 1.
As a result, considering the general bandwidth of the PCG
signal, all recordings are downsampled to 2000 samples/sec.
Afterwards, the signals are passed through a bandpass
filter (BPF) with cutoff frequencies (20, 450) Hz to have the
frequency components of interest. The filtered signals are
then amplitude normalized and scaled between−0.5 to+0.5.
From a given PCG recording s (n), an amplitude normalized
signal sN (n) is obtained as

sN (n)|0≤|sN (n)|≤1 =
sA (n)−min (sA (n))

max [sA (n)−min (sA (n))]
(1)
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FIGURE 1. Block diagram of the proposed method. (a) Major steps involved in the proposed method to detect HVDs from PCG signal. (b) Detailed of
sub-frame based analysis: model-based and statistical feature extraction from formant variations within a frame.

where, sA (n) is found via standardization i.e. sA (n) =
(s (n)− µ) /σ , µ and σ are mean and standard deviation of
s (n), respectively.

B. FORMANTS OF THE PCG SIGNAL
In this paper, we propose a formant-based feature extrac-
tion method that involves formant estimation from the
PCG data and modeling the temporal variations of the
extracted formants (magnitude, frequency and phase). Effec-
tive spectro-temporal analysis of the PCG signals has great
importance in diagnosing the valve-related disorders. The
acoustic nature of the sound wave produced by the PCG

signals needs special attention to explore the abnormalities.
The spectral representation of a PCG signal of a healthy per-
son generally exhibits spectral peaks similar to some speech
signals (e.g. voiced speech), which inspires to utilize linear
prediction model of a speech signal. In order to characterize
the speech signals, fundamental and its harmonics play an
important role. Specially for human voice analysis, for a
long period of time, formants (fundamentals and harmonics)
are playing a key role. Here the speech production system
is first properly modeled and from the system’s response,
formants are generally estimated [43]. Heart sounds can also
be treated in a similar fashion like the human voice and for

VOLUME 10, 2022 27333



M. Morshed et al.: Automated HVD Detection Based on PDF Modeling of Formant Variation Pattern in PCG Signal

FIGURE 2. A typical PCG segment and its periodogram. (a) PCG signal
representation in time domain and (b) Corresponding power spectral
representation indicating formant peaks.

the estimation of fundamental and harmonic frequencies from
the heart sound, linear prediction model can be used [3].
A typical PCG segment with its power spectral representation
are shown in Fig. 2 for better visualization of the formants in a
heart sound. Hence, similar to human voice, formant analysis
of PCG signals can provide significant characteristics which
may help in disease analysis. The physicians sometimes may
overlook many vital audible portions during listening due
to the usual limitations of human ear or in visual checkup
of PCG features. However, the formant-based analysis may
overcome the problem. A cardiac system entangled with
PCG signal can be considered as an output of a linear
time invariant (LTI) system, where the characteristics of
the input to that system are unknown. Considering additive
white Gaussian noise (AWGN) as an excitation to this
auscultative process, this cardiac activity can be modeled
with an LTI autoregressive (AR) system [3]. Moreover,
the measurement of these signals requires real-time data
analysis, and instantaneous evaluation of the frequency
characteristics of the short time measured data are very
vital. The processing of shorter data length is also effective
for faster computation. In view of getting an accurate and
low-energy spectral analysis of short data length, the Burg’s
method of parametric estimation is widely used [43]–[45].
From the estimated AR model parameters, a parametric
spectrum is computed to estimate the formant peaks, and the
first two formants are considered as key features to develop
the feature dictionary. In addition to formant features, some
conventional time-frequency features are also incorporated.
Moreover, in the next subsequent section we will discuss the
proposed statistical model based features extracted from the
temporal variation of the formants.

