IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 11, 2022, accepted February 26, 2022, date of publication March 8, 2022, date of current version March 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3157289

PersianQuAD: The Native Question Answering
Dataset for the Persian Language

AREFEH KAZEMI“'!, JAMSHID MOZAFARI“2, AND MOHAMMAD ALI NEMATBAKHSH 2

! Department of Linguistics, Faculty of Foreign Languages, University of Isfahan, Isfahan 81746-73441, Tran
2Big Data Research Group, Faculty of Computer Engineering, University of Isfahan, Isfahan 81746-73441, Iran

Corresponding author: Arefeh Kazemi (akazemi@fgn.ui.ac.ir)

ABSTRACT Developing Question Answering systems (QA) is one of the main goals in Artificial Intelli-
gence. With the advent of Deep Learning (DL) techniques, QA systems have witnessed significant advances.
Although DL performs very well on QA, it requires a considerable amount of annotated data for training.
Many annotated datasets have been built for the QA task; most of them are exclusively in English. In order to
address the need for a high-quality QA dataset in the Persian language, we present PersianQuAD, the native
QA dataset for the Persian language. We create PersianQuAD in four steps: 1) Wikipedia article selection,
2) question-answer collection, 3) three-candidates test set preparation, and 4) Data Quality Monitoring.
PersianQuAD consists of approximately 20,000 questions and answers made by native annotators on a
set of Persian Wikipedia articles. The answer to each question is a segment of the corresponding article
text. To better understand PersianQuAD and ensure its representativeness, we analyze PersianQuAD and
show it contains questions of varying types and difficulties. We also present three versions of a deep
learning-based QA system trained with PersianQuAD. Our best system achieves an F1 score of 82.97%
which is comparable to that of QA systems on English SQuAD, made by the Stanford University. This
shows that PersianQuAD performs well for training deep-learning-based QA systems. Human performance
on PersianQuAD is significantly better (96.49%), demonstrating that PersianQuAD is challenging enough
and there is still plenty of room for future improvement. PersianQuAD and all QA models implemented in
this paper are freely available.

INDEX TERMS Dataset, deep learning, natural language processing, Persian, question answering, machine

reading comprehension.

I. INTRODUCTION

Developing open-domain Question Answering systems (QA)
is one of the main goals in Artificial Intelligence. QA systems
receive the users’ questions in natural language and respond
to them with precise answers. They deploy natural language
understanding and information retrieval to understand the
users’ questions and find the appropriate answers. Classic
search engines receive the users’ queries and return a list
of relevant web pages. The user should read the returned
web pages to obtain their required information. QA systems
receive the users’ questions and find the final answer to
that questions. Nowadays, modern search engines such as
Google, Yahoo, and Bing, deploy QA techniques to provide
precise responses to some types of questions. For example,

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdel-Hamid Soliman

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

if someone searches for the question “what is the normal
body temperature?” in Google, it responds with the precise
answer: “37 degrees Celsius”.

QA systems mainly focus on factoid questions; questions
that can be answered with facts expressed in a few words [1].
Table 1 shows three examples of factoid questions, along with
their answers and answers’ types.

With the advent of Deep Learning (DL) techniques, NLP
tasks such as machine translation, sentiment analysis, and QA
have witnessed a significant advance. Although DL performs
very well on NLP tasks, they require a considerable amount
of annotated data for training. In the QA task, the data are
semantically annotated and in the form “question, paragraph,
answer”, where the question, paragraph, and answer, show
a question expressed in natural language, a text that con-
tains the answer, and a span of the paragraph which has the
answer, respectively. Given the question and the paragraph,

26045

https://orcid.org/0000-0002-8643-9713
https://orcid.org/0000-0003-4850-9239
https://orcid.org/0000-0002-4374-9228
https://orcid.org/0000-0001-7382-1107

IEEE Access

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

TABLE 1. Examples of factoid questions.

Facotoid Question Answer Answer Type
who is the co-founder of Apple? Steve Jobs Person

when was Mahatma Gandhi born? October 2, 1869 Date

where is the longest suspension Japan Location

bridge?

the QA system should select the paragraph’s span, which is
the answer.

Many annotated datasets have been built for the QA task;
most of them are exclusively in English. The most famous
QA dataset in English is SQuAD [2]. It contains 100,000+
questions created by crowdworkers on a set of Wikipedia
articles. The answer to each question is specified in the article
text. In order to conduct QA systems for other languages,
some works have automatically translated the English QA
datasets to the target language using machine translation
tools. Even though translating English QA datasets is a
fast and straightforward solution to prepare labeled data
for low-resourced languages, automatic translation is not
perfect and can not produce high-quality annotated data.
In addition to this, the process of translation -even human
translation- may produce faulty outputs in the target lan-
guage [3]. The result is that the quality of the QA systems
trained on the purely native datasets is substantially better
than the quality of the QA systems trained on the translation
datasets [3]-[6].

In order to address the need for a high-quality QA dataset
for Persian language, we propose a model for creating dataset
for deep-learning-based QA systems. We use the proposed
model to create PersianQuAD: The Native Question Answer-
ing Dataset for the Persian Language. PersianQuAD con-
tains 20,000 ‘““‘question, paragraph, answer” triplets and is
the first large-scale native QA dataset for the Persian lan-
guage, to the best of our knowledge. PersianQuAD and also
the code of all QA systems implemented in this article are
freely available for public use at https://github.com/BigData-
IsfahanUni/PersianQuAD. To evaluate the quality of the QA
dataset created through the proposed model, we implemented
a set of state-of-the-art deep-learning-based QA systems and
used the created QA dataset for training these systems. Our
best model achieves an F'1 score of 82.97% and an Exact
Match of 78.7%, which are comparable with that of English
QA systems trained on the English SQuAD, made by the
Stanford University.

The remainder of this paper is organized as follows.
Section II reviews the related work and puts our work in
its proper context. Sections III, IV, and V present in detail
the proposed model for preparing QA datasets, including the
problem definition, the annotation tool used, and dataset col-
lection process. This is followed by more in-depth analyses
of the resulted dataset in Section VI. Section VII contains
the experiments carried out to evaluate the quality of the
resulted dataset by using it for training three deep-learning-
based QA systems. Finally, we outline conclusions in
Section VIII.

26046

Il. RELATED WORK

Many QA datasets have been produced in the past decade,
most of them exclusively in English. In recent years, several
QA datasets have been built for other languages, such as
Arabic, France, etc. In this section, we present a brief review
of the researches on creating QA datasets.

A. ENGLISH

The Stanford Question Answering Dataset (SQuAD) [2]
can be considered as the most famous QA dataset in
English. It consists of 100,000+ questions posed by crowd-
workers on Wikipedia articles. A set of Wikipedia arti-
cles were presented to the annotators, and they were asked
to pose some questions on the paragraph and specify the
corresponding answer. The second version of SQuAD [7]
contains over 50,000 unanswerable questions written
adversarially by crowdworkers to look similar to answerable
ones.

The WikiQA [8] and MS Marco [9] datasets are built by
sampling questions searched by the users in the Bing search
engine. For each question, the top-ten documents returned by
the Bing engine are presented to the annotators and ask them
to find the answer to the question in the documents or say
that the documents do not contain the answer. WikiQA con-
tains about 3,000 questions and their corresponding answer
sentence on the Wikipedia page. MsMarco contains 100,000
questions with free-form answers. Natural Questions (NQ)
dataset [10] is created by sampling questions issued to the
Google search engine and consists of over 300,000 examples.
To create NQ dataset, a set of questions searched in Google
along with the top-five results returned by Google are pre-
sented to the annotators. Then the annotators are asked to
specify the answer on the pages or mark null if the answer
is not inside the returned pages.

