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ABSTRACT Pneumothorax, a life-threatening disease, needs to be diagnosed immediately and efficiently.
The prognosis, in this case, is not only time-consuming but also prone to human errors. So, an automatic way
of accurate diagnosis using chest X-rays is the utmost requirement. To date, most of the available medical
image datasets have a class-imbalance (CI) issue. The main theme of this study is to solve this problem
along with proposing an automated way of detecting pneumothorax. To find the optimal approach for CI
problem, we first compare the existing approaches and find that under-bagging method (referred as data-
level-ensemble formed by creating subsets of majority class and then combining each subset with all samples
of minority class) outperforms other existing approaches. After selection of best approach for CI problem,
we propose a novel framework, named as VDV model, for pneumothorax detection from highly imbalance
dataset. The proposed VDV model is a complex model-level ensemble of data-level-ensembles and uses
three convolutional neural networks (CNN) including VGG16, VGG-19, and DenseNet-121 as fixed feature
extractors. In each data-level-ensemble, features extracted from one of the pre-defined CNN architectures
are fed to support vector machine (SVM) classifier, and output is calculated using the voting method. Once
outputs from the three data-level-ensembles (corresponding to three different CNN architectures as feature
extractor) are obtained, then, again, the voting method is used to calculate the final prediction. Our proposed
framework is tested on the SIIM ACR Pneumothorax dataset and Random Sample of NIH Chest X-ray
dataset (RS-NIH). For the first dataset, 85.17% Recall with 86.0% Area under the Receiver Operating
Characteristic curve (AUC) is attained. For the second dataset, 90.9% Recall with 95.0% AUC is achieved
with a random split of data while 85.45% recall with 77.06% AUC is obtained with a patient-wise split
of data. The comparison of our results for both the datasets with related work proves the effectiveness of
proposed VDV model for pneumothorax detection.

INDEX TERMS Class-imbalance, chest X-rays, classification, deep learning, ensemble, machine learning,
pneumothorax, under-bagging.

I. INTRODUCTION becomes difficult for the person to breathe as the lungs can-

Pneumothorax can be interpreted as a life-threatening con-
dition which occurs due to the collapse of the respiratory
system. The disease occurs as the air present inside the
lungs is leaked to the space between chest walls and lungs.
Due to this air, pressure is exerted on the lungs, and it
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not expand properly, thus the respiratory system collapses.
Symptoms include shortness of breath and sudden pain in
the chest. In some cases, these symptoms can be deadly,
so it is very important to get them diagnosed in time [1].
The most common way of diagnosis is Radiographs while
other diagnosis techniques include Chest Tomography (CT)
scans, ultrasound, and Magnetic Resonance Imaging (MRI).
Because of the cheap cost and availability of Chest X-ray
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(CXR) machines almost everywhere, doctors prefer to recom-
mend X-rays instead of CT scans [2]. However, identifying
chest diseases from radiographs can be a challenging task
for the radiologist because of the overlapping structure of the
thoracic region. Hence, a computer-aided diagnostic system
is needed for the automatic detection of pneumothorax from
CXR images which can assist the radiologists.

Extensive research has been done in the medical field
after the emergence of machine learning techniques including
skin cancer detection [3], detection of arrhythmia [4], and
detection of diabetic retinopathy [5]. Recently, the detection
of diseases from chest radiographs has become a hot topic.
In [6], deep learning-based frameworks have been proposed
to detect lung nodules. Outstanding work has been done
in [7], by proposing a 121-layered dense network to detect
pneumonia with radiologist-level performance along with
predicting multiple thoracic diseases.

However, class imbalance (CI) is a massive problem in
most of the medical image datasets [8]. In literature, mostly
resampling techniques have been used, which could be dis-
advantageous as it can lead to the removal of samples which
might be important for training the model or it may lead to
overfitting. So, there is a need to propose a model which
tackles the CI problem efficiently along with predicting the
presence of disease. In this research, we aim to find an
automated way to detect pneumothorax from images of chest
x-rays by utilizing deep learning techniques along with com-
paring different existing approaches to tackle the CI issue.
Our proposed approach has been tested on two publicly avail-
able chest X-ray datasets.

The remaining paper is arranged as follows. Existing work
for the detection of pneumothorax from chest x-rays and
the different approaches in the literature for the CI issue
(experimented in our research) are discussed in Section II.
Section III describes the proposed VDV ensemble model for
pneumothorax detection. Section IV describes the datasets
used for our research purpose. Results and discussion are
provided in Section V. Section VI describes the limitations
of this study. In Section VII, the conclusion and future work
are mentioned.

Il. LITERATURE REVIEW

As stated earlier, several Artificial Intelligence (AI) based
techniques have been implemented for the segmentation and
automatic diagnosis of lung diseases. In [9], the researchers
used a local dataset containing 32 pneumothorax x-ray
images and 52 normal cases and identified the presence
of pneumothorax by extracting features with Local binary
patterns and using SVM as a classifier. The mean accuracy
achieved was 82%. In [10], two different machine learn-
ing approaches including the bag of features (BoF) and
CNN were experimented with the intention of differentiating
between normal and abnormal CXR. The research covered
5 different thoracic pathologies including pneumothorax. The
experiments were performed on animal X-ray images. A total
of 78 images were used for the pneumothorax detection
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and it was found that features extracted from CNN archi-
tecture outperformed BoF in all 5 different cases. Park [11]
trained YOLO Darknet-19 pre-trained model for automati-
cally diagnosing pneumothorax, using a dataset containing
1596 pneumothorax and 11137 normal X-ray images, which
were acquired from tertiary hospitals. In [12], classification
was performed using a dataset of 13,292 DICOM images, and
training was done using several CNN architectures including
VGG-16, VGG-19, Inception, and Xception. In [13], chest
CT scans were used for automatic detection of pneumoth-
orax, where a total of 280 CT scans were used to extract
features from trained CNN architecture, and then SVM was
used as a classifier. Thoracic Ultrasound images were used
in [14] to train a model for distinguishing between normal
and pneumothorax cases. Image preprocessing techniques
were implemented for the removal of textural information
from the Ultrasound images and image enhancement. Model
accuracy was increased by the application of transfer learn-
ing and fine-tuning techniques on pre-trained CNN archi-
tectures. In [15], pixel-classification based CNN approach
was used for pneumothorax detection using a training set of
117 CXRs. 95% Area under the Receiver Operating Charac-
teristic curve (AUC) was achieved when evaluated on a test
set of 86 CXRs. Texture analysis-based technique was com-
bined with supervised learning technique (KNN) to detect
pneumothorax and this proposed framework was tested on
a dataset of 108 CXRs, giving the performance of 81% and
87% in terms of sensitivity and specificity respectively [16].
Jakhar et al. [17] used the SIIM ACR Pneumothorax dataset,
for segmentation of the region of pathology from the chest
x-ray images, while making use of U-Net architecture with
ResNet encoder.

From the literature, it has been observed that in most
cases, the dataset is either small or there exists a problem of
class imbalance (CI) i.e., an unequal number of samples in
different classes of the dataset. As per our findings, mostly
researches carried out utilizing imbalanced dataset have used
a single approach to solve the problem of CI [18]. In [19],
the researchers proposed an Under-Bagging based ensemble
model for the said problem, where several subsets of majority
class were created which were combined with minority class
samples. Salehinejad er al. [20] used GANs intending to
increase the minority class samples.

The resampling methods (i.e., under-sampling and over-
sampling) can become a reason for the loss of important data
or overfitting. Additionally, none of the existing techniques
can be declared as the best one to solve the CI problem as most
researchers had adopted a single approach for the research
purpose without comparing multiple techniques. Comparison
of multiple approaches to solve class imbalance (CI) had been
made by some of the researchers using commonly available
datasets like MNIST, CIFAR, etc. Buda et al. [21] com-
pared the performance of CNNs using multiple approaches
including oversampling, under-sampling, and thresholding,
and evaluated their results on MNIST and CIFAR-10 datasets.
However, to the best of our knowledge, such comparison has
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not yet been done using a medical image dataset. Such a
comparison is important as the CI approaches are domain-
dependent [22]. In our research, we have made a compari-
son of different existing approaches to tackle this problem
using publicly available pneumothorax dataset, along with
proposing an ensemble-based framework for the automatic
diagnosis of pneumothorax from the CXRs. Our proposed
model has been tested on two openly available datasets.

A. COMPARISON OF DIFFERENT METHODS FOR
IMBALANCED DATASET

Mainly two different approaches are available for an imbal-
anced dataset [21]. The first one, known as data-level meth-
ods, deals with altering the original dataset such that each
class contains the same number of samples. The second one is
a classifier-level method in which the algorithms are adjusted
to solve the said issue. The different approaches experimented
in our research are explained below.