Generally, in the frame by frame analysis, the investigation
of a signal is carried out at a time on the full duration. In this
paper, a sub-frame based approach is proposed, where a frame

of PCG signal is divided into sub-frames (windows) with a
reasonable amount of sample overlap amongst succeeding
sub-frames. In order to minimize the effect of leakage
and data loss at the edge of the signal, we have applied
overlapping Hanning windows to extract sub-frames. The
frame length and frame shift are chosen in the same mode
as auditory recognition system [43]. For example, a signal
having N samples, with a sub-frame (window) length m and
shifted it by q samples, the second window will consist from
(m+1)-th to (m+q)-th samples. In this way, all the succeeding
windows will be traced until the last sample of the signal
is reached. Afterwards, the AR model parameters of each
windowed PCG signal is predicted using Burg’s method [45].

C. BURG’S SPECTRUM BASED FORMANT EXTRACTION
In Burg’s AR method each output sample is predicted based
on the superposition of the past samples. The output signal
y (n) can be represented as a linear combination of preceding
values of the same signal plus white noise w(n) as the input.

y(n) = −
P∑
i=1

αP(i)y(n− i)+ w(n), (2)

where P is the model order. The forward and backward linear
prediction estimates of order m are

ŷ(n) = −
m∑
k=1

αm(k)y(n− k) (3)

ŷ(n− m) = −
m∑
k=1

α∗m(k)y(n+ k − m) (4)

The corresponding forward and backward predictor errors are

fm(n) = y(n)− ŷ(n) (5)

bm(n) = y(n− m)− ŷ(n− m) (6)

where αm (k) are prediction coefficients. It should be noted
that αm (0) = 1, by the definition. The lattice of the FIR filter
is represented by the set of recursive equations

fm(n) = fm−1(n)+ kmbm−1(n− 1) (7)

bm(n) = kmfm−1(n− 1) (8)

where the initializations of the residuals are f 0 (n) = b0 (n) =
f (n) and km are the reflection coefficients of the m-th
recursion step.

km =
−2

∑N
n=P+1 [fm(n)]∑N

n=P+1 [fm−1(n)]
2
+ [bm−1(n− 1)]2

(9)

αm(n) = αm−1(n)+ kmαm−1(k − m) (10)

where αm (0) = km.
It is advantageous to use Burg’s AR method because it

is computationally efficient, stable and has satisfactory fre-
quency resolution. An optimum AR model order is selected
to obtain distinguishable peaks of the spectrum of each
PCG sub-frame [45]. The parametric spectrum is constructed
using the estimated AR parameters. It is observed that the
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FIGURE 3. A PCG segment with first two formants after discarding the
silence. (a) A portion of time series PCG data (b) Sub-frame wise
variations of first formant (blue dots) and second formant (orange dots).

normalized and scaled PCG signal contains significant energy
in some portions (mainly S1 (lub) and S2 (dub)), that are
responsible for audible sound, and very negligible energy
in some portion portraying silence. Hence, the regions in
the normalized and scaled PCG signal containing negligible
energy are eliminated to discard the silent portions and feature
extraction is not performed in those regions. For a better
understanding, a certain duration of normalized and scaled
PCG signal is considered which consists both significant
energy and negligible energy portions. Using the Burg’s AR
spectrum, the first and second formants are estimated from
each sub-frames. In Fig. 3, the time domain PCG signal and
corresponding formant estimations (first two formants F1
and F2) are shown. Consistent formant estimates are found
in the significant energy region and formant estimation is
not performed in the negligible energy region. It is further
discussed in the results and discussion section. From the
magnitude and phase spectrum the magnitude, frequency and
phase of the 1st and 2nd formant of each frame are thus
computed. In order to demonstrate the spectral peaks in the
PCG, a sub-frame of a sampled PCG signal is considered.
By using Burg’s methods AR(12) spectrum is constructed
and shown in Fig. 4. In the same figure magnitude and
phase spectra are plotted using solid and dashed lines,
respectively. The first two peaks indicate the 1st and 2nd

formant respectively, which are our subject of interest. The
magnitudes, frequencies and phases of the first two formants
are thus evaluated for each of the overlapping sub-frames to
develop the feature dictionary.