The QuAC [11] and CoQA [12] are conversational QA
datasets that contain dialogues between a questioner and an
answerer. CoQA [12] contains over 127,000 question-answer
pairs. The questions are collected by asking two crowdwork-
ers to chat about a passage. During the conversation, one of
the crowdworkers poses some questions about the passage,
and the other tries to answer them. The questions are conver-
sational, and the answers are free-form text with their corre-
sponding evidence highlighted in the passage. NewsQA [13]
is a QA dataset based on the CNN news articles, with over
100,000 question-answer pairs. NewsQA is created in three
stages, and the crowdworkers are divided into three groups:
1) questioners, 2) answerers, and 3) validators. In the first
stage, the questioners see only the article highlights and
headlines and pose some questions. In the second stage,
the answerers see the crowdsourced questions and the full
article and determine the answer in the article. In the third
stage, the validators see the article, the question, and a set
of unique answers to that question selected by the answerers.
The validators then choose the best answer from the candidate
set or reject all of them.

VOLUME 10, 2022

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

IEEE Access

Some QA systems translate the users’ question from natu-
ral language into a query formulated through a specific data
query language that is compliant with the underlying knowl-
edge base. MQALD [14] provides a dataset for evaluating the
performance of the QA systems in translating the questions
from natural language into a specific data query language.

Some questions can not be answered by reading a single
paragraph or document, and several pieces of information in
different documents should be considered to find the answer.
These questions need multi-step(or multi-hop) reasoning.
Several QA datasets have been developed to address multi-
step QA. The main challenge in multi-step QA datasets is
to answer the questions by reasoning over different docu-
ments. QAngaroo [15], HotpotQA [16], ComplexWebQues-
tions [17], and R4C [18] are examples of multi-hop datasets.
ComplexWebQuestions and QAngaroo are built by incorpo-
rating a knowledge base with the Web and Wikipedia website
documents. HotpotQA and R4C are created by crowdsourc-
ing. HotpotQA consists of 113,000 questions on Wikipedia
articles. Answering each question in the dataset needs finding
multiple documents and reasoning over them. In multi-hop
datasets, in addition to answering questions, QA systems
typically should also identify paragraphs that have been used
to drive the answer.

B. OTHER LANGUAGES

There are two main approaches for building QA datasets
in languages other than English: 1) translating English QA
datasets into the target language, typically using machine
translation, and 2) building the dataset from scratch (native
QA dataset). In the first approach, an English QA dataset’s
training set is first translated into the target language. Then
the QA system for the target language is trained on the
translated dataset. Carrino et al. [19] proposed a new method
to automatically translate SQuAD to Spanish and used the
translated dataset to fine-tune a Spanish QA model. Mozan-
nar et al. [20] translated 48,0004+ SQuAD instances into
Arabic using machine translation and built an Arabic QA
system. Lee et al. [21] translated SQuAD into Korean and
built k-QuAD using machine translation. Croce et al. [22]
proposed a semi-automatic translation method and translated
SQuAD into Italian. While the translation approach is a
fast and relatively easy way to building QA datasets for
low-resourced languages, Clark er al. [3] argue against this
approach. They discuss that the translation process, even
human translation, tends to produce problematic artifacts in
the output language, such as preserving the word order of the
source language when translating to a target language with
free-word order or using more formal in the target language.
As a consequence, the text that is obtained from human-
or automatic-translation may be significantly different from
original native text [6], [23]. In addition to this, speakers
in various languages and of different nationalities may have
questions about different topics [3] and in different ways.
For example, a Persian speaker may ask about the recipe
of “Ghormeh sabzi”, a traditional Iran food. These types of

VOLUME 10, 2022

questions may never appear in the translated datasets. These
issues encourage following the second approach, i.e., build-
ing native QA datasets from scratch by native annotators.
In this work, we follow the second approach for creating the
PersianQuAD dataset.

Native QA datasets are mostly constructed in a similar
way to SQuUAD. The SberQuAD [24] is a Russian native QA
dataset and contains above 50,000 samples. The DRCD [25]
is a native Chinese QA dataset, consists of 30,000+ questions
posed by the annotators on 10,014 paragraphs extracted from
2,108 Wikipedia articles. KorQuAD [26] is a Korean QA
dataset and PIAF [27] is a French QA dataset, consisting
of 70,000+ and 3835 question-answer pairs, respectively.
Since large-scale QA datasets in languages other than English
rarely exist and building native QA datasets is time- and
cost-consuming, developing QA systems for these languages
is challenging. Cross-lingual QA datasets have been devel-
oped to address this challenge. These datasets are typically
deployed in training the QA model on one language and
transfer the model to another language. It has been shown that
the resulted models perform well in the zero-shot setting [28].
MLQA [29] is a cross-lingual QA dataset developed for
seven languages: English, Arabic, German, Spanish, Hindi,
Vietnamese and Chinese. It consists of over 12,000 samples in
English and 5,000 samples in other languages. MMQA [30]
is a parallel QA dataset in Hindi and English, containing
5,000+ parallel instances. BiPar [31] is another parallel QA
dataset in English and Chinese. XQA [32] consists of a
training set in English and the development and test sets
in eight languages: English, French, German, Portuguese,
Polish, Chinese, Russian, Ukrainian, and Tamil. XQuAD
contains 1190 instances from SQuAD, along with their trans-
lations in 10 languages.

There are only a few works on building open-domain QA
datasets for the Persian language. Abadani et al. [33] auto-
matically translated SQuAD into the Persian language and
built a translated Persian QA dataset, called ParSQuAD. They
created two versions of ParSQuAD: ParSQuAD(manual) and
ParSQuAD(automatic), with 25000 and 70000 instances,
respectively. For creating ParSQuAD(manual), after auto-
matic translation of SQuAD, some of the translation errors
have been corrected manually. ParSQuAD(automatic) is the
result of automatic translation of a part of SQuAD, with-
out any manual correction on the translation. As we dis-
cussed earlier, the translation approach for creating a QA
dataset has a number of limitations. Hence, in this paper,
we create a native QA dataset for the Persian language.
Khashabi er al. [34] created a Persian QA dataset containing
1300 instances and trained a QA system using this dataset.
To the best of our knowledge, currently, there is no native
large-scale QA dataset for answering the Persian questions,
neither as a monolingual nor as a cross-lingual dataset. In this
paper, we present the first large-scale and native dataset for
the Persian language, called PersianQuAD.

A review of the discussed QA datasets is presented in
Table 2.

26047

IEEE Access

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

TABLE 2. Review of some QA datasets.