1) WEIGHT BALANCING (CLASSIFIER-LEVEL METHOD)

It is one of the classifier-level techniques to solve the class-
imbalance (CI) problem [23]. In this technique, the whole
training set (as provided in the original dataset) is used,
however different weights are assigned to the majority and
minority class in the training set. The class weights are
assigned according to the formula given below:

Nsamples

Nelasses* Mp.bincount (y)

class weight = D

In (1), ngampies refer to the total size of the training set,
the total number of classes is represented by 7jgsses, and
np.bincount (y) is a function which counts the frequency
of each element in y array (i.e. count the frequency of
0 and 1 class’ elements separately).

2) UNDER-SAMPLING (DATA-LEVEL METHOD)

As the name suggests, a subset of samples is randomly
selected from the majority class so that we have an equal
number of observations in both classes [24]. Although in this
approach an enormous number of samples are discarded, still
it has been found that in some situations, under-sampling
works better than the other approaches [25].

3) OVER-SAMPLING (DATA-LEVEL METHOD)

In this approach, the sample size of the minority class is
increased so that it becomes equal to the sample size of
majority class [26]. Some of the oversampling techniques
include SMOTE [27], Cluster-based oversampling [28], and
DataBoost-IM [29]. In case of an image dataset, another way
to generate more samples is Data Augmentation [30]. For
experimentation purpose, we generated synthetic sample of
minority class using data augmentation technique.

4) ENSEMBLE (HYBRID APPROACH)
This approach combines multiple techniques from both or
one of the above-mentioned approaches. In case of using
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the under-sampling method, EasyEnsemble and BalanceCas-
cade are used to train multiple classifiers [31]. The data-
level-ensemble approach in [32] describes the way to create
subsets of whole data, assuming an identical distribution of
observations, thus creating subsets of data that contain the
same ratio of samples in each class as present in the original
dataset. The data-level-ensemble model experimented in our
research finds its root from [33] which utilizes the idea of
the under-bagging method. According to this, subsets of the
majority class are created in such a manner that the sample
size of each subset of the majority class is the same as the
total sample size of the minority class. These class-balanced
(i-e., equal sample size in every class) subsets of training data
(containing a subset of majority class combined with all sam-
ples of minority class) are then utilized for training a classi-
fier. In this research, the data-level-ensemble (under-bagging
method) experimented for the sake of comparison of existing
approaches utilizes VGG-16 as fixed-feature extractor from
each subset and Linear SVM as a classifier, while final output
is based on voting method, (i.e., maximum occurring class is
selected as final output) [34].

Ill. MATERIAL AND METHODOLOGY

This section explains the proposed framework along with
describing the feature extractors and the classifier used in this
research. Section 3-A explains the different CNN architec-
tures used in our experiments. Section 3-B explains the SVM
classifier. Section 3-C explains the proposed VDV model for
the classification of pneumothorax from CXR images.

A. CONVOLUTIONAL NEURAL NETWORKS

Single or multiple convolutional layers are arranged in a
particular manner to create a neural network named Convolu-
tional Neural Network (CNN). CNN requires a huge amount
of data to train itself which can then be used for supervised
or unsupervised decision making. It does so by extracting
features from the input data and adjusting weights of the
neurons by forward and back-propagation [35]. There are
many different CNN architectures available, trained on the
ImageNet dataset and their weights can be used as initial
weights for any classification problem.

In any CNN architecture, the convolutional layers are used
for feature extraction from the input while the last fully con-
nected (FC) dense layers act as a classifier. One of the ways
to utilize the pre-trained CNNs is known as “Fixed Feature
extractor”. In this method, the CNN architectures trained on
large datasets, like the ImageNet dataset, are used as feature
extractors by removing the fully connected dense layers and
features are extracted from the remaining CNN architecture.
The extracted features can be fed to any classifier like SVM
or softmax classifier [36], [37].

As we have used CNN architectures as fixed feature extrac-
tors, so we did not train the CNN models on our dataset, hence
the training options like learning rate, optimizer, and number
of epochs are not specified. However, Section 4-B describes
the number of extracted features from each CNN architecture
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and the number of layers from which features are extracted.
We selected VGG and DenseNet as fixed feature extractor
and these networks were selected based on the fact that they
are most commonly used CNN architectures in CAD systems
and have given promising results [57].

1) VGG-16

One of the CNN architectures proposed by Simonyan et al
is known as the VGG network. The architecture is com-
posed of sixteen layers which include twelve convolutional
layers. These layers are the predecessor of three fully con-
nected dense layers. The convolutional layers use 3 x 3
filters, stride and padding of 1. Followed by some of the
convolutional layers is the 2 x 2 maximum pooling layer
(stride of 2). There are 4096 neurons each in the first two
dense layers. The third layer is meant for classification thus
it contains 1000 channels. After the fully connected dense
layers, there is a soft-max activation layer. This CNN archi-
tecture takes an RGB image as input with the default size
of 224 x 224. In VGG-16, the total number of parameters
is 14,714,688 [38]. The break-down structure of VGG-16
architecture is shown in Table 1.

TABLE 1. VGG-16 architecture.

Layer Operation
Input Layer
Convolution [3x3 conv] x 2
Pooling 2x2 max pool, stride 2
Convolution [3x3 conv] x 2
Pooling 2x2 max pool, stride 2
Convolution [3x3 conv] x 3
Pooling 2x2 max pool, stride 2
Convolution [3x3 conv] x 3
Pooling 2x2 max pool, stride 2
Convolution [3x3 conv] x 3
Pooling 2x2 max pool, stride 2
Classification 4096D fully connected
4096D fully connected
1000D fully connected
softmax

2) VGG-19

This model is the extension of VGG-16, except that it com-
prises 19 layers, out of which there are 16 convolutional lay-
ers and three FC layers. The architecture arrangement is the
same as VGG-16. There are 20,024,384 parameters in VGG-
19. Like VGG-16, it takes 224 x 224 RGB images as its input.
To use this architecture for the classification problems, the
last fully connected dense layer with 1000 neurons/channels
is replaced by a dense layer containing neurons equal to the
number of classes in the classification problem [38], [39]. The
architecture of VGG-19 is shown in Table 2.

3) DENSENET-121

DenseNet-121 is a CNN architecture with 121 layers. It has
a total of four dense blocks and a transition layer is present
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TABLE 2. VGG-19 architecture.

Layer Operation
Input Layer
Convolution [3x3 conv] x 2
Pooling 2x2 max pool, stride 2
Convolution [3x3 conv] x 2
Pooling 2x2 max pool, stride 2
Convolution [3x3 conv] x 4
Pooling 2x2 max pool, stride 2
Convolution [3x3 conv] x 4
Pooling 2x2 max pool, stride 2
Convolution [3x3 conv] x 4
Pooling 2x2 max pool, stride 2
4096D fully connected
Cusiteaion 1060 July ot
softmax

between every consecutive dense block. Every dense block
consists of many convolutional layers and the transition lay-
ers consist of batch normalization, a convolution layer with
1 x 1 kernel, and an average pooling layer of size 2 x 2. At the
end of the architecture, there is a fully connected layer with
a softmax activation function. It has 1000 neurons referring
to the total number of classes in the ImageNet dataset on
which it is trained. It takes an RGB image with a default
input size of 224 x 224. There are 7,037,504 parameters in
DenseNet121. As opposed to traditional CNNs, here every
layer has a connection with all the other layers and direct
access to loss functions and original input is given to every
layer. The feature maps extracted from all the previous layers
are concatenated and fed as input to the next layer. This
special design enhances the flow of information throughout
the network and also minimizes the vanishing gradient prob-
lem [40]. The detailed structure of DenseNet-121 is shown in
Table 3.

B. SUPPORT VECTOR MACHINE

A machine learning algorithm that can be utilized for clas-
sification as well as regression. Here, mapping of the data
points takes place in n-dimensional feature space, where n
refers to the total number of features. For classification, the
hyperplane is created in such a way that it best separates
the two classes and maximizes the margin. In our work,
we have used both the linear SVM and polynomial kernel
SVM. In practice, the SVM algorithm is implemented using a
kernel. Data space containing input data points is transformed
into higher dimensional space using kernel tricks. This is
done to convert the non-separable classification problem into
a separable problem. The linear kernel can be implemented as
the normal dot product between x and x;, where x is the input
vector and x; refers to each support-vector. It is implemented
using the following equation:

S (,xi) = B (0) +sum (a; * (x,x;)) 2
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FIGURE 1. Training module of our proposed VDV model in shown above. a) Shows the Block diagram for the Training Module. Here each block
uses different CNN architecture for feature extraction and outputs three trained SVM models with respect to each mini-training-set. b) Shows
the Internal Working of each Block in Training Module. After creating subsets of training data, features are extracted from each mini-training set
using one of the three CNN architectures, then SVM model is trained on these extracted features separately, thus generating SVM trained model

with respect to each mini-set of training data.