Next our objective is to demonstrate the temporal variation
pattern of the extracted formants in a given PCG frame.
For this purpose four PCG segments are considered which
correspond to a healthy (N) class and three diseased classes,
namely aortic stenosis (AS), mitral stenosis (MS) and mitral

FIGURE 4. Magnitude and phase spectrum of a PCG segment obtained
from AR Burg’s algorithm.

FIGURE 5. Temporal variation of first two formants along with the
normalized and scaled PCG signal for healthy and diseased cases. In each
case, higher value of formant frequency indicates the 2nd formant (red
color) and the lower value (blue color) corresponds to 1st formant.
(a) Healthy class, (b) Aortic Ste- nosis, (c) Mitral Stenosis and (d) Mitral
Valve Prolapse.

valve prolapse (MVP). In Fig. 5, temporal variation of the
first two formants along with the normalized and scaled
PCG signals are shown for these four classes. As mentioned
before, the values of the first two formant frequencies,
extracted from each of the overlapping sub-frames in the
region with sufficient energy, are investigated over a certain
period.
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In each of the four cases of Fig. 5, the upper figure of
represents a portion of the normalized and scaled PCG signal
and the lower figure represents the temporal variation pattern
of the 1st and 2nd formant. In each pair of the figures, the
x-axis of the lower figure represents sub-frame numbers
corresponding to the time instances of the upper figure.
It is observed from these figures that the temporal variation
pattern of the formant frequencies exhibits distinguishable
pattern for different cases, which also serves as a strong
motivation behind utilizing this variation pattern as potential
features.

D. MODELING THE TEMPORAL VARIATION OF PCG
FORMANTS
In real-time and fast disease detection, this sub-frame based
formant extraction may result in large numbers of features
than that of conventional feature extraction methods. As an
alternative, one may consider less number of sub-frames or
even conventional frame based method. However, in that
case temporal resolution for the features will be drastically
reduced and there will be feature averaging over a certain
time duration. Hence, we prefer to use the sub-frame
based feature extraction. In this case, one may feed the
classifier all the sub-frame based extracted features which
will increase computational burden and time. In the proposed
method, instead of directly feeding the sub-frame extracted
formants to the classifier, we propose to obtain a suitable
statistical distribution of the formant variation pattern, and
utilize the distribution parameters in the classifier. This
not only reduces the time complexity but also offers a
flexibility of selecting most suitable distribution for the
formant variation of the PCG signal. Moreover, the statistical
distribution of the time domain PCG signal is also taken into
consideration. In order to demonstrate statistical distribution,
the same PCG signals used in Fig. 5 and corresponding
formant variations (magnitude, frequency and phase) are
taken into consideration. Different well known statistical
distributions are tested on the PCG signal and extracted
formant variations. It is observed that the fitting performance
of the statistical distribution varies significantly for various
cases. Based on the extensive experimentation, four different
statistical distributions, namely t-location-scale, lognormal,
Birnbaum-Saunders and logistic distribution are selected for
the PCG signal, and variations of the formants magnitudes,
frequencies and phases, respectively. In Table 2, name of the
selected four statistical distributions along with their kernels
and basic features is presented.

For the better visualization, in Fig. 6 statistical distributions
of the PCG signal and formant variations (magnitude, fre-
quency and phase) are shown. In this figure, histogram plots
are shown using rectangles, and fitted distribution is shown
by using green line. It is clearly observed from this figures
that in each case a very satisfactory fitting performance is
obtained by the chosen statistical distributions. The fitted
model parameters as reported in Table 2 are considered as
the features in the classification stage. From four different

statistical models a 15-dimensional (15-d) feature dictionary
can be formed as equation (11). Here F3

PCG represents
three model parameters obtained from the fitted model
corresponding to the PCG signal. F2×2 refers to the two fitted
model parameters extracted from each of the two formants
corresponding to formants’ magnitude, frequency and phase
variation pattern.