Title Year Language(s) Type Size
Squad: 100,000+ questions for machine comprehension of text [2] 2016 English Native 100K+
Know what you don’t know: Unanswerable questions for SQuUAD [7] 2018 English Native 150K+
Wikiqa: A challenge dataset for open-domain question answering [8] 2015 English Native 3K+
MS MARCO: A human generated machine reading comprehension dataset [9] 2016 English Native 100K+
Natural questions: a benchmark for question answering research [10] 2019 English Native 300K+
Quac: Question answering in context [11] 2018 English Native 100K+
Coqa: A conversational question answering challenge [12] 2019 English Native 127K+
Newsqa: A machine comprehension dataset [13] 2016 English Native 100K+
Constructing datasets for multi-hop reading comprehension across documents [15] 2018 English Native, Multi-hop ~ 50K+
Hotpotqa: A dataset for diverse, explainable multi-hop question answering [16] 2018 English Native, Multi-hop 113K+
Repartitioning of the complexwebquestions dataset [17] 2018 English Native, Multi-hop 63K+
R4C: A benchmark for evaluating RC systems to get the right answer for the right reason [18] 2019 English Native, Multi-hop 4K+
Automatic spanish translation of the squad dataset for multilingual question answering [19] 2019 Spanish Translation 100K+
Neural arabic question answering [20] 2019 Arabic Translation 48K+
Semi-supervised training data generation for multilingual question answering [21] 2018 Korean Translation 81K+
Neural learning for question answering in italian [22] 2018 Italian Translation 60K+
SberQuAD-Russian reading comprehension dataset: Description and analysis [24] 2020 Russian Native 50K+
Drcd: a chinese machine reading comprehension dataset [25] 2018 Chinese Native 30K+
Korquadl. 0: Korean ga dataset for machine reading comprehension [26] 2018 Korean Native 70K+
Project PIAF: Building a Native French Question-Answering Dataset [27] 2020 French Native 3K+
Parsinlu: a suite of language understanding challenges for persian [34] 2021 Persian Native 1K+
ParSQuAD: Persian Question Answering Dataset based on Machine Translation of SQUAD 2021 Persian Translation 25K, 70K

2.0[33]

context:

"Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the

chalcogen group on the periodic table and is a highly reactive nonmetal and oxidizing agent
that readily forms compounds (notably oxides) with most elements. By mass, oxygen is the
third-most abundant element in the universe, after hydrogen and helium. At standard
temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and
odorless diatomic gas with the formula O\n2. Diatomic oxygen gas constitutes 20.8% of the
Earth's atmosphere. However, monitoring of atmospheric oxygen levels show a global downward
trend, because of fossil-fuel burning. Oxygen is the most abundant element by mass in the
Earth's crust as part of oxide compounds such as silicon dioxide, making up almost half of

the crust's mass."

qas:
id: "571a484210f8cal1400304fbd"
question:
is_impossible: false

answers:

o:

text: "8"

answer_start: 61
1:

text: "8"

answer_start: 61
2:

text: "8"

answer_start: 61

FIGURE 1. An instance of SQuAD dataset.

Ill. PROBLEM DEFINITION

In the QA systems, given a question and a paragraph contain-
ing the answer, the model needs to find the answer to that
question in the paragraph text. The answer is determined by
an “start” and an “end” token, which show the start and end
tokens of the answer in the paragraph text, respectively.

To define the QA problem formally, assume that
the question Q = {q1,92,...,9,} and the paragraph
P = {p1,p2,...,pm} are given, where ¢; and p;
are i’th and j’'th words of the question and paragraph
text, respectively. The QA system needs to find the
answer A = {ay,...,ax} of the question Q in para-
graph P. The paragraph P contains the answer, hence,

26048

"The atomic number of the periodic table for oxygen?"

A = {al g ey ak} = {pstarta DPstart+1s - -+ pend:start—i-k—l},
where start and end are the start and end tokens of the answer

in the paragraph text. The QA system finds the answer of the
question, by predicting the start and end tokens on condition
that start < end. To be more precise, the QA systems
specify the answer by estimating Pr(start, end|P, Q), where
Pr shows the probability.

Modern QA systems employ DL techniques to solve the
stated problem, i.e., to predict the start and end tokens of the
answer in the corresponding paragraph text. DL algorithms
require a large number of annotated data. As mentioned
earlier, for the QA task, the annotated data are in the form
(Q, P, A) where Q, P, and A are the question, the paragraph,

VOLUME 10, 2022

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

IEEE Access

Paragraph

Document Title—> (_,S.) 9)

Ublodile Bl jlail glaSzum 53 g9 g5 45 T jl . AiSe 9y 1) S99y g Ll Colps b Guandd dymuw oaib plasl pal wlass ply Jb ool b
31 3929 Jlassl ol 15955 553 (39 595 81byd (39 395 5l e Wi 69 63ljple 192 495 e A4S Llng) 0SS g SRS 39 698 W (sloylidl
S @b I Gwgad LiyliS b @il I laz ool a5 Wil 6362)9S (s o jl 6551 0jgyel aS) died g aldlS (13gpw loj 3 Win Gijae HLL Guo 3o a5

-l Glgas j jelid lgaillys 39290 Gagjlw pgas g pubidne gledidl b diod

Highlighted Answer

dlgw
QUESHON —> 5oy 539, 09 p1a5 51

b
Answer——> 435 4is

FIGURE 2. SAJAD’s annotation page.

Nayuki’s Wikipedia’s
internal PageRanks

Persian Wikipedia
documents

5',2&\, »

<

|_—>%—> 500 characters—>

SKip—> 0359

|_—Pa ragra ph—b%*> 500 characters—¢

u . —b%—> 500 characters—p»| :

%— --< 500 characters -p

A JSON file contains
26417 persian paragraphs

FIGURE 3. Wikipedia article selection.

and the answer, respectively. Usually, the QA datasets are
stored in JSON format. Fig. 1 shows an instance of the
SQuAD dataset in JSON format.

In order to build high-quality QA systems by using DL
techniques, a large labeled dataset is required. While these
datasets are available for a limited number of languages,
there is no large-scale and native QA dataset for most of
the non-English languages, such as the Persian language.
In this paper we build the first native Persian question answer-
ing dataset. In order to create the dataset, we first imple-
ment SAJAD, an effective annotation tool for gathering QA
datasets (Section IV). Then we collect the data through a
participatory approach on Wikipedia articles (Section V).
We build three QA systems and employ PersianQuAD for
training of these systems in Section VII. In the rest of the
paper, we explain the mentioned steps in detail.

IV. SAJAD ANNOTATION TOOL
In Fig. 2 the Document Title shows the title of the Wikipedia
page that the paragraph is extracted from. The Paragraph

VOLUME 10, 2022

%—-—< 500 characters— ¥
Paragraph—b%i> 500 characters

TABLE 3. Example of a paragraph, a question, and the corresponding
answer.

Paragraph Mohammad-Reza Shajarian was an Iranian vocalist and
master of Persian traditional music. {Shajarian} was also
known for his skills in Persian calligraphy and humanitar-
ian activities. In 1999, UNESCO in France presented him
with the Picasso Award and in 2006 with the UNESCO
Mozart Medal. In 2017, Los Angeles Times cited him as
the "Greatest living maestro of Persian classical music"

Which Iranian vocalist is also known for his skills in
calligraphy?
Mohammad-Reza Shajarian

Question

Answer

shows the paragraph on which the annotator should pose a
question. The annotator pose a question on the paragraph and
type it in the Question field. The annotator then specifies the
answer to the question by highlighting the answer within the
paragraph text. By highlighting the answer within the text,
it will be automatically placed in the Answer field. The anno-
tator adds the question to the JSON file of the PersianQuAD
by the Add button. In the case the annotator can not pose any

26049

IEEE Access

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

The JSON file containing

> r) o
i 20000 questions The JSON file containing
Random selector 19000 questions
Annotator Paragraph: [for training
e ‘—b Questions—p > S
& . 5 Questions—
Annotator Question: | P Questions— N Il
Answer: | | The JSON file containing
i\ E A 1000 questions
for test
Annotator T
[m Y
Py p o q Y
@/‘gﬂ é/éﬂ <X

26417 Persian paragraphs

Validator

FIGURE 4. Question-answer collection.