TABLE 3. Densenet-121 architecture.

Layer Operation
Input Layer
Convolution [7x7 conv]
Pooling 3x3 max pool, stride 2
Dense Block Ix1 conv]
3x3 conv
. [1x1 conv]
Transition Layer 2x2 average pool, stride 2
Dense Block Ix1 conv] x 12
3x3 conv.
o [1x1 conv]
Transition Layer 2x2 average pool, stride 2
Dense Block [ Ix1 conv] x 24
3x3 conv
. [1x1 conv]
Transition Layer 2x2 average pool, stride 2
Dense Block Ix1 com]] x 24
3x3 conv
7x7 average pool
Classification 1000D fully connected,
softmax

For every input, training data is used for calculating B (0) and
a; using the learning algorithm.

The SVM with a polynomial kernel can distin-
guish the non-linear input space. It is expressed as

follows:

f(x,x;) =1+ sum(x * x;

)d

3

where d represents the degree of the polynomial [41].
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C. PROPOSED MODEL
Among the different approaches that we have experimented
to solve the class imbalance (CI) problem, the data-level-
ensemble (DLE) (i.e., under-bagging method) performs
better than other approaches. The superiority of an under-
bagging-based data-level-ensemble, which is created by
making several class-balanced subsets of data is proven
in [53], [54]. The results in [42] also show that the model-
level-ensemble (MLE) created by training different classifiers
on the data separately and later combining the results of
individual classifiers (either by averaging or voting method)
gives better performance. Thus, uniting these two ideas
(i.e., MLE and under-bagging-based DLE), we present a
novel framework VDV which is MLE of multiple DLEs.
The data-level-ensembles are designed as explained in
Section II-A-4. It utilizes three different CNN architectures
as fixed feature extractor and polynomial kernel SVM as
classifier [43]. The selected CNN architectures for feature
extraction purposes are VGG16, VGG19, and DenseNet121,
thus the proposed framework is named as VDV model. In all
these CNN architectures, the last fully connected layers are
removed, and the features extracted from the architecture are
sent to the classifier. Like any other machine learning based
CAD system, our proposed framework comprises two parts,
i.e., training and testing.

1) TRAINING MODULE
The block diagram for the training module is shown in Fig. 1.
Basically, the training process makes use of three different
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FIGURE 2. Test module of our proposed VDV model is shown above. a) Shows the Block diagram for Test module. Here each block uses different CNN
architecture for feature extraction from test image and outputs predicted class. These predictions are sent to voting unit which outputs the maximum
occurring class. b) Shows the generic Internal working of each Block in Test Module, in which trained SVM model with respect to each mini-training-set
predicts the class of the test sample based on features extracted by respective CNN architecture. These predictions are combined using the Voting method

to obtain a single prediction.

CNN architectures as shown in Fig. la. Block A refers to
VGG-16, block B refers to DenseNet121, and block C refers
to VGG-19, used as feature extractors. The training set is
sent to each block separately and each block generates three
SVM trained models. These trained models are later used
for predicting the class of test samples. The internal working
of each block is the same except for using different CNN
architectures (as fixed feature extractor).

Fig. 1b explains the generic working of each block, in
which under-bagging-based ensembles are created. Thus,
for creating a data-level-ensemble, first we create the mini-
training set, by dividing the majority class samples into mul-
tiple subsets. Here we have two classes, Normal (negative
class or class 0), and Pneumothorax (positive class or class 1).
In our dataset, class O has the majority number of samples,
so it is divided in such a way that each subset has n number
of samples of class 0, where n is same as the sample size of
minority class (i.e., class 1). This way, we have N subsets
of class 0, where N is equal to the imbalance ratio between
class 0 and class 1. As in the SIIM dataset, the imbalance
ratio is around 3.49:1, thus we have 3 subsets of class 0
which are referred to as subsetl, subset2, and subset3 in
Fig. 1b. Then each subset of class 0 is combined with the
whole minority class (i.e., class 1) thus creating mini-training
sets (referred as setl, set2, and set3). Features are extracted
from each mini-training set and sent to the SVM classifier for
training purposes, which generates SVM trained model for
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every mini-training set. Note that this process is repeated for
all three blocks which are shown in Fig. 1a. Hence, we have
three SVM trained models for each block. As we have three
blocks, so each block has three SVM trained models each,
which will be used for testing purposes.

2) TESTING MODULE

Fig. 2 represents the block diagram of the test module. Here
the trained SVM models generated by the three blocks in the
training module are used. Fig. 2a shows the workflow for
predicting the class of any sample. The test CXR image is sent
to the three blocks (Block A, Block B, and Block C) which
outputs the class prediction. As we have three blocks referring
to different CNN architectures (i.e., VGG-16, DenseNet121,
and VGG-19) as fixed-feature extractors, so each block gen-
erates its prediction, these three predictions are used to make
a final decision based on the Voting method (i.e., maximum
occurring predicted class is taken as final result).

The internal generic working of each block of the test
module is same and is shown in Fig. 2b. CNN architecture
(related to each block) is used for extracting features from
the test CXR image which are then sent to each of the three
trained SVM models (referring to each mini-training set,
i.e., setl, set2, and set3). Each SVM trained model predicts
the class of test samples. These class predictions are then
combined together based on the voting method.
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Finally, when the output from each block is obtained, then
these three outputs are combined together via Voting Method
as shown in Fig. 2a.

3) EXPERIMENTAL DETAILS

In all the experiments, we keep the default input size of the
images, i.e., 224 x 224. Note that for VGG-16 and VGG-19
we use all the 25088 extracted features in the training and
testing process, however, because of the really large number
of features in the case of DenseNet121 (i.e., 50176), we have
to minimize the number of features else we cannot apply
Kernel SVM because of memory issue. Principal Component
Analysis (PCA) is applied for feature reduction, the total
number of features is reduced to 4758. This number is cal-
culated using the Singular value decomposition (svd) solver
method [43]. Moreover, instead of 8296 samples, we keep
7137 samples of Normal class in the training set, i.e., 3 times
more than the number of samples in the pneumothorax class.
It is done for making class-balanced training subsets.

For authentication, we test our proposed framework on the
Random Sample of NIH Chest X-ray (RS-NIH) dataset as
well. We select normal and pneumothorax samples from the
dataset, thus we have an imbalance dataset with the ratio
of 11:1, i.e., for every sample of pneumothorax, there are
11 samples of normal CXRs. It is important to mention here
that in the training set we keep 2376 samples of the Normal
class instead of 2435 samples, so that each mini-training set
has an equal number of normal and pneumothorax samples.
The only difference while experimenting with this dataset is
that here, we make 11 subsets of normal class samples instead
of three subsets. The rest of the implementation is the same
as explained above.

The results on the test set for each separate Block (i.e.,
Block A, Block B, and Block C) along with our proposed
VDV model on the SIIM dataset and RS-NIH dataset are
reported in Section IV.

IV. DATASETS AND EXPERIMENTAL SETUP

A. DATASETS

1) SIIM ACR PNEUMOTHORAX DATASET

The first dataset selected for our experimentation purpose is
available on Kaggle [44], which contains stage-1 training and
testing data from “SIIM-ACR Pneumothorax Segmentation
competition”, in Portable Network Graphics (png) format.
There are 12047 chest X-rays (CXR) along with training
and testing lists. The training list contains 8296 normal CXR
images and 2379 CXRs with pneumothorax, while the testing
set contains 1082 normal CXRs and 290 images of the other
class. The original size of X-ray images is 1024 x 1024. How-
ever, for our experimentation purpose, we resize the images
to 224 x 224. The main reason for selecting this dataset is
that classification results have never been reported on this
dataset before. Also, it provides the same number of RLE
(Run Length Encoded) masks which can later be used for
segmentation purpose. Table 4 summarizes the details of the
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TABLE 4. Details Of SIIM dataset.

Attribute Value
Resolution 1024 x 1024
Dataset size 12047
No of classes 2
Training set N 8296
P 2379
Testing set N 1082
P 290

N: Normal, P: Pneumothorax

VPR NT

T by

FIGURE 3. Chest X-ray images from the SIIM dataset.

dataset, where N represents Normal CXRs, and P represents
CXRs with pneumothorax. Some of the images from this
dataset are represented in Fig 3.