F15
pdf = F3

PCG, pdf(6,η,ν) + F
2×2
Mag, pdf(µ,σ )

+ F2×2
Freq, pdf(β,γ ) + F

2×2
Pha, pdf(κ,λ) (11)

E. FORMATION OF THE FEATURE DICTIONARY
To form a feature dictionary for classification purpose, we are
pensive on the evaluated spectrum of the sub-frames of the
PCG signal. Apart from the various statistical measures,
we consider six operations, namely mean absolute deviation
(MAD), 1st quartile, 3rd quartile, inter quartile range (IQR),
skewness and kurtosis. Considering two formants, these
operations provide 12 parameters for each case of the
formants (magnitude (F12

Mag, Stats), frequency (F
12
Freq, Stats) and

phase (F12
Pha, Stats)). If we closely observe Fig. 6 the range of

magnitude variation of 1st formant is a subset of magnitude
variation found in case of 2nd formant. A very similar
overlapping pattern is obtained in case phases of 1st and 2nd

formants. On the contrary, the ranges of frequency values
of the 1st and 2nd formants are exhibiting very negligible
overlap, the two distributions are well separated. As a result,
the features extracted from the formant frequency values
are expected to provide better classification performance in
comparison to the cases, where only formant magnitudes
or formant phases are considered. These observations are
further explained with some sample experimentation in the
result section. Next our objective is to include more spectral
characteristics in the feature dictionary. In view of that
spectral entropy computed from the normalized PCG is
considered as a potential feature (F3

PCG). Another important
phenomenon of our interest is the variation of spectral peaks
corresponding to the formant frequency locations. In view
of obtaining such information the Shannon’s entropy of the
magnitude of extracted formants is also considered as features
(F2

Mag, Shannon′s Entropy). Finally, we propose a 30-dimensional
(30-d) feature dictionary as equation (13). One portion of
equation (13) covers statistical features (F15

Stats) and the other
part covers features from PDF fitting (F15

pdf).

F15
Stats = F12

Stats + F
2
Mag, Shannon′s Entropy

+ F1
PCG, Sp. Entropy (12)

F30
= F15

pdf + F
15
Stats (13)

F. ENSEMBLED BAGGED TREES CLASSIFIER
The proposed feature dictionary is used in the supervised
classifier to obtain both 5 class and binary class classifi-
cation. Among various supervised classifiers, in this paper
ensembled bagged trees (EBT) classifier is utilized because
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FIGURE 6. Distribution fitting of the feature vectors. (a) Normalized heart sound (t-location-scale distribution). (b) & (c) Magnitudes of the 1st and
2nd formant (Lognormal distribution). (d) & (e) Frequencies of the 1st and 2nd formant (Birnbaum-Saunders distribution). (f) & (g) Phases the 1st and
2nd formant (Logistic distribution).

TABLE 2. Distributions and their corresponding kernels used for model fitting.
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of its satisfactory performance in offering robust prediction
against multiple classes. Ensembles help reducing variance
and combat overfitting to the training dataset. In EBT a strong
learner is formed by taking ensemble of a group of weak
learners. In this method, bagging is formed by ‘bootstrap’
and ‘aggregating’ each weak learner, where a random
subsample of data is sampled with bootstrapping. Since each
subsample of data is sampled separately with replacement,
bootstrapping secures independence and diversity. At the
end, for classification majority of the averaged predictions
are taken as the final decision. Because of the average
predictions, this classifier is more stable and robust to
the final prediction [46]. The classification performance
is evaluated for various fold cross validations. Moreover,
holdout validation is also performed with 30% held out score
as a generalization measure of the classifier.

IV. RESULTS AND DISCUSSION
In this section, the performance of the proposed method
is demonstrated considering various experimentation. As a
primitive measure, the physicians usually listen to the
variation of the intensity, softness and loudness of the heart
sound to get an optimistic clue on valve disorders. In case
of serious heart problems, which arise due to leaking of
blood for imperfect closure of heart valve may listen to as
soft swishing or hissing sound. The pathological variation of
the sounds of multiclass (N, AS, MR, MS and MVP) and
binary class cause significant differences in the statistics of
the 1st and 2 nd formant. The evaluation procedure of the
results of the proposed method is described in the following
subsections.