Validator

Validator

The test file containing
1000 questions with
three-candidate answer instances

Paragraph:
—p

u

AN

Candidate answer—

Candidate answer—>

Annotator Question:

&" > Answer [

Annotator

The test file containing
1000 questions with

one-candidate answer instances

FIGURE 5. Three-candidates test set preparation.

question on a paragraph, s/he can go to the next paragraph by
clicking the Skip button.
The following features characterize SAJAD:

o Web-based and Mobile-friendly: SAJAD is a
web-based application, and hence it does not need to be

installed on the participants’ systems.
It also can be accessed easily from any device and
browser.

e Multi Account: SAJAD is a multi-user tool. It enables
the system administrator to create multiple accounts.
Each participant is provided with an account, and the
participants’ IDs will be stored in the questions they
pose. This enables the system administrators to actively
evaluate the quality of questions that the annotators
posed.

26050

e SQuAD Format: To enable the community to use the
dataset easily and quickly, the SAJAD input and output
are the same as SQuAD. Each paragraph can have many
questions, and each question can have multiple answers.

V. DATASET COLLECTION

In line with recent works on QA tasks, we follow the same
format as in SQuAD and other QA datasets for our dataset.
The data in QA datasets is in the form (Q, P, A), where Q is
the question, P is the paragraph that contains the answer, and
A is the answer to the question. As described in Section 1V,
we develop SAJAD and use it for gathering the QA data.
Our proposed model for collecting QA datasets consists of
four steps: 1) Wikipedia article selection, 2) question-answer
collection, 3) three-candidates test set preparation, and
4) Data Quality Monitoring.

VOLUME 10, 2022

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

IEEE Access

A. WIKIPEDIA ARTICLE SELECTION

In this step, we selected a set of high-quality Persian
Wikipedia articles to use in the dataset collection process.
We used Project Nayuki’s Wikipedia’s internal PageRanks
to retrieve the top 10,000 articles of Persian Wikipedia with
the highest page rank. We extracted the individual para-
graphs from the selected article and kept only the para-
graphs with more than 500 characters. Ultimately, we got
26,417 paragraphs with different topics and converted them
to the JSON input format to be used as the SAJAD input.
Fig. 3 shows the article selection process.

B. QUESTION-ANSWER COLLECTION

We employed several participants to make questions. Most
of them are graduated, or fourth-year students in linguistics
and computer science, and all of them are native Persian
speakers. We first provided the annotators with a set of
written guidelines and oral explanations about the annotation
process, the level of complexity that the questions should
have, the answers span, and the shortest span. The annotators
were also shown a set of example paragraphs and some good
and bad questions and answers on each paragraph. Then the
annotators were asked to make 50 questions, and if they pose
at least 45 questions correctly, they could participate in the
annotation process.

We used the SAJAD tool for annotation, as explained in
Section IV. In the annotation process, the annotators are
shown a random paragraph from the selected articles. Then
they were asked to pose some questions on the paragraph
and highlight the answer within the paragraph text. The
participants were asked to spend one minute making each
question and posing at least three questions in each paragraph.
They were also asked to make questions without using the
paragraph’s text and express it in their own words. In the
case that the participants can not make any question on a
specific paragraph, they can skip it. Fig. 4 shows the process
of question-answer collection. In this way, we collected about
20,000 question-answer and stored them in the JSON format.

C. THREE-CANDIDATES TEST SET PREPARATION SET
As explained earlier, the annotators were asked to specify the
shortest span as the answer. However, in some cases, there
is a disagreement between the annotators about the shortest
span. For an example, consider the paragraph and the cor-
responding question in Table 3. For the question in Table 3,
“Mohammad-Reza Shajarian” and “Shajarian” are both cor-
rect answers. In the case that we just specify “Mohammad-
Reza Shajarian” as the correct answer, a QA system that
selects “Shajarian” as the answer will be wrongly punished.
Hence, to make the evaluation more accurate and reliable,
we followed the SQuAD protocol and specified two extra
answers for the questions in the test set.

In order to prepare three-candidates test instances, we show
each annotator the questions on the test set along with the
corresponding paragraphs. Then ask the annotators to specify

VOLUME 10, 2022

the shortest answer to the question in the paragraph’s text.
In this way, we have three answer candidates for each ques-
tion in the test set. Fig. 5 shows the process of preparing a
three-candidates test set.

D. DATA QUALITY MONITORING

In SQuAD’s data collection protocol, the annotators were
required to have a high HIT acceptance rate to participate
in the process. However, no constant supervision is made
on the questions that the annotators make. Since SQuAD
is a huge dataset with 100,000 question-answer pairs, some
wrong or inappropriate instances made by the annotators
might be tolerable. PersianQuAD contains 20,000 instances,
and we compensate for the lack of quantity by improving our
dataset’s quality. To this end, we actively check the quality of
the instances.

As mentioned earlier, the annotators were asked to perform
an annotation task, and if they pose at least 45 questions
correctly, they could participate in the data collecting process.
In addition to this, to ensure the quality of the dataset, all of
the questions were constantly checked by three supervisors.!
The entire data collection process took approximately two
months to complete. At the end of each day, the supervisors
sampled a number of questions from each annotator and veri-
fied the quality of the questions based on the following crite-
ria: 1) Whether the question is fluent in Persian?, 2) Whether
the answer exists in the paragraph text?, 3) Whether the
specified answer is correct? And 4) Whether the specified
answer is the shortest one? The questions that failed to satisfy
these criteria were removed from the dataset. The supervisors
also checked the type and variety of the questions that each
annotator made and prevented the dataset from being biased
toward specific types of questions.

VI. DATASET ANALYSIS

A. DATASET STATISTICS

We split PersianQuAD into train and test sets containing
18,567 and 1000 instances, respectively. The test set was
selected randomly from the dataset, with the remaining part
of the dataset used for training. Table 4 gives the statistics
of training and test sets of PersianQuAD. As mentioned in
Section V-C, we specified three candidate answers for the
questions in the test set.

B. QUESTION TYPE ANALYSIS

In order to evaluate the proposed model for creating QA
datasets and to ensure the representativeness of the resulted
data, we analyze the PersianQuAD by extracting the type
and number of its questions. To compare the question type
distribution of our dataset with that of other datasets, such as
SQuAD and TyDi QA, we use English question types as the
basis of our analysis. To this end, we mapped each of the ques-
tion words in English to their corresponding question words

TAll of the supervisors are native Persian speakers, One of them is a
linguist and the others are experts in NLP

26051

IEEE Access

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

TABLE 4. PersianQuAD statistics.

Dataset Train Test
No. of Instances 18,567 1000
Avg. Question Length 10.7 10.5
Avg. Answer Length 2.6 23
No. of Candidate Answers 1 3

TABLE 5. Question type distribution over PersianQuAD, SQuUAD, and TyDi
QA datasets.

Question TyDi QA SQuAD PersianQuAD
Word

What 30% 51% 28.14%

How 19% 12% 15.24%
When 14% 8% 10.7%

Where 14% 5% 13.6%

Who 9% 11% 16.15%
Which 3% 5% 15.26%

Why 1% 2% 0.92%

TABLE 6. Question type distribution over the training and test parts of
PersianQuAD.