2) RANDOM SAMPLE OF NIH CHEST X-RAY
DATASET (RS-NIH)
The second dataset on which we have performed experiment
is “Random Sample of NIH Chest X-ray Dataset” (RS-NIH)
which is provided by the National Institutes of Health
NIH and is available on Kaggle [45]. The full NIH Chest
X-ray-14 dataset (NIH-CXR) contains 112,120 images, with
15 classes, covering 14 different thoracic pathologies and
15" being the normal case. The “RS-NIH” chosen for our
research purpose is a smaller version of the NIH-CXR dataset
and contains 5% of the total number of samples, and each
pathology is present in the same ratio as is present in the full
dataset. Each image has a resolution of 1024 x 1024. It con-
tains 3044 images of No-finding, 967 images of Infiltration,
664 Effusion, 508 Atelectasis, 313 Nodule, 284 Mass, 271
Pneumothorax, 226 Consolidation, 176 Pleural Thickening,
141 Cardiomegaly, 127 Emphysema, 118 Edema, 84 Fibrosis,
62 Pneumonia and 13 images of Hernia. For our experi-
ment, we keep the images of No-finding cases (i.e., normal)
and pneumothorax samples. Since the NIH-CXR dataset is
divided into 80% training and 20% testing set, we also split
our RS-NIH data into training and testing set with the same
ratio.

Note that two different protocols have been followed while
splitting the dataset. First being a random split of data and the
second being a patient-wise split, i.e., CXRs from the same
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TABLE 5. Details of RS-NIH dataset.

Attribute Value
Resolution 1024 x 1024
Dataset size (with 14 classes) 5606
No of classes chosen 2
- N 2376
Training set
P 216
. N 609
Testing set
P 55

N: Normal, P: Pneumothorax

patient can only be present in either training or testing set.
The details of this dataset are given in Table 5.

B. EXPERIMENTAL SETUP

Keras with Tensorflow backend is used in our research with
Python as a programming language. Our research comprises
two parts, first one is to compare different existing approaches
to tackle the imbalance problem and the second one is to
propose a framework (VDV) for automatic diagnosis of pneu-
mothorax which is tested on two different datasets. In both the
experiments, the main task is feature extraction and classifi-
cation of CXR images as normal or pneumothorax.

For the first part, i.e., comparison of CI techniques,
we select a pre-trained VGG-16 model (with ImageNet
weight) as a fixed-feature extractor based on its structural
simplicity [35], and Linear SVM as a classifier.

For the proposed VDV network, three different CNN
architectures are selected which are VGG-16, VGG-19, and
DenseNet121. The details of input and output sizes, number
of parameters, and number of layers in each architecture
are summarized in Table 6. These pre-trained models with
ImageNet weights are utilized for the extraction of features
from the images. The last fully connected (FC) layers of
these pre-trained models are removed as those are meant
for classification purpose, instead, we have used polynomial
kernel SVM as a classifier with gamma value 0.002 and C
equal to 100. The values for kernel SVM are selected using
the grid search method.

Note that for the proposed framework, we chose poly
kernel SVM as it is a proven fact that SVM with poly kernel
performs better than Linear SVM [46]. Moreover, instead of
using the last fully connected dense layers for classification,
we chose SVM as it is found to be more effective [47], [48].

C. PERFORMANCE MEASURES

For the evaluation of a model, the selection of performance
metrics is important. As our training as well as testing data
is imbalanced, only accuracy is not a good performance
measure [34] that is why we select Area under Receiver
Operating Characteristic curve (AUC) and Recall as our main
performance metrics. In addition to these, we also report the
results with other performance metrics which include Accu-
racy, Specificity, Precision, Geometric mean (G-mean) [49],
F1 and F2 score [50]. AUC is calculated by the calculating
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the area under Receiver Operating curve which is defined
in terms of true positive and false positive rate [S1]. In all
the following expressions, TN, TP, FN, and FP denote True
Negative, True Positive, False Negative, and False Posi-
tive respectively. The expressions for calculating Accuracy,
Recall, Precision, and Specificity are given below:

TN 4+ TP
Accuracy = “4)
TN +FP+FN + TP
TP
Recall = —— )
TP + FN
. TP
Precision = —— (6)
TP + FP
Specificity = ——— )
pecificity = IN +FP

The combination of recall and precision is an important
metric known as F-score. It is calculated using Fg, where
is assigned a different value, based on the problem statement.
If the aim is to avoid misclassification of negative samples as
positive ones, i.e., giving more importance to precision, then
B is assigned a value equal to 0.5. However, if it is intended to
never miss positive class samples, like in our case, the aim is
to make a classifier that should avoid missing pneumothorax
samples, i.e., giving more importance to Recall, then value
of B is set to 2. If both precision and recall are given equal
importance, then f is assigned a value equal to 1. In our exper-
iments, we have calculated F; and F; score by substituting 8
as 1 and 2 respectively. The expression for g and G-mean
are given below:

Recall x Precision
Fp=(1487) 5 ®)
(B“.Precision) + Recall
G — mean = \/Recall X specificity &)

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. RESULTS
The first part of our work where the comparison of exist-
ing class-imbalance approaches is performed utilizes an
openly available SIIM Pneumothorax dataset. Accuracy,
Recall/Sensitivity, Specificity, and AUC for all the experi-
ments are reported in this section. Table 7 summarizes the
results for different existing CI approaches experimented
within this research. Here, Column 2 (i.e., No. of Training
Samples) refers to the total number of CXR images in each
class, used in every approach, separately. Based on the highest
AUC value achieved in case of the ensemble model, which
is 80.02%, it can be inferred that the under-bagging-based
DLE outperforms other existing approaches for CI issue.
Moreover, it can be observed that sensitivity value is highest
of all in case of the DLE model which shows that maximum
correct identification of the pathology is achieved using an
ensemble model, compared to any other existing approach.
Based on these results, we propose our framework named
as VDV model, the detailed performance of which is sum-
marized in Table 8. As our proposed framework is a
model-level-ensemble of three data-level-ensembles using
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TABLE 6. Parameters configuration of CNN architectures.

CNN Shape Features Parameters Layers
Input Output Trainable Non-Trainable
VGG-16  224x224x3 7Tx7x512 25,088 14,714,688 0 19
VGG-19  224x224x3 7Tx7x512 25,088 20,024,384 0 22
DenseNet-121 224x224x3 7x7x1024 50,176 6,953,856 83,648 427
TABLE 7. Comparison of different existing approaches for class imbalance problem.
Technique No of Training Samples ACC REC SPE AUC
Normal Pneumothorax (%) (%) (%) (%)
Weight balancing 8296 2379 79.08 4896 87.15 78.8
Under-sampling 2379 2379 72.15 68.62 73.10 77.67
Over-sampling 8296 8296 777 50 8520 77.76
Ensemble 2379 (in each subset) 2379 (in each subset) 75.22 79.65 74.09 80.02
ACC: ACCURACY, REC: RECALL, SPE: SPECIFICITY
TABLE 8. Performance of proposed VDV framework on both datasets.
ACC REC SPE PREC Fl1 F2 G-mean AUC
(%) ) () (%) (n) (%) (%) (%)
SIIM DATASET
VGG-16 77.55 83.79 75.87 4821 612 73.01 79.73  86+0.01
VGG-19 77.04  82.06 75.69 475 60.17 71.64 78.8 86+0.01
DenseNet-121 7632 80.68 75.04 464 5894 7031  77.81 85+0.00
VDV (SIIM) 78.27 8517 7643 492 6237 743 80.68  86+0.00
RS-NIH DATASET (RANDOM SPLIT)
VDV(RS-NIH) 82.68 909 81.93 3125 465 65.78 86.3 95+0.01
RS-NIH (WITH PATIENT WISE SPLIT)
VDV (RS-NIH) 69.12 8545 67.65 1926 31.43 50.64 76.03  77+0.06

PREC: Precision, F1: F; score, F2: F, score

three different CNN architectures, the first three rows show
the performance of each data-level-ensemble (utilizing one
of three CNN architectures each). The last three rows show
the performance of the proposed VDV model on the SIIM
and RS-NIH datasets respectively. Note that the individual
model performance is reported for the SIIM dataset only. The
AUC value achieved by our framework on the SIIM dataset
is 86.0% and the sensitivity value of 85.17%. As our VDV
framework gives far better results especially in terms of sen-
sitivity as compared to a single data-level-ensemble (utilizing
single CNN architecture), thus it strengthens the idea that
such an ensemble enhances the rate of correct classification
of the pathology samples.