A. PERFORMANCE EVALUATION METRICS
To qualitatively evaluate the performance of the proposed
model, well-known evaluation metrics such as, sensitiv-
ity (Se), specificity (Sp), F1 score and accuracy are chosen
to evaluate the proposed framework. They are defined as
follows:

Se =
TP

TP+ FN

Sp =
TN

TN+ FP

F1 score =
2× TP

2× TP+ FP+ FN

Accuracy =
TP+ TN

TP+ FP+ TN+ FN

where TP, TN, FP and FN represent the numbers of true
positive, true negative, false positive and false negative,
respectively..

B. FEATURE QUALITY ANALYSIS
In order to demonstrate the quality of the extracted features,
a statistical boxplot representation is plotted in Fig. 7,
where as an example eight features out of 30-d are chosen.
For each feature, boxplot representation of five different

FIGURE 7. Boxplot for some of the features for all classes. (a) Mean of
the logarithmic values of the magnitude of the 1st formant. (b) Mean of
the logarithmic values of the magnitude of the 2nd formant. (c) Location
parameter of the frequency of the 1st formant. (d) Location parameter of
the frequency of the second formant. (e) Shannon’s entropy of the first
formants’ magnitude. (f) Shannon’s entropy of the 2nd formants’
magnitude. (g) Shape parameter of the 1st formant and (h) Spectral
entropy of the normalized PCGs.

classes is shown in the same figure. It is observed that for
different features class separability varies with a satisfactory
label of inter-class differences as well as within class
compactness. It can be seen from the Fig. 7 that mean of the
logarithmic values of the 1st and 2nd formant (µ_F1_Mag and
µ_F2_Mag), location parameter of the 1st and 2nd formant
(β_F1 and β_F2), entropy of the 1st and 2nd (Entr_F1
and Entr_F2), location parameter of the 1st (γ _F1) and
spectral entropy (Spec_Entr) of the time series PCG have
different median values. Based on this intra-class variations
in the median values amongst these 30-d features, we have
selected them for diseases classification. However, when all
30-d features are combinedly considered a very satisfactory
classification performance is achieved. Thus, by combining
all 30-d features in the proposed method there is a very high
potential to precisely classify the valve defects.

Next, we want to show the affect of avoiding formant
estimation in low energy region on overall performance.
Based on our discussion in the previous section, it is
expected that the elimination of feature extraction in those
regions, where energy is very low helps in improving the
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TABLE 3. Comparison of the performances for different cross validations
with/without low energy regions of the PCG signal (30-d feature
dictionary).

TABLE 4. Comparison of the performances for different cross validations
after elimination of the low energy regions of the normalized PCG signal
(16-d feat- ure dictionary).

classification performance. In Table 3, the OAs obtained
for the two cases are shown: with and without using
the formants extracted from the low energy regions. It is
observed from the Table 3 that OA is improved by
avoiding formant features extracted from the low energy
regions. In obtaining the classification results three different
experimentations are carried out: 5-fold, 10-fold and holdout
cross validations (30%). Hence, in what follows in all
experiments, we avoid formant extracted from the low energy
regions.

Next, we want to present the overall performance variation
due to selecting any one of the three formant parameters,
namely magnitude, frequency and phase. For the purpose of
demonstration a 16-d feature dictionary is formed for each of
these parameters as:

F16
Mag = F12

Mag, Stats + F
2×2
Mag, pdf(µ,σ ) (14)

F16
Freq = F12

Freq, Stats + F
2×2
Freq, pdf(β,γ ) (15)

F16
Pha = F12

Pha, Stats + F
2×2
Pha, pdf(κ,λ) (16)

Here, F16
Mag consists of features only related to magnitude,

12 statistical features and 4 PDF features as mentioned
before. Similarly, F16

Freq and F
16
Pha are constructed considering

frequency and phase features, respectively.
Results obtained for these cases are presented in Table 4.