Question type Train Test

What 28.57% 23.2%
How 15.54% 13.2%
When 11.0% 8.30%
Where 13.21% 21.1%
Who 16.13% 13.0%
Which 14.61% 20.7%
Why 0.94% 0.60%

in Persian. Table 5 shows the question type distribution over
PersianQuAD, SQuAD, and TyDi QA datasets. As Table 5
shows, PersianQuAD contains a more balanced distribution
of the question words in comparison with SQuAD and even
TyDiQA. In all datasets, “What” and “Why” questions have
the highest and the lowest frequency, respectively.

Table 6 shows the statistics of the question types over
the training and test sets of the PersianQuAD. As this table
shows, the frequency of different question types over the test
set is similar to that of the training set, confirms that the test
set is a good presented of the whole dataset.

C. QUESTION DIFFICULTY

We take the lexical similarity between the question and the
corresponding answer sentence as an indicator of the ques-
tion’s difficulty. The less similarity between a question and
its answer sentence, the more difficult it is for a QA system
to answer that question. We measure the lexical similarity
between the question and the answer sentence by using the
Jaccard Coefficient [35].

Assume that the question and the answer sentences
are shown as Q@ = {q1,¢,...,qp}) and A =
{ai, as, ..., an}, respectively. Jaccard Coefficient measures
the similarity between the question Q and answer sentence
A as shown in (1).

PN A

Jaccard(P,A) = PUA]

ey

26052

50%

] W o+

Percentage of questions

,_.
2
ES

0%
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Jaccard coefficient

FIGURE 6. Histogram of lexical similarity between question and answers
over the PersianQuAD test set.

As (1) shows, Jaccard Coefficient measures the similarity
as the ratio of the number of common words between the
question and answer sentence to the total number of words
in question and answer. Jaccard Coefficient varies between
0 and 1, where 0 shows there is no lexical similarity between
the question and the sentence, while 1 shows the sentence
contains all the question words. Fig. 6 shows the lexical
similarity between the questions and corresponding answer
sentences over the PersianQuAD test set. As Fig. 6 shows,
for almost 90% of the questions, the similarity between the
question and its answer sentence is less than 0.3% in terms
of the Jaccard Coefficient. This demonstrates that the lexical
overlap between the questions and the answer sentences is
very low, and hence, the PersianQuAD questions present an
adequate level of complexity.

VII. EXPERIMENTS AND RESULTS

A. METHODS

We design and implement three versions of a deep-learning
based QA system and deploy PersianQuAD as the training set
of the QA systems. In line with the state-of-the-art research
on QA tasks [36], we used three pre-trained language mod-
els in our QA systems: MBERT [37], ParsBERT [38] and
ALBERT-FA [39].

MBERT (Multilingual Bidirectional Encoder Representa-
tions from Transformers) is a deep bidirectional language
model developed by Google. It has been pre-trained on
Wikipedia articles of 104 languages, including Persian.
MBERT has shown great performance on a wide range of
NLP tasks such as named entity recognition, question answer-
ing, part of speech tagging, etc. ALBERT is a lite version
of MBERT with fewer parameters and hence, faster training

VOLUME 10, 2022

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

IEEE Access

speed. It also models the inter-sentence coherence by using
a supervised loss. ALBERT shows better performance than
MBERT on some NLP tasks with multi-sentence inputs such
as English QA [39]. ALBERT-FA is the version of ALBERT
trained on the Persian (Farsi) texts. ParsBERT is a monolin-
gual BERT trained on the Persian language.

Fig. 7 shows the general architecture of the proposed QA
systems. As Fig. 7 shows, the QA system first tokenizes the
paragraph text and the question sentence using the BERT
tokenizer. Then it passes the generated tokens to the BERT
language model. Finally, the BERT language model predicts
the answer’s start and end token within the paragraph text, and
the answer generation component generates the final answer
to the question.

B. ALGORITHM

Algorithm 1 indicates the algorithm of the QA system in
Fig. 7. In this algorithm, Initialize function first inserts a
special token [CLS] at the beginning of the question sentence.
Likewise, it adds a special token [SEP] between the question
and paragraph and a token [SEP] at the end of the paragraph.
Equation (2) shows this function.

[CLS1question[SEP]paragraph[SEP]
= Initialize(question, paragraph) (2)

The packed sequence is then tokenized using the BERT
tokenizer. As shown in (3), g; shows the i token of the
question sentence and p; shows the j™ token of the paragraph.
Uicrsy, 91, q2, - - -5 Gns IiSEP], P15 P2, - - - P 1[sEP]]

= Tokenize([CLSlquestion[SEPparagraph[SEP]) (3)

The BERT model [37] provides contextualized embed-
dings to embed tokens. We get the embedding vectors of
tokens using Embedding function. Equation (4) indicates the
Embedding function. The output of this function is passed to
the encoders.

[EMDy,s,, EMDy, , ..., EMD,
= Embedding([I[CLS], qi1, - - -
& [EMDyy 5, EMDy, . ..

EMD;, [SEP]]

» Pm» IiseppDinputs
++ EMDyp,, . EMDyygpp) 4)

m

To implement BERT language model, transformer
encoders [40] are employed. In transformer encoders, self-
attention layers are implemented rather than recurrent neural
networks to present each token. In each transformer encoder.
The inputs are passed to some self-attention layers. In i
self-attention layer, three vectors Query (Q;), Key (K;), and
Value (V;) are generated for each embedding vector emd,.
To generate these vectors in i’ self-attention layer, emd;
is multiplied to Wp, € RImGIXI01 Wy ¢ RlemdxIKil
and Wy, € RIemdIxIVil These matrices are learned during
training model. Finally, the vector Z; is generated as the
output of i self-attention layer. Equations (5) to (8) shows
these operations. In (8), o demonstrates the softmax function.

Q,’ = emdj X WQ[- (@)

VOLUME 10, 2022

K; < emd; x Wk, (6)

Vi & emdj X WVi (7)
i x KT

7 eo@2E) Ly, ®)

VIKil

By concatenating Z; vectors for all self-attention layers,
VECtOr Z\. |Seif —Arentions| 18 generated. This vector is multi-
plied by the matrix Wp € RZ1.Iself~Auenion <768 and vector Z
is produced. Wy is a learnable matrix. Equation (9) shows
this multiplication.

Z = Z1.)Self —Attention) X Wo 9

Z vector is then passed to a fully connected network and
a new vector emb’®" is generated. In this network, Wr €
RI768xlembjl and b € RI™i! are learnable parameters. This
fully connected network is shown in (10).

emd}ww <=7Z x Wp+bp (10)

All of emd{’_‘ilv;'npml vectors are passed to a new encoder
again. This operation is repeated to the number of encoders.

As shown in (11), the output vectors of the last encoder
are passed to a fully connected network and start logits
(s € RIPusly and end logits (e € RI7P“sly are produced.
In this equation, W, € RI¥"41>2 and b, € RIMPus1¥2_ Start
logit and end logit indicate the start score and end score of the
answer span, respectively.