Moreover, in case of random split of the RS-NIH dataset,
our proposed framework achieved 95.0% AUC, 82.68% accu-
racy, and 90.9% recall value. On the other hand, following a
patient-wise data split, the proposed VDV model achieved an
AUC of 77.06%, and a recall value of 85.45%.

The model performance in terms of AUC is shown in
Fig 4a and 4b. Fig 4a represents the performance of our
proposed model on the SIIM dataset, where the ROC curves
for individual under-bagging-based data-level-ensemble (uti-
lizing single CNN architecture) along with the ROC curve of
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the VDV model on SIIM dataset are plotted. The performance
of our proposed framework in terms of AUC on the RS-NIH
dataset is represented in Fig 4b.

The confusion matrix for the performance of the VDV
model on the SIIM and RS-NIH test set (with random split
and patient wise split) are shown in Table 9, Table 10 and
Table 11 respectively. For the SIIM pneumothorax dataset,
our proposed model correctly identifies 247 pneumothorax
cases while 43 are misclassified, and the total number of
correctly classified Normal CXRs is 827 while 255 are mis-
classified. For the RS-NIH dataset, with the random split
of data, 50 out of 55 samples are correctly classified as
pneumothorax while 499 out of 609 samples are correctly
identified as Normal CXRs. For patient-wise data split of
RS-NIH dataset, 47 out of 55 and 412 out of 609 samples
are correctly classified as pneumothorax and Normal x-rays
respectively.

1) JUSTIFICATION

The performance comparison of our proposed model for
SIIM Pneumothorax dataset is provided in Table 12. We can
directly compare our result with [55], in which the same
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FIGURE 4. AUC plot proving the effectiveness of proposed VDV model. a) On SIIM dataset. b) On RS-NIH dataset.

TABLE 9. Confusion matrix for SIIM dataset classification.

Predicted Class

Actual Class Normal Pneumothorax
Normal 827 255
Pneumothorax 43 247

TABLE 10. Confusion matrix for RS-NIH dataset classification with
random split.

Predicted Class

Actual Class Normal Pneumothorax
Normal 499 110
Pneumothorax 05 50

TABLE 11. Confusion matrix for RS-NIH dataset classification with
patient-wise split.

Predicted Class

Actual Class Normal Pneumothorax
Normal 412 197
Pneumothorax 08 47

dataset and same testing set was used. It can be clearly seen
that although their reported AUC is slightly greater than
the AUC value achieved by our proposed model, however
the sensitivity/ recall achieved by our proposed model is far
greater than the value reported in [55]. Since our aim is to
increase the rate of correct classification of positive class
samples, so we can safely claim that our proposed model
surpasses the existing techniques. Additionally, few other
papers are also presented in Table 12 (in which pneumothorax
classification was the main concern) and we have tried to
prove the superiority of our proposed model based on the
CI ratio and the size of the dataset in those paper. The total
number of normal and pneumothorax CXR used by each
researcher in the training and testing set is also given in
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Table 12. The sub-column referred as B in the table shows
if the dataset is class-balanced or imbalanced in nature. The
last column depicts if the dataset used is publicly available or
not. It can be seen that although better results are obtained
in terms of AUC value, however the datasets utilized are
either completely balanced or have minimal imbalance ratio.
Moreover the sample size of those datasets is also small.
While the dataset utilized in this research is not only highly
imbalance, but also has large number of samples in both
training and testing set, and achieved much better results
especially in terms of Recall. Furthermore, they have used
private datasets while the dataset that we have used is publicly
available, so other researchers can add to this work.

For the RS-NIH dataset, we can directly compare our
results with [52] in which the RS-NIH dataset has been used
for classification purpose, as presented in Table 13. Note that
in [52], multi-label classification was performed considering
14 different chest diseases, so we have reported their achieved
AUC value for pneumothorax classification. It is important to
mention here that we have referred and compared our results
with the paper in which pneumothorax was considered as a
separate class in the classification problem, while we have
not considered the papers in which the same dataset was used
to differentiate between normal and abnormal CXRs without
considering any specific pathology. Additionally, the papers
using NIH Chest X-ray-14 datasets are not considered for
comparison purpose as RS-NIH contains only 5% part of NIH
Chest X-ray-14. Thus, these are two different datasets and
hence their results can’t be directly compared.

B. DISCUSSION

Our work in this paper comprises two parts, so we will
discuss the result of each part separately. The fact that under-
bagging based data-level-ensemble outperforms other exist-
ing approaches for CI problem is because it makes use of the
whole dataset in such a way that training is done piecewise
using class-balanced subsets of whole data. It is generally
observed that a balanced dataset performs better than CI
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TABLE 12. Comparing performance of VDV model with other classification models using SIIM dataset.

Year | Author Training Set Testing Set Handling Class Imbalance Public Results (%)
N ‘ P ’ IR ‘ B N ‘ P ‘ IR ‘ B
Chan - .
2018 9] 36 22 1611 x 16 10 l.6:1 % Ignored the minimal imbalance x ACC=282.20
Yoon ACC=96.60
2018 [10] 24 24 1:1 4 15 15 1:1 4 Completely balanced x REC=100
10 SPEC=93.8
S. Park . REC=89.7
. . v .
2019 [11] 10887 1343 8.1:1 % 250 253 0.9:1 Under-sampling for class balance x SPEC=96.4
Taylor REC=55
2018 4 7095 2214 32:1 x 1553 437 351 x Under-sampling for class balance x PREC=90
[12]
AUC=82
. . REC=178
2020 W 350 2079 34:0 x 1082 290 3.7:1 o«  Lossfunctionand deep leaming v PREC= 78
[55] network named ChexLocNet
AUC=87
ACC=78.27
. . Comparison of multiple approaches v REC=85.17
2021 VbV 7372379 341 x 1082 290 370 x and selection of ensemble model PREC=76.4
AUC=86.0

N: No. of Normal CXRs, P: No. of CXRs with Pneumothorax, B: Balance or Imbalance Dataset, IR: Imbalance Ratio, Public: Dataset Public or Private

TABLE 13. Comparing performance of VDV model with other classification models using RS-NIH dataset.

Author Dataset Description Results (%)
Modal [52] RS-NIH Multi-label classification of 14 thoracic diseases AUC=54.0
Random split of data
Proposed model RS-NIH Binary classification (normal and pneumothorax CXRs) 1;%%?925"608
Patient-wise split of data
Proposed model RS-NIH Binary classification (normal and pneumothorax CXRs) ggg:ggaz

data, hence training the classifier on class-balanced subsets
of the dataset and then combining their results gives better
performance as compared to other techniques. Now as the
single DLE (i.e., data-level ensemble with a single CNN
architecture as feature extractor) gives quite good results,
we have designed a MLE of three data-level-ensembles, with
each DLE using different CNN architecture as a fixed feature
extractor. Utilizing three different CNN architectures in three
data-level-ensembles separately allows our model to give bet-
ter performance and utilization as opposed to the previously
used single data-level-ensemble models.

So far, the work done in order to solve the CI prob-
lem proves that single architecture-based DLE outperforms
other existing approaches, the same is evident from this
paper as well. However, in literature mostly researchers
have reported their results using MNIST or CIFAR dataset.
Moreover, instead of proposing a new approach, most of
the researchers using imbalanced medical images dataset
have used a single approach, either oversampling or under-
sampling. We have not only made a comparison of different
existing approaches using our real-life medical images
dataset but have also presented a novel framework that finds
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its roots from the concepts of data-level and model-level
ensemble. To our knowledge, this type of ensemble model
has never been proposed which not only solves the issue of
class imbalance while using the whole imbalanced dataset but
also takes advantage of the performance of different CNN
architectures.

The comparison of our proposed model with existing lit-
erature is provided in Table 12 and Table 13. In Table 12,
the comparison of the performance of our proposed VDV
model on SIIM datasets with existing work is presented.
Since, SIIM dataset was originally presented for the purpose
of localization, so mostly researchers have put their effort
in localization of disease instead of classification. Hence,
we can directly compare our result with [55] in which the
authors’ focus was on both classification and localization.
It can be seen that although their achieved AUC is 87%,
while ours is 86%, however our VDV model obtained 85.17%
Recall value which is much higher than that achieved in [55],
i.e. 78%. As mentioned earlier, the main focus of this study is
to increase the rate of correct classification of positive sample,
hence the obtained results strongly support the superiority of
proposed model.
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We have made an indirect comparison with related work
based on the imbalance ratio and size of the datasets utilized.
In [9]-[11] it can be seen that although better results in
terms of accuracy and AUC are achieved however they have
used comparatively smaller test datasets, and mostly datasets
especially the test sets are balanced or have a minimal ratio
of imbalance, while our dataset is imbalance in terms of both
training and testing set. Additionally, their datasets are not
publicly available. Furthermore, referring to [12], in which
the dataset size and the imbalance ratio in both training and
testing set is almost the same as in the SIIM dataset, the
under-sampling technique was used to solve the CI problem.
It can be seen that although their AUC is 82% however the
recall value is only 55%, i.e., only 55% positive samples
were correctly identified. While the result obtained by our
proposed ensemble model is much better with an AUC of
86% and recall of 85.17%. Hence it can be safely said that the
ensemble model created by a stack of under-bagging-based
ensemble models provides much better results especially in
terms of sensitivity.