As expected, it is clearly observed a relatively better
classification is obtained using (F16

Freq). Hence, proposed 30-d
feature dictionary contains this 16-d frequency features. The
affect of choice of this frequency feature in the proposed 30-d
in comparison to selecting magnitude (F16

Freq) or phase (F
16
Pha)

features is also investigated. The results obtained for these
three cases are shown in Table 5. Here also we can see that
the best performance is achieved when F16

Freq is used in 30-d
feature dictionary. In this table classification performance of
each class is also shown. However, to know detail about the
class performance a confusion matrix is also shown in Fig. 8.

FIGURE 8. Confusion matrix.

TABLE 5. Performance of ensemble bagged trees classifier for different
cross validations without low energy regions of the PCG signal (30-d
feature diction- ary).

Here in order to obtain the individual accuracy (IA) of a
class, number of correctly identified instances of that class
is divided by the total instances of that class. The OAs
are calculated as per the performance evaluation metrics,
that have been reported almost in all literature. It is clearly
observed from the confusion matrix, that for each class
a very high precision is achieved, even when we analyse
the misclassified regions, a very few members of a class
is misclassified. It is found that generally a member is
misclassified to a class that closely resembles to the true class.
For example, some members of the MVP class are found
mistakenly classified asMR class. In biomedical perspectives
MVP and MR are very closely related [3], and such type of
classification may occur.

C. EFFECT OF NOISE ON CLASSIFICATION PERFORMANCE
During the acquisition of the PCG signal, noise can be
included from the surrounding environment or from the
internal physiological mechanisms. Removing noises from
the PCG signal itself is a well-addressed research prob-
lem. In the proposed method, no noise-reduction scheme
is employed at the front-end. Wavelet based denoising
techniques are widely used for PCG denoising. One major
concern in using the PCG denoising techniques prior to HVD
detection is a chance of introducing distortion in the original
PCG, which may deteriorate the original characteristics of
the heart sounds [47]. In some cases, the noise reduction
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TABLE 6. Effect of noise on the performance of the proposed model.

techniques require secondary recording of the surrounding
artifacts by using an extra microphone, which is unavailable
in most of the cases. In [48], considering the noise in
PCG signal as the additive white Gaussian noise (AWGN),
an adaptive denoising algorithm is proposed based on the
overlapping-group sparsity of the first-order difference of the
PCG signal. Similar to various methods available in literature
that deal with PCG denoising, we have considered a noisy
environment by addingwhite Gaussian noisewith the original
PCG signal. The objective here is not to carry out denoising
operations, rather to analyze the performance of the proposed
method under noisy conditions. To check the robustness of
our proposed model in case of noise, AWGN with zero
mean is added to the normalized signal. An appropriate noise
level is determined based on the value of signal-to-noise
ratio (SNR). From −10 dB to 15 dB of SNR is varied to
evaluate the accuracy level as per the performance metric
described in the previous subsection. Results obtained by
using the proposed method on noise-corrupted PCG signal
at various levels of SNRs are presented in Table 6. It can
be seen in Table 6 that at moderate to high SNR levels
(SNR > 0 dB), consistently very satisfactory performance is
observed. As expected, a decrease in performance is found at
a very low SNR of −5 dB and −10 dB. Further investigation
on employing a noise reduction scheme and investigating
various types of real-life noises could be a potential future
work.