[(SI[CLS]’ eI[CLS])’ (sql > €qy)s ey (spm9 epm)s (SI[SEp]s eI[SEp])]
& inputs X Wyq +bgq (11)

Afterwards, based on (12), the system finds i and j*
tokens of the paragraph so that sum of their logits is max-
imum. This shows the best span of the paragraph which
represents the exact answer.

ai, ar <= argmax sp, + e, 12)
ijell,m]
i<j
Finally, all tokens pg,, pa,. - - ., pa; are detokenized and
the final answer is generated and returned to the user. Equa-
tion (13) shows this process.

answer < Detokenize(py,, Pay, - - - » paf) (13)
C. EVALUATION METRICS

Two evaluation metrics are commonly used for evaluating
QA systems: Exact Match and FI [2]. We use the same
metrics in this research.

o Exact Match: This metric measures the percentage of
the predicted answers that exactly match any of the gold
candidate answers.

e (Macro-averaged) F1: This metric measures the average
overlap between the predicted and the gold candidate
answers. To compute the overlap, both the predicted and
the candidate answers are represented as bags of words,
and hence, the order of words is ignored. The F1 of each
question is considered as the maximum F1 over all of

26053

IEEE Access

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

[BERT base Language Model

‘ Final Answer ‘

1231J0 (219 La1ip2>leo

/
// Detokenize

Sifets] Sa1 ‘ Sa2 ‘ ‘ San
@ifas) d ea)\ az) L €an

‘ Spm Siisep]
eDm eusm

Siisep] Sp1 Sp2
@isep] €p1 €2

\ N p— N
‘ EMDj(ais) EMDg, EMD,, ‘ ‘ EMDq,

ﬁ ﬁ —

lias) a ‘ An

Question

4] [03) S [02) o [a1] S

FIGURE 7. The architecture of the proposed QA system.

its candidate answers. The (Macro-averaged) F1 is the
average of the F1 scores over all of the questions.

D. HUMAN PERFORMANCE

As explained in Section V-C we prepared a three-candidates
test set for PersianQuAD. In order to measure human perfor-
mance on the PersianQuAD test set, as in SQuUAD, we take
the third answer to each question as to the human answer
and keep the two other answers as gold ones. The human
performance on the test set of PersianQuAD is 95.0% and
96.49% in terms of Exact Match and F1 metrics, respectively.

E. SETUP

In order to implement QA systems with MBERT, ParsBERT,
and ALBERT-FA, we used Python and PyTorch as our
programming language and our deep learning framework,
respectively. The models were fine-tuned and tested on
Google Colab, with NVIDIA Tesla p100 GPU and 12G
RAM. We used the built-in tokenizer in the models (MBERT,
ParsBERT, and ALBERT-FA) to tokenize the paragraph and
answer text.” All of the models were fine-tuned with a batch
size of 12, the learning rate of 3e7d, gradient accumulation
steps of 1, and weight decay of 0. We fine-tuned each model

2We use Wordpiece tokenizer for MBERT and ParsBERT, and Sentence-
Piece tokenizer for ALBERT-FA.

26054

Tokenizer
| Paragraph |
191015 (9153155 (o819 (712! (o1 IS 98 (510523 [pal sz sS [p3lome 921y [p1] o)
vl (p20) 8L [p19] et [p18]5° (91710515, [p16]5 [p15]3 [p14]B 5k [p13]085L [p12)s) 2 [p11)4S
[p321,° [p311OS3L (3018 (293 [p2810=)s! [p271055 [p2611p25195S (5o [p241 S5k [p231JL [p2215 [p21)

(P42 Sk [pa1)in e (pA0]0ls (p30)E [pas)Ll (p37] ke [p36]4S [pas] ! paa) JLTs8 (pazic b

[p48)pa7)) [pas1oo [pas] S [paa] J558 (paz) S

for two epochs and used the AdamW optimizer [41]. All of
the models were tested with a batch size of 8.

F. RESULTS AND ANALYSIS

We build three QA systems according to the pre-trained lan-
guage models examined (MBERT, ALBERT-FA, ParsBERT).
We trained each of the QA systems using the training part of
PersianQuAD and evaluate them using the test part. We eval-
uate each of the QA systems according to two widely used
automatic evaluation metrics Exact Match and F1 described
in Section VII-C. To have a better understanding of the
obtained performance, we compare it with the performance
of QA systems trained for other languages. Table 7 shows the
performance of the QA systems and human performance on
PersianQuAD, along with the performance of the QA systems
on the datasets in other languages.

We derive the following observations from the results:

o For PersianQuAD, the best performance in terms of
both evaluation metrics is obtained using MBERT.
ALBERT-FA, and ParsBERT are in the next ranks,
respectively.

o ParsBERT is pre-trained on more massive amounts of
Persian data than MBERT. However, this does not have
a positive effect on the performance of the Persian QA
system and MBERT performs better than ParsBERT.

VOLUME 10, 2022

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

IEEE Access

Algorithm 1 Algorithm of Our Method

Input: question, paragraph

Output: answer

[CLS)question[SEP)paragraph[SEP] = Initialize(question, paragraph)

[Iicesy, 915 92, - - -

[EMDyg,, EMD,,, ...
mpm‘s = [EMDI[CLs] 5 EMDQ] LA

» qns IisEP), P1 P2, - -

for all enc € |encoders| do
for all emd; € inputs do
for all i € |Self — Attentions| do

0; < emd; x Wy,

K; < emdj X WK,-

Vi <= emd; x Wy,

Zi <= o(
end for

QixK/
VIKi]

) X Vi

»» EMDy, . EMDjgpp,]

YAS Zl..\Self—Attentionsl x Wo
emd}”w & Z7Z x Wrp +bp

end for
inputs <= emd
end for

new

1..|inputs|

[(S[[CLS]’ e[[CLS])’ (Sql s qu), RN (S])m’ e])m)a (S[[SEP]’ el[sEp])] = i”[’uts X an + bqa
ai, ag <= argmax s, + ep;

i.jell,m]
i<j

answer <= Detokenize(py,, pa,, - - -

return answer

spaf)

s qn, I[sEP], P1, P2, - -

, Pm> I1sep) 1 = Tokenize([CLS question[SEP]paragraph[SEP])
,» EMD,,, EMD/[SEP]] = Embedding([IicLs1, 91, 92, - - -

,Pm> Aisep) 1

TABLE 7. Performance of models and humans on PersianQuAD, along with the performance on the QA datasets in other languages.

Dataset Language Model Exact Match F1
PersianQuAD Persian Human 95.0% 96.49%
PersianQuAD Persian ALBERT-FA 74.9% 79.25%
PersianQuAD Persian ParsBERT 73.8% 79.08%
PersianQuAD Persian MBERT 78.8% 82.97%
ParSQuAD (manual) [33] Persian ALBERT-FA 48.11% 51.66%
ParSQuAD (manual) [33] Persian ParsBERT 46.32% 50.06%
ParSQuAD (manual) [33] Persian MBERT 52.86% 56.66%
ParSQuAD (automatic) [33] Persian ALBERT-FA 64.71% 67.59%
ParSQuAD (automatic) [33] Persian ParsBERT 62.42% 65.26%
ParSQuAD (automatic) [33] Persian MBERT 67.73% 70.84%
ParsiNLU [34] Persian ParsBERT - 40.70%
ParsiNLU [34] Persian MBERT - 49.70%
SQuAD [2] English Bert-base 80.8% 88.5%
SQuAD [2] English Bert-large 84.1% 90.9%
SQuAD-es [19] Spanish MBERT 48.3% 68.1%
SberQuAD [24] Russian BERT 66.6% 84.8%
KorQuAD [26] Korean BERT 71.68% 89.76%
PIAF [27] French CamemBert - 79.64%

o While ALBERT performs better than BERT on

It shows that the PersianQuAD performs well in training

English SQuAD, this is not the case for the Persian
PersianQuAD, and MBERT show higher performance
than ALBERT, in terms of both evaluation metrics.