In addition, we have also tested our proposed framework
on the openly available RS-NIH dataset and the comparison
with existing work is provided in Table 13. In Table 13, it
can be seen that the results obtained by the proposed VDV
model using both the data-split protocols (i.e. random split
and patient-wise data split) are far better as compared to
those achieved in [52], where the random split of data was
considered. Note that the higher performance of VDV model
in case of the random split of data as compared to patient-wise
split is because in case of random split of the dataset, there are
chances that Chest X-rays from same patient might be present
in both training and testing set, whereas in patient-wise split
there is no such overlap. Moreover, to our knowledge, mostly
researchers have utilized NIH-Chest X-ray-14 dataset, and
very few have used RS-NIH dataset for classification pur-
pose [50], [52], [56]. So we have directly compared our
results with [52] in which pneumothorax was considered as a
separate class in pathology detection problem while other two
papers are deliberately ignored since they have not considered
any particular pathology, instead the classification problem
was treated as a binary classification problem in which all
pathology samples in the dataset were considered as positive
while non-pathology samples were considered as negative
class.

In the end, we can say that our work surpasses previous
works performed to date in the field of pneumothorax, as we
have used publicly available datasets intending to allow other
researchers to study, comprehend and offer their input. Our
results prove that the proposed VDV framework (i.e., MLE
of DLEs) performs better than the existing approaches and
can be used for any class-imbalance dataset.

VI. LIMITATION OF THIS STUDY

The limitation of this proposed framework is that it can-
not be experimented with K-fold cross-validation, because
it requires a large number of subsets to be created based
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on the imbalance ratio. So, in case of bigger datasets
with a large number of samples or highly class imbal-
ance datasets, it would be computationally expensive and
complex to perform K-fold cross-validation using the
VDV model.

VII. CONCLUSION

Pneumothorax can be a deadly disease if not treated in time,
thus there is a need to correctly identify it in time. With
the advancement in deep learning technology, and its ability
to make unsupervised wise decisions, an efficient automatic
diagnostic system can be proposed for the detection of pneu-
mothorax. For proposing such a framework for automatic
detection of pneumothorax using highly imbalanced data,
we have first analyzed different techniques for class imbal-
ance (CI) problem using a medical image dataset. After find-
ing out that data-level-ensemble (i.e., Under-bagging based
ensemble) performs best of all, we have presented a model by
combining the ideas of the ensemble of models and ensemble
of data. Our results have shown that the VDV model outper-
forms single data-level-under-bagging based ensemble with
a single CNN architecture as fixed feature extractor. Our pro-
posed VDV framework achieved 85.17% Recall with 86.0%
AUC for the SIIM pneumothorax dataset. For the RS-NIH
dataset, 90.9% Recall with 95.0% AUC is achieved for the
random split of data. For patient-wise split of data 85.45%
recall with 77.06% AUC is obtained. Our achieved results on
the both the datasets, i.e. SIIM Pneumothorax and RS-NIH,
are higher which also validates the performance of our pro-
posed framework. So, one can use our proposed framework
for any imbalanced dataset with a little modification in terms
of using different CNN architecture for feature extraction
and different resolution of the input image. In the future,
we can propose the utilization of this framework for bigger
datasets, for example, full NIH Chest X-ray-14 dataset. Also,
a segmentation model using SIIM dataset can be developed
which will be more helpful to the radiologists for correctly
identifying the disease.

REFERENCES

[1] Harvard Health. (Jan. 2, 2019). Pneumothorax. Accessed: Jun. 12, 2020.
[Online]. Available: https://www.health.harvard.edu/a_to_z/
pneumothorax-a-to-z

[2] C. Qin, D. Yao, Y. Shi, and Z. Song, “Computer-aided detection in chest
radiography based on artificial intelligence: A survey,” BioMed. Eng.
OnLine, vol. 17, p. 113, Dec. 2018, doi: 10.1186/s12938-018-0544-y.

[3] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with deep
neural networks,” Nature, vol. 542, no. 7639, pp. 115-118, Feb. 2017,
doi: 10.1038/nature21056.

[4] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng,
“Cardiologist-level arrhythmia detection with convolutional neural net-
works,” Jul. 2017, arXiv:1707.01836.

[5] V.Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy,
S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman,
P. C. Nelson, J. L. Mega, and D. R. Webster, ‘“Development and validation
of a deep learning algorithm for detection of diabetic retinopathy in retinal
fundus photographs,” JAMA, vol. 316, no. 22, p. 2402, Dec. 2016, doi:
10.1001/jama.2016.17216.

27681


http://dx.doi.org/10.1186/s12938-018-0544-y
http://dx.doi.org/10.1038/nature21056
http://dx.doi.org/10.1001/jama.2016.17216

IEEE Access

T. Igbal et al.: Hybrid VDV Model for Automatic Diagnosis of Pneumothorax

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

X. Huang, J. Shan, and V. Vaidya, “Lung nodule detection in CT using 3D
convolutional neural networks,” in Proc. IEEE 14th Int. Symp. Biomed.
Imag. (ISBI), Melbourne, VIC, Australia, Apr. 2017, pp. 379-383, doi:
10.1109/I1SBI1.2017.7950542.

P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng,
“CheXNet: Radiologist-level pneumonia detection on chest X-rays with
deep learning,” Dec. 2017, arXiv:1711.05225.

H. Vasudevan, A. Michalas, N. Shekokar, and M. Narvekar, Eds.,
“Advanced computing technologies and applications,” in Proc. 2nd Int.
Conf. Adv. Comput. Technol. Appl. (ICACTA). Singapore: Springer, 2020,
p. 300, doi: 10.1007/978-981-15-3242-9.

Y.-H. Chan, Y.-Z. Zeng, H.-C. Wu, M.-C. Wu, and H.-M. Sun, “Effective
pneumothorax detection for chest X-ray images using local binary pattern
and support vector machine,” J. Healthcare Eng., vol. 2018, pp. 1-11,
Apr. 2018, doi: 10.1155/2018/2908517.

Y. Yoon, T. Hwang, and H. Lee, ““Prediction of radiographic abnormalities
by the use of bag-of-features and convolutional neural networks,” Veteri-
nary J., vol. 237, pp. 43—48, Jul. 2018, doi: 10.1016/j.tvjl.2018.05.009.

S. Park, “‘Performance of a deep-learning system for detecting pneumotho-
rax on chest radiograph after percutaneous transthoracic needle biopsy,” in
Proc. Eur. Congr. Radiol., 2019, p. 2053, doi: 10.26044/ECR2019/C-0334.
A. G. Taylor, C. Mielke, and J. Mongan, ‘‘Automated detection of moderate
and large pneumothorax on frontal chest X-rays using deep convolutional
neural networks: A retrospective study,” PLOS Med., vol. 15, no. 11,
Nov. 2018, Art. no. 1002697, doi: 10.1371/journal.pmed.1002697.

X. Li, J. H. Thrall, S. R. Digumarthy, M. K. Kalra, P. V. Pandharipande,
B. Zhang, C. Nitiwarangkul, R. Singh, R. D. Khera, and Q. Li,
“Deep learning-enabled system for rapid pneumothorax screening on
chest CT,” Eur. J. Radiol., vol. 120, Nov. 2019, Art. no. 108692, doi:
10.1016/j.ejrad.2019.108692.

T. Lindsey, R. Lee, R. Grisell, S. Vega, and S. Veazey, ‘“‘Automated
pneumothorax diagnosis using deep neural networks,” in Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applica-
tions, vol. 11401. Cham, Switzerland: Springer, 2019, pp. 723-731, doi:
10.1007/978-3-030-13469-3_84.

A. Blumenfeld, H. Greenspan, and E. Konen, “Pneumothorax detection
in chest radiographs using convolutional neural networks,” Proc. SPIE,
vol. 10575, p. 3, Feb. 2018, doi: 10.1117/12.2292540.