D. PERFORMANCE EVALUATION AND COMPARISON
Finally, we have demonstrated the performance of our
proposed method with that of some recently reported results
in Table 7 and Table 8, obtained by using variety of
features along with different types of classifiers. Two widely
available reliable datasets [33] and [27] are used in the
proposed method for classification of HVDs. Different cross
validations (5-fold/10-fold/holdout) are applied in imple-
menting the proposed method for both noisy and without
noisy data. Finally, binary and multiclass classification have
been addressed with/without discarding low energy regions
of the PCG signal. Usually, MFCCs are considered to
be the baseline features for audio detection. With SVM
classifier, an OA of 91.6% is reported with MFCCs features
in [28]. At the same time the authors have tried with
DWT coefficients for the same classifier, and have managed
slightly higher accuracy. They useMFCCs and DWT features
together, and found that this combination can ‘‘diagnose heart
disorders in patients up to 97% accuracy’’ [28]. Here 5-fold
cross validations are used to achieve a maximum accuracy of
97.90%.

TABLE 7. Comparison of the performances of different approaches on
github dataset [27].

TABLE 8. Comparison of the performances of different approaches on
Physionet/CinC 2016 [33].

In [6], nonlinear dynamics of the PCG signal is used.
The signal’s first derivative is decomposed into a set of
frequency subbands with TQWT method. Followed by
FA-MVEMD, the first two IMFs are extracted according
to predominant energy, where Shannon energy is used to
extract the characteristic envelope of IMFs. Finally, neural
networks are then used to model, identify and classify HVDs
for 5-classes of PCG signals based on deterministic learning
theory, achieving an OA of 98.48%. In [25], the authors
utilize WSST and CT to find time-frequency matrix for
feature extraction to identify 4-classes of HVDs [25], [26].
The OA obtained from statistical features of magnitude and
phase of the TFM ofWSST is 95.13%. Altogether 13 features
were fed to RF classifier to have this OA. On the other hand,
300 features from time-frequency matrix of CT are used to
classify the same four classes of diseases. By sacrificing
considerable computational burden, an OA of 98.33% is
found from this huge set of features with MCC classifier.
For both the cases 10-fold cross validations were used. It is
to be noted that the dataset had 5 classes of heart sounds
for classification. In both the cases the authors dropped
MVP from the dataset while evaluating the OA. Apart from
these feature based approach, authors of [38] utilized deep
learning, where CNN networks are used for the identification
of various valvular heart diseases through PCG recordings
of [27]. On an average 0.88 (±0.21) s is required to get
the classification result for a single trial, which is found
reasonable considering the duration of the input data (2.44±
0.37 s). In this case, an Intel R© Core i7 5500UCPU@2.4GHz
along with 12 GB RAM is used.

The performance of the Physionet/CinC 2016 [33]
on various algorithms are presented in Table 8, where
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normal/abnormal classes are targeted for classification.
In most cases, different types of neural networks are used
on various number of data. Rather than considering all
recordings, we put all male and female subjects for feature
extraction. This helps using diversity of data from different
perspective, like age, length of the recordings, places etc.
A total of 2766 data are used, by discarding 474. An OA
of 93.46% is achieved with proposed method, which is very
satisfactory compared to other recently reported methods.
In our method, the feature dimension is 30-d which is
extremely low in comparison with some methods. The
proposed method offers very satisfactory performance using
only a very low feature dimension.

V. CONCLUSION
The unique idea proposed in this paper is to utilize the
temporal variation of formants of the PCG signal for HVD
classification. Moreover, by introducing the PDF models
to represent the formant variation, a drastic reduction in
feature dimension is achieved along with a satisfactory
feature quality. It is shown that the classification performance
can be improved by avoiding formant estimation in the
low energy regions, which is expected as per the acoustic
nature of the formants. In the proposed features, the PDF
model parameters obtained for all three cases of the formant
variation, namely magnitude, frequency and phase are uti-
lized. However, statisticalmeasures for the formant frequency
variation is found more effective than that of the magnitude
and phase variation. Classification performance on each class
is found very satisfactory in case of various cross validations
setups. Comparative performance analysis is carried out with
some recent methods and it is found that the proposed method
offers better classification accuracy with the overall accuracy
values of 93.46% and 99.28% in 10-fold cross validations for
the two datasets. However, this automated method hopefully
will play an efficient role with enhanced diagnostic accuracy
for the clinicians and development of noninvasive biomedical
instrumentation.
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