The performance gap between humans and models on
PersianQuAD (17% in Exact Match and 14% in F1)
shows that there is still plenty of room for improving
the QA models on the PersianQuAD.

Our best model achieves an F'1 score of 82.97% and
an Exact Match of 78.8%, which are comparable with
that of English QA systems trained on the SQuAD.

VOLUME 10, 2022

the deep-learning-based QA systems.

The performance of the QA systems trained on
PersianQuAD is better than that of QA systems trained
on ParSQuAD and ParsiNLU, indicating that Persian-
QuAD works well on training QA systems for the
Persian language.

The performance of the QA systems trained on
PersianQuAD is better than that of QA systems
trained on SQuAD-es (Spanish), SberQuAD (Russian),
KorQuAD (Korean) and PIAF(French), (Except for the

26055

IEEE Access

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language

TABLE 8. F1 score of the models stratified by question types.

Question type Freq. in PersianQuAD ParsBERT ALBERT-FA MBERT
What 28.57% 62.07% 64.22% 71.12%
How 15.54% 84.09% 81.06% 88.64%
When 11.0% 85.54% 78.31% 92.77%
Where 13.21% 71.09% 74.41% 77.25%
Who 16.13% 74.62% 73.85% 79.23%
Which 14.61% 72.95% 74.88% 77.78%
Why 0.94% 100% 100% 100%

SberQuAD and KorQuAD, with a slight decrease in
terms of Exact Match).

Table 8 shows the F1 score of the models on answering
different types of questions in PersianQuAD.
Here we observe:

o All models have their best performance on Why, How
and When question types. We hypothesize that this can
be attributed to the fact that the answer of “Why”
questions in PersianQuAD usually appears after a sen-
tence starting with “because’, and hence, finding the
answer is straightforward. How question types include
How much and How many. The answer to How much,
How many and When questions are usually quantities
and finding quantifiers as answers is relatively straight-
forward for the models.

« All models show their worse performance on What ques-
tion types. This is because What questions in English are
mapped into several types of questions in Persian, and
finding the answers to them is relatively complicated.

o The ranking of question types, based on the model
performance, for MBERT and ParsBERT is the same
(1-What, 2-Where, 3-Which, 4-Who, 5-How, 6-When,
7-Why), while for ALBERT-FA the ranking is slightly
different (1-What, 2-Who, 3-Where, 4-Which, 5-When,
6-How, 7-Why). We hypothesize that this is because
MBERT and ParsBERT use the same architecture, while
ALBERT-FA uses a different one.

VIil. CONCLUSION

This paper presents a model for developing Persian datasets
for deep-learning-based QA systems. The proposed model
consists of four steps: 1) Wikipedia article selection,
2) question-answer collection, 3) three-candidates test set
preparation, and 4) Data Quality Monitoring. We deploy
the proposed model to create PersianQuAD, the first
native question answering dataset for the Persian language.
PersianQuAD consists of approximately 20,000 (question,
paragraph, answer) triplets on Persian Wikipedia articles and
is created by native annotators. We analysed PersianQuAD
and showed that it contains questions of varying types and
difficulties and hence, it is a good presenter of real-world
questions in the Persian language. We built three QA systems
using MBERT, ALBERT-FA and ParsBERT. The best system
uses MBERT and achieves a F1 score of 82.97% and an
Exact Match of 78.8%. The results show that the resulted
dataset performs well for training deep-learning-based QA

26056

systems. We have made our dataset and QA models freely
available and hope that it encourages the development of new
QA datasets and systems for different languages, and leads to
further advances in machine comprehension.

ACKNOWLEDGMENT

The authors thank all the members of the Big Data Research
Group, University of Isfahan. They also thank the students
in linguistics at the University of Isfahan for helping them to
prepare the PersianQuAD.

REFERENCES
[

—

D. Jurafsky and J. H. Martin, Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and
Speech Recognition. Upper Saddle River, NJ, USA: Pearson, 2009.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+

questions for machine comprehension of text,” in Proc. EMNLP, Austin,

TX, USA, Nov. 2016, pp. 2383-2392.

J. H. Clark, E. Choi, M. Collins, D. Garrette, T. Kwiatkowski, V. Nikolaev,

and J. Palomaki, “TyDi QA: A benchmark for information-seeking ques-

tion answering in typologically diverse languages,” Trans. Assoc. Comput.

Linguistics, vol. 8, pp. 454-470, Dec. 2020.

[4] G. Lembersky, N. Ordan, and S. Wintner, “Language models for machine

translation: Original vs. translated texts,” Comput. Linguistics, vol. 38,

no. 4, pp. 799-825, Dec. 2012.

V. Volansky, N. Ordan, and S. Wintner, *‘On the features of translationese,”

Digit. Scholarship Humanities, vol. 30, no. 1, pp. 98-118, Apr. 2015.

S. Wintner, “Translationese: Between human and machine translation,” in

Proc. COLING, 2016, pp. 18-19.

P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswer-

able questions for SQUAD,” in Proc. 56th Annu. Meeting Assoc. Comput.

Linguistics, vol. 2, 2018, pp. 784-789.

[8] Y. Yang, W.-T. Yih, and C. Meek, ‘“WikiQA: A challenge dataset for open-
domain question answering,” in Proc. Conf. Empirical Methods Natural
Lang. Process., 2015, pp. 2013-2018.

[9] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and
L. Deng, “MS MARCO: A human generated machine reading comprehen-
sion dataset,” in Proc. CoCo@ NIPS, 2016, pp. 1-10.

[10] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh,
C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, and K. Toutanova,
“Natural questions: A benchmark for question answering research,” Trans.
Assoc. Comput. Linguistics, vol. 7, no. 29, pp. 453-466, 2019.

[11] E. Choi, H. He, M. Iyyer, M. Yatskar, W.-T. Yih, Y. Choi, P. Liang, and
L. Zettlemoyer, “QuAC: Question answering in context,” in Proc. Conf.
Empirical Methods Natural Lang. Process., Brussels, Belgium, 2018,
pp. 2174-2184.

[12] S. Reddy, D. Chen, and C. Manning, “CoQA: A conversational ques-
tion answering challenge,” Trans. Assoc. Comput. Linguistics, vol. 7,
pp. 249-266, May 2019.

[13] A. Trischler, T. Wang, X. Yuan, J. Harris, A. Sordoni, P. Bachman, and
K. Suleman, “NewsQA: A machine comprehension dataset,” in Proc. 2nd
Workshop Represent. Learn. NLP, Vancouver, BC, Canada, Aug. 2017,
pp. 191-200.

[14] L. Siciliani, P. Basile, P. Lops, and G. Semeraro, “MQALD: Evaluating

the impact of modifiers in question answering over knowledge graphs,”

Semantic Web, vol. 13, no. 2, pp. 215-231, Feb. 2022.

2

—

3

—

[5

—

[6

—

[7

—

VOLUME 10, 2022

A. Kazemi et al.: PersianQuAD: Native Question Answering Dataset for Persian Language I E E E ACC@SS

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. Welbl, P. Stenetorp, and S. Riedel, “Constructing datasets for multi-
hop reading comprehension across documents,” Trans. Assoc. Comput.
Linguistics, vol. 6, pp. 287-302, Dec. 2018.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and
C. D. Manning, “HotpotQA: A dataset for diverse, explainable multi-hop
question answering,” in Proc. Conf. Empirical Methods Natural Lang.
Process., Brussels, Belgium, 2018, pp. 2369-2380.