O. Geva, G. Zimmerman-Moreno, S. Lieberman, E. Konen, and
H. Greenspan, “Pneumothorax detection in chest radiographs using local
and global texture signatures,” Proc. SPIE, vol. 2015, Mar. 2015,
Art. no. 94141P, doi: 10.1117/12.2083128.

K. Jakhar, A. Kaur, and D. M. Gupta, “Pneumothorax segmentation:
Deep learning image segmentation to predict pneumothorax,” Apr. 2021,
arXiv:1912.07329.

T. J. Jun, D. Kim, and D. Kim, “Automated diagnosis of pneumothorax
using an ensemble of convolutional neural networks with multi-sized chest
radiography images,” Apr. 2018, arXiv:1804.06821.

B. S. Raghuwanshi and S. Shukla, ““Class imbalance learning using Under-
Bagging based kernelized extreme learning machine,” Neurocomputing,
vol. 329, pp. 172-187, Feb. 2019, doi: 10.1016/j.neucom.2018.10.056.
H. Salehinejad, S. Valaee, T. Dowdell, E. Colak, and J. Barfett, “Gen-
eralization of deep neural networks for chest pathology classification
in X-rays using generative adversarial networks,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP), Calgary, AB, Canada,
Apr. 2018, pp. 990-994, doi: 10.1109/ICASSP.2018.8461430.

M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the
class imbalance problem in convolutional neural networks,” Neural Netw.,
vol. 106, pp. 249-259, Oct. 2018, doi: 10.1016/j.neunet.2018.07.011.

G. M. Weiss, “Mining with rarity: A unifying framework,” ACM
SIGKDD Explor. Newslett., vol. 6, no. 1, pp.7-19, Jun. 2004, doi:
10.1145/1007730.1007734.

B. Raskutti and A. Kowalczyk, ‘“Extreme re-balancing for SVMs: A case
study,” ACM SIGKDD Explor. Newslett., vol. 6, no. 1, pp.60-69,
Jun. 2004, doi: 10.1145/1007730.1007739.

G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing,
“Learning from class-imbalanced data: Review of methods and appli-
cations,” Expert Syst. Appl., vol. 73, pp.220-239, May 2017, doi:
10.1016/j.eswa.2016.12.035.

C. Drummond and R. C. Holte, “C4.5, class imbalance, and cost sen-
sitivity: Why under-sampling beats over-sampling,” in Proc. 2nd Work-
shop Learn. From Imbalanced Datasets, Washington, DC, USA, vol. 11,
Aug. 2003, pp. 1-8.

27682

(26]

(27]

(28]

[29]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

(41]

[42]

(43]

[44]

[45]

(46]

G. Levi and T. Hassncer, “Age and gender classification using convolu-
tional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. Workshops (CVPRW), Boston, MA, USA, Jun. 2015, pp. 34-42, doi:
10.1109/CVPRW.2015.7301352.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16,
pp. 321-357, Jun. 2002, doi: 10.1613/jair.953.

T. Jo and N. Japkowicz, “Class imbalances versus small disjuncts,” ACM
SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 40-49, Jun. 2004, doi:
10.1145/1007730.1007737.

H. Guo and H. L. Viktor, “Learning from imbalanced data sets with
boosting and data generation: The DataBoost-IM approach,” ACM
SIGKDD Explor. Newslett., vol. 6, no. 1, pp.30-39, Jun. 2004, doi:
10.1145/1007730.1007736.

F. Chollet. (Jun. 2016). Building powerful image classification models
using very little data. The Keras Blog. Accessed: Jul. 1, 2020. [Online].
Available:  https://blog.keras.io/building-powerful-image-classification-
models-using-very-little-data.html

X.-Y. Liu, J. Wu, and Z.-H. Zhou, “‘Exploratory undersampling for class-
imbalance learning,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39,
no. 2, pp. 539-550, Apr. 2009, doi: 10.1109/TSMCB.2008.2007853.

S. Sapp, M. J. van der Laan, and J. Canny, “Subsemble:
An ensemble method for combining subset-specific algorithm fits,”
J. Appl. Statist., vol. 41, no. 6, pp.1247-1259, Jun. 2014, doi:
10.1080/02664763.2013.864263.

R. Barandela, R. M. Valdovinos, and J. S. Sanchez, “New applications of
ensembles of classifiers,” Pattern Anal. Appl., vol. 6, no. 3, pp. 245-256,
Dec. 2003, doi: 10.1007/s10044-003-0192-z.

U. R. Salunkhe and S. N. Mali, “Classifier ensemble design for imbal-
anced data classification: A hybrid approach,” Proc. Comput. Sci., vol. 85,
pp. 725-732, Jan. 2016, doi: 10.1016/j.procs.2016.05.259.

M. Marouf, R. Siddiqi, F. Bashir, and B. Vohra, “Automated hand X-
ray based gender classification and bone age assessment using con-
volutional neural network,” in Proc. 3rd Int. Conf. Comput., Math.
Eng. Technol. (iCoMET), Sukkur, Pakistan, Jan. 2020, pp. 1-5, doi:
10.1109/iCoMET48670.2020.9073878.

Transfer Learning, CS23In Convolutional Neural Networks for
Visual Recognition. Accessed: Sep. 8, 2020. [Online]. Available:
https://cs23 1n.github.io/transfer-learning/

S. Bunrit, N. Kerdprasop, and K. Kerdprasop, “Evaluating on the transfer
learning of CNN architectures to a construction material image classifi-
cation task,” Int. J. Mach. Learn. Comput., vol. 9, no. 2, pp. 201-207,
Apr. 2019, doi: 10.18178/ijmlc.2019.9.2.787.

K. Simonyan and A. Zisserman, ““Very deep convolutional networks for
large-scale image recognition,” Apr. 2015, arXiv:1409.1556.

M. Mateen, J. Wen, Nasrullah, S. Song, and Z. Huang, “Fundus image
classification using VGG-19 architecture with PCA and SVD,” Symmetry,
vol. 11, no. 1, p. 1, Dec. 2018, doi: 10.3390/sym11010001.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 2261-2269,
doi: 10.1109/CVPR.2017.243.

S. Patel. (May 4, 2017). Chapter 2: SVM (Support Vector
Machine)—Theory. Accessed: Jun. 7, 2020. [Online]. Available:
https://medium.com/machine-learning-101/chapter-2-svm-support-
vector-machine-theory-f0812effc72

R. Rashid, S. G. Khawaja, M. U. Akram, and A. M. Khan, “Hybrid RID
network for efficient diagnosis of tuberculosis from chest X-rays,” in Proc.
9th Cairo Int. Biomed. Eng. Conf. (CIBEC), Cairo, Egypt, Dec. 2018,
pp. 167-170, doi: 10.1109/CIBEC.2018.8641816.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas,
“Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825-2830, Nov. 2011. [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.SVM.SVC.html

Kaggle. (2020). Chest X-Ray Images With Pneumothorax Masks.
Accessed: Mar. 13, 2020. [Online]. Available: https://kaggle.com/
vbookshelf/pneumothorax-chest-xray-images-and-masks

Kaggle. (2017). Random Sample of NIH Chest X-Ray Dataset.
Accessed: Sep. 6, 2020. [Online]. Available: https://kaggle.com/nih-
chest-xrays/sample

M. O. Faruge and M. A. M. Hasan, “Face recognition using PCA and
SVM,” in Proc. 3rd Int. Conf. Anti-Counterfeiting, Secur., Identificat.
Commun., Aug. 2009, pp. 97-101, doi: 10.1109/ICASID.2009.5276938.

VOLUME 10, 2022


http://dx.doi.org/10.1109/ISBI.2017.7950542
http://dx.doi.org/10.1007/978-981-15-3242-9
http://dx.doi.org/10.1155/2018/2908517
http://dx.doi.org/10.1016/j.tvjl.2018.05.009
http://dx.doi.org/10.26044/ECR2019/C-0334
http://dx.doi.org/10.1371/journal.pmed.1002697
http://dx.doi.org/10.1016/j.ejrad.2019.108692
http://dx.doi.org/10.1007/978-3-030-13469-3_84
http://dx.doi.org/10.1117/12.2292540
http://dx.doi.org/10.1117/12.2083128
http://dx.doi.org/10.1016/j.neucom.2018.10.056
http://dx.doi.org/10.1109/ICASSP.2018.8461430
http://dx.doi.org/10.1016/j.neunet.2018.07.011
http://dx.doi.org/10.1145/1007730.1007734
http://dx.doi.org/10.1145/1007730.1007739
http://dx.doi.org/10.1016/j.eswa.2016.12.035
http://dx.doi.org/10.1109/CVPRW.2015.7301352
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1145/1007730.1007737
http://dx.doi.org/10.1145/1007730.1007736
http://dx.doi.org/10.1109/TSMCB.2008.2007853
http://dx.doi.org/10.1080/02664763.2013.864263
http://dx.doi.org/10.1007/s10044-003-0192-z
http://dx.doi.org/10.1016/j.procs.2016.05.259
http://dx.doi.org/10.1109/iCoMET48670.2020.9073878
http://dx.doi.org/10.18178/ijmlc.2019.9.2.787
http://dx.doi.org/10.3390/sym11010001
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CIBEC.2018.8641816
http://dx.doi.org/10.1109/ICASID.2009.5276938

T. Igbal et al.: Hybrid VDV Model for Automatic Diagnosis of Pneumothorax

IEEE Access

[47] J.-D. Wuand C.-T. Liu, “Finger-vein pattern identification using SVM and
neural network technique,” Expert Syst. Appl., vol. 38, pp. 14284-14289,
Jun. 2011, doi: 10.1016/j.eswa.2011.05.086.