A. Talmor and J. Berant, “Repartitioning of the ComplexWebQuestions
dataset,” 2018, arXiv:1807.09623.

N. Inoue, P. Stenetorp, and K. Inui, “R4C: A benchmark for evaluating RC
systems to get the right answer for the right reason,” in Proc. 58th Annu.
Meeting Assoc. Comput. Linguistics, 2020, pp. 6740-6750.

C. P. Carrino, R. M. Costa-jussa, and A. R. J. Fonollosa, “Automatic Span-
ish translation of SQuAD dataset for multi-lingual question answering,”
in Proc. 12th Lang. Resour. Eval. Conf., Marseille, France, May 2020,
pp. 5515-5523.

H. Mozannar, E. Maamary, K. El Hajal, and H. Hajj, “Neural Arabic ques-
tion answering,” in Proc. 4th Arabic Natural Lang. Process. Workshop,
2019, pp. 108-118.

K. Lee, K. Yoon, S. Park, and S.-W. Hwang, *“Semi-supervised training
data generation for multilingual question answering,” in Proc. 11th Int.
Conf. Lang. Resour. Eval. (LREC), 2018, pp. 1-5.

D. Croce, A. Zelenanska, and R. Basili, “Neural learning for question
answering in Italian,” in Proc. Int. Conf. Italian Assoc. Artif. Intell. Cham,
Switzerland: Springer, 2018, pp. 389-402.

S. Eetemadi and K. Toutanova, “Asymmetric features of human generated
translation,” in Proc. Conf. Empirical Methods Natural Lang. Process.
(EMNLP), 2014, pp. 159-164.

P. Efimov, A. Chertok, L. Boytsov, and P. Braslavski, ‘“SberQuAD-
Russian reading comprehension dataset: Description and analysis,” in
Proc. Int. Conf. Cross-Lang. Eval. Forum Eur. Lang. Cham, Switzerland:
Springer, 2020, pp. 3-15.

C. Chieh Shao, T. Liu, Y. Lai, Y. Tseng, and S. Tsai, “DRCD: A Chinese
machine reading comprehension dataset,” 2018, arXiv:1806.00920.

S. Lim, M. Kim, and J. Lee, “KorQuADI1.0: Korean QA dataset for
machine reading comprehension,” 2019, arXiv:1909.07005.

R. Keraron, G. Lancrenon, M. Bras, F. Allary, G. Moyse, T. Scialom,
E.-P. Soriano-Morales, and J. Staiano, “Project PIAF: Building a native
French question-answering dataset,” in Proc. 12th Lang. Resour. Eval.
Conf., Marseille, France, May 2020, pp. 5481-5490.

M. Artetxe, S. Ruder, and D. Yogatama, ““On the cross-lingual transferabil-
ity of monolingual representations,” in Proc. 58th Annu. Meeting Assoc.
Comput. Linguistics, 2020, pp. 4623-4637.

P. Lewis, B. Oguz, R. Rinott, S. Riedel, and H. Schwenk, “MLQA: Eval-
uating cross-lingual extractive question answering,” in Proc. 58th Annu.
Meeting Assoc. Comput. Linguistics, 2020, pp. 7315-7330.

D. Gupta, S. Kumari, A. Ekbal, and P. Bhattacharyya, “MMQA: A multi-
domain multi-lingual question-answering framework for English and
Hindi,” in Proc. 11th Int. Conf. Lang. Resour. Eval. (LREC), 2018, pp. 1-8.
Y. Jing, D. Xiong, and Z. Yan, “BiPaR: A bilingual parallel dataset for
multilingual and cross-lingual reading comprehension on novels,” in Proc.
Conf. Empirical Methods Natural Lang. Process., 9th Int. Joint Conf. Natu-
ral Lang. Process. (EMNLP-1IJCNLP), Hong Kong, 2019, pp. 2452-2462.
J. Liu, Y. Lin, Z. Liu, and M. Sun, “XQA: A cross-lingual open-domain
question answering dataset,” in Proc. 57th Annu. Meeting Assoc. Comput.
Linguistics, 2019, pp. 2358-2368.

N. Abadani, J. Mozafari, A. Fatemi, M. Nematbakhsh, and A. Kazemi,
“ParSQuAD: Persian question answering dataset based on machine trans-
lation of SQUAD 2.0,” Int. J. Web Res., vol. 4, no. 1, pp. 3446, 2021.

D. Khashabi, A. Cohan, S. Shakeri, P. Hosseini, P. Pezeshkpour,
M. Alikhani, M. Aminnaseri, M. Bitaab, F. Brahman, and S. Ghazarian,
“ParsiNLU: A suite of language understanding challenges for Persian,”
Trans. Assoc. Comput. Linguistics, vol. 9, pp. 1163-1178, 2021.

P. Jaccard, “The distribution of the flora in the alpine zone. 1,” New
Phytologist, vol. 11, no. 2, pp. 37-50, Feb. 1912.

A. Andrenucci and E. Sneiders, “Automated question answering: Review
of the main approaches,” in Proc. 3rd Int. Conf. Inf. Technol. Appl. (ICITA),
2005, pp. 514-519.

VOLUME 10, 2022

[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., vol. 1, Jun. 2019, pp. 4171-4186.

[38] M. Farahani, M. Gharachorloo, M. Farahani, and M. Manthouri, “Pars-
BERT: Transformer-based model for Persian language understanding,”
Neural Process. Lett., vol. 53, no. 6, pp. 3831-3847, Dec. 2021.

[39] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A lite BERT for self-supervised learning of language repre-
sentations,” 2019, arXiv:1909.11942.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc.
Advances Neural Inf. Process. Syst., vol. 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, 2017.

[41] 1. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2017, arXiv:1711.05101.

AREFEH KAZEMI received the B.Sc. degree in
software engineering, the M.Sc. degree in artifi-
cial intelligence, and the Ph.D. degree in artifi-
cial intelligence from the University of Isfahan,
Isfahan, Iran, in 2008, 2010, and 2017, respec-
tively. She is currently an Assistant Professor with
the Computational Linguistics Group, University
of Isfahan. Her research interests include natu-
ral language processing, computational linguistics,
and data mining.

JAMSHID MOZAFARI received the B.Sc. degree
in computer engineering from the University of
Kurdistan, in 2016, and the M.Sc. degree in com-
puter engineering from the University of Isfahan,
in 2019. He is currently a Research Assistant
in natural language processing and information
retrieval and a member of the BIGDATA Labora-
tory, University of Isfahan. His research interests
include natural language processing, information
retrieval, question answering, and machine reading
comprehension.

MOHAMMAD ALI NEMATBAKHSH received
the B.Sc. degree in electrical engineering from
Louisiana Tech University, USA, in 1981, and the
M.Sc. and Ph.D. degrees in electrical and com-
puter engineering from The University of Arizona,
USA, in 1983 and 1987, respectively. He is cur-
rently a Full Professor with the Software Engineer-
ing Department, University of Isfahan. He worked
with Micro Advanced Company and Toshiba Cor-

: poration for many years before joining the Uni-
versity of Isfahan. He has published more than 150 peer-reviewed research
articles, several U.S. registered patents, and two database books that are
widely used in universities. His main research interests include intelligent
web and bigdata technology.

26057