[48] R. P. R. Priya and P. Aruna, “SVM and neural network based diagnosis
of diabetic retinopathy,” Int. J. Comput. Appl., vol. 41, no. 1, pp. 6-12,
Mar. 2012, doi: 10.5120/5503-7503.

[49] M. da Silva Santos, M. Ladeira, G. C. G. Van Erven, and G. L. da Silva,
“Machine learning models to identify the risk of modern slavery
in Brazilian cities,” in Proc. 18th IEEE Int. Conf. Mach. Learn.
Appl. (ICMLA), Boca Raton, FL, USA, Dec. 2019, pp. 740-746, doi:
10.1109/ICMLA.2019.00132.

[50] S. Bharati, P. Podder, and M. R. H. Mondal, “Hybrid deep learning for
detecting lung diseases from X-ray images,” Informat. Med. Unlocked,
vol. 20, 2020, Art. no. 100391, doi: 10.1016/j.imu.2020.100391.

[51] M. Degiorgis, G. Gnecco, S. Gorni, G. Roth, M. Sanguineti, and
A. C. Taramasso, ‘“Classifiers for the detection of flood-prone areas using
remote sensed elevation data,” J. Hydrol., vols. 470-471, pp. 302-315,
Nov. 2012, doi: 10.1016/j.jhydrol.2012.09.006.

[52] S. Mondal, K. Agarwal, and M. Rashid, “Deep learning approach for
automatic classification of X-ray images using convolutional neural net-
work,” in Proc. 5th Int. Conf. Image Inf. Process. (ICIIP), Shimla, India,
Nov. 2019, pp. 326-331, doi: 10.1109/ICIIP47207.2019.8985687.

[53] B. Sun, H. Chen, J. Wang, and H. Xie, “Evolutionary under-sampling
based bagging ensemble method for imbalanced data classification,”
Frontiers Comput. Sci., vol. 12, no. 2, pp.331-350, Apr. 2018, doi:
10.1007/s11704-016-5306-z.

[54] Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, “A novel ensemble
method for classifying imbalanced data,” Pattern Recognit., vol. 48, no. 5,
pp. 1623-1637, May 2015, doi: 10.1016/j.patcog.2014.11.014.

[55] H. Wang, H. Gu, P. Qin, and J. Wang, “CheXLocNet: Automatic localiza-
tion of pneumothorax in chest radiographs using deep convolutional neural
networks,” PLoS ONE, vol. 15, no. 11, Nov. 2020, Art. no. €0242013, doi:
10.1371/journal.pone.0242013.

[56] P.Choudhary and A. Hazra, “Chest disease radiography in twofold: Using
convolutional neural networks and transfer learning,” Evolving Syst.,
vol. 12, no. 2, pp. 567-579, Jun. 2021, doi: 10.1007/s12530-019-09316-
2.

[57] E. A. Noor, I. Munzerin, A. M. A. Igbal, T. Islam, and E. Hossain,
“An ensemble learning based approach to autonomous COVID19 detec-
tion using transfer learning with the help of pre-trained deep neural network
models,” in Proc. 24th Int. Conf. Comput. Inf. Technol. (ICCIT), Dec. 2021,
pp. 1-6, doi: 10.1109/ICCIT54785.2021.9689825.

TAHIRA IQBAL received the B.S. degree in
computer engineering from the Department of
Computer and Software Engineering, College of
Electrical and Mechanical Engineering, National
University of Sciences and Technology (CEME
NUST), Pakistan, in 2018, and the M.S. degree
in computer engineering from CEME NUST. Her
research interests include deep learning, machine
learning, and medical image analysis.

ARSLAN SHAUKAT received the B.S. and M.S.
degrees in computer engineering from the National
University of Sciences and Technology (NUST),
Islamabad, Pakistan, in 2003 and 2005, respec-
tively, and the Ph.D. degree in computer science
from The University of Manchester, U.K., in 2010.
He is currently an Associate Professor with the
Department of Computer and Software Engineer-
ing, College of Electrical and Mechanical Engi-
neering, NUST (CEME NUST). He has published
various research papers in refereed journals and conference proceedings.
His research interests include machine learning, pattern recognition, digital
image, and speech processing. He has been a member of technical program
committees of numerous international conferences and a reviewer of inter-
national journals. He was a recipient of academic awards, including the Best
Teacher Award in 2018 and the Best Research Paper Award in 2019.

VOLUME 10, 2022

MUHAMMAD USMAN AKRAM received the
Ph.D. degree in computer engineering (specializ-
ing in medical imaging analysis) from the National
University of Sciences and Technology, Pakistan.
He is currently an Associate Professor with the
Department of Computer and Software Engineer-
ing, CEME NUST. He is one of the youngest Ph.D.
recipient in Pakistan and has published more than
115 research papers in peer-reviewed journals and

N conferences. He has received academic awards,
including the Best University Teacher Award in 2016 and the Best Researcher
Award in 2019. In addition, he has also worked as a Reviewer for many
journals, including IEEE, Elsevier, and Springer.

ABDUL WAHAB MUZAFFAR received the Ph.D.
degree in software engineering from the National
University of Sciences and Technology (NUST),
Islamabad, Pakistan, in 2017. He is currently
working as an Assistant Professor with Saudi Elec-
tronic University, Saudi Arabia. He is the author of
27 conference papers and journal articles, and has
participated in several conferences held in United
Arab Emirates, USA, and Thailand. His research
interests include data and text mining, software
engineering, machine learning, and bioinformatics. He is also an active
reviewer of various scientific journals.

ZARTASHA MUSTANSAR received the Ph.D.
degree from The University of Manchester,
U.K. She was selected by Microsoft Research
Cambridge (MSR) to pursue research in physical
sciences and engineering in Manchester. She is
currently employed as an Assistant Professor with
the Research Center for Modeling and Simulation
(RCMS), NUST. She has published 32 research
papers in various peer-reviewed journals and con-
ferences. Her research interest includes biome-
chanical engineering, especially associated with health care.

YUNG-CHEOL BYUN studied at the University of
Florida as a Visiting Professor, from 2012 to 2014.
He currently directs the Machine Learning Lab-
oratory, Department of Computer Science, Jeju
National University. Before joining Jeju National
University, he worked as a Special Lecturer with
Samsung Electronics Company Ltd., in 2000 and
2001. From 2001 to 2003, he was a Senior
Researcher with the Electronics and Telecommu-
nications Research Institute (ETRI). He was pro-
moted to join Jeju National University as an Assistant Professor, in 2003.
He is also serving as the Director for the Information Science Technol-
ogy Laboratory and other academic societies. He has been hosting the
International Conference on Computers, Networks, Systems, and Industrial
Engineering (CNSI); and serving as the program chair, the workshop chair,
and the session chair for various international conferences and workshops.

27683


http://dx.doi.org/10.1016/j.eswa.2011.05.086
http://dx.doi.org/10.5120/5503-7503
http://dx.doi.org/10.1109/ICMLA.2019.00132
http://dx.doi.org/10.1016/j.imu.2020.100391
http://dx.doi.org/10.1016/j.jhydrol.2012.09.006
http://dx.doi.org/10.1109/ICIIP47207.2019.8985687
http://dx.doi.org/10.1007/s11704-016-5306-z
http://dx.doi.org/10.1016/j.patcog.2014.11.014
http://dx.doi.org/10.1371/journal.pone.0242013
http://dx.doi.org/10.1007/s12530-019-09316-2
http://dx.doi.org/10.1007/s12530-019-09316-2
http://dx.doi.org/10.1109/ICCIT54785.2021.9689825

