
Received February 1, 2022, accepted February 18, 2022, date of publication March 8, 2022, date of current version March 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3157405

Enabling Efficient Distributed Spatial Join on
Large Scale Vector-Raster Data Lakes
SEBASTIÁN VILLARROYA , JOSÉ R. R. VIQUEIRA, JOSÉ M. COTOS , AND JOSÉ A. TABOADA
COGRADE, Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela,
Spain

Corresponding author: Sebastián Villarroya (s.villarroya@usc.es)

This work was supported in part by the Spanish Ministry of Science and Innovation through Storage and Processing of Massive Geospatial
Data for Smart and Sustainable Urban Transport (MaGIST) under National Project PID2019-105221RB-C42, and in part by the Galician
Government under Grant ED431B 2021/16.

ABSTRACT Both the increasing number of GPS-enabledmobile devices and the geographic crowd-sourcing
initiatives, such as Open Street Map, are determinants for the large amount of vector spatial data that is
currently being produced. On the other hand, the automatic generation of raster data by remote sensing
devices and environmental modeling processes was always leading to very large datasets. Currently, huge
data generation rates are reached by improved sensor observation systems and data processing infrastruc-
tures. As an example, the Sentinel Data Access System of the Copernicus Program of the European Space
Agency (ESA) was publishing 38.71 TB of data per day during 2020. This paper shows how the assumption
of a new spatial data model that includes multi-resolution parametric spatial data types, enables achieving
an efficient implementation of a large scale distributed spatial analysis system for integrated vector-raster
data lakes. In particular, the proposed implementation outperforms the state-of-the-art Spark-based spatial
analysis systems by more than one order of magnitude during vector-raster spatial join evaluation.

INDEX TERMS Large-scale data analysis, spatial analytics, spatial data management, vector-raster data
analysis.

I. INTRODUCTION
Two major types of spatial datasets exists, namely vector and
raster datasets. Vector datasets contain data of spatial entities,
including the vector geometries that represent their location
and shape in space. Much research effort has been devoted to
vector spatial data management, which leaded to mature and
standardized spatial DBMS solutions [1], [2]. Raster datasets
contain the spatial or spatio-temporal distribution of variables
such as air temperature, elevation above sea level, population
density, etc. In general, they have the form of large 2D, 3D
or 4D arrays of numeric real data, therefore they do not fit
well with traditional database technologies. Although some
specific scientific array data management solutions already
exist [3], [4], most applications still rely on specific scientific
file formats and ad-hoc programming.

The amount of available vector spatial data is increas-
ing exponentially, mainly due to the generalized use of
GPS-enabled mobile devices and to the arising of geographic
crowd-sourcing initiatives. Examples of huge datasets
obtained from GPS-enabled location-based applications are

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

the approximately 250 million geo-tagged tweets generated
per day in 2020 and the approximately 700K taxi trips stored
per day in the NYC TLC trip record dataset during 2019.
Another source of vector spatial data are the geographic
crowd-sourcing initiatives. An example of such initiatives
is the Open Street Map project, which provides access to a
spatial vector dataset of about 1 TB. Raster datasets were
always very large, because they are generated by automatic
means, including remote sensing devices and environmental
modeling processes. However, the advances in the hardware
of sensor observation systems and data processing infrastruc-
tures are given rise to the increase of the raster data gen-
eration rate up to unprecedented levels. As an example, the
Sentinel Data Access System of the Copernicus Program of
the European Space Agency (ESA) was publishing 38.71 TB
of data per day during 2020. As another example, the National
Oceanographic and Atmospheric Administration (NOAA) of
the U.S. Department of Commerce generates tens of terabytes
of data per day from satellites, radars, ships, weather models
and other sources.

To cope with the processing of the above data deluge, the
arising of modern large scale data storage and processing
technologies has caused the emergence of a new architectural

29406 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0555-8735
https://orcid.org/0000-0002-9030-4221
https://orcid.org/0000-0003-1897-1537
https://orcid.org/0000-0002-5169-9232


S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

trend in the development of Business Intelligence infrastruc-
tures, called the Data Lake [5]. Contrary to what happens
in traditional data warehouses, in a Data Lake the data is
stored without the need of a predefined schema designed to
give response to an available list of queries. Data Lakes are
created by inserting all the available raw data, regardless of its
type, format and semantics, being flexible enough to enable
future analysis tasks which are still not witnessed. Data lakes
are implemented with Big Data technologies, including dis-
tributed file systems like HDFS for data storage and large
scale data processing technologies like Apache Hadoop [6],
for batch query processing, and Apache Spark [7] for on-line
analytics.

Large scale spatial analysis in spatial Data Lakes is
currently achieved by spatial extensions of either Apache
Hadoop [8], [9] or Apache Spark [10]–[16]. In general, the
available data storage features may be extended with i) spatial
data types for vector geometries (points, linestrings, poly-
gons, etc.), ii) spatial partitioning methods and iii) spatial
indexing techniques. Besides, the data processing enginemay
be extended with new spatial operations and spatially enabled
query optimization strategies. From all the above solutions,
only GeoTrellis [15] has been designed to support raster
data, and none of them enables the efficient integration of
vector and raster spatial data analysis. In particular, to support
spatial joins between vector and raster data, raster data has to
be recorded as point data (one point object for each raster
cell). Although data storage may still be efficient due to the
data compression facilities incorporated in current distributed
columnar data storage formats like Apache Parquet [17],
data processing may not leverage the sampling nature of
raster data to devise more efficient algorithms for spatial
operations.

In this paper, it is shown how the assumption of an already
existing integrated vector-raster data model approach enables
the efficient implementation of a large scale vector-raster
spatial on-line data analysis system on top of Apache Spark.
In particular, it is shown through exhaustive experimentation
how specific optimizations enable achieving response times
for vector-raster spatial joins that are more than an order of
magnitude faster than those achieved by currently available
Spark-based spatial analysis systems.

More specifically, the contributions of the present work are
resumed as follows.
• An implementation of the multi-resolution parametric
spatial data types, the data structures and the opera-
tions of the data model is undertaken, using Apache
Parquet [17] as the base data storage technology and
Apache Spark [7] as the underlying large scale on-line
data processing framework.

• An optimization strategy for vector-raster spatial join
is designed and implemented, which leverages the spe-
cial nature of raster data to enable the use of equi-
join, instead of the spatial theta-join required by other
approaches. The use of efficient algorithms for equi-
join (sort-merge join and hash join) in Spark makes the

present solution much faster than others, that need to
implement spatial indexed nested-loop joins.

• A comparison through experimentation of the perfor-
mance of the evaluation of the spatial join between vec-
tor (polygon) and raster data structures was performed
between state of the art spark-based spatial analysis solu-
tions. Response time, shuffle reads and writes costs, and
peak execution memory consumption were measured.
The present solution outperforms the fastest state of the
art implementations bymore than an order ormagnitude,
with a peak memory consumption which is in the order
of the smallest ones.

The remainder of this paper is organized as follows.
Section II provides an overview of other pieces of related
work. The design of the data types, data structures and opera-
tions of the adopted vector-raster integrated data model is out-
lined in Section III. Section IV describes the implementation
of the data model structures and operations on top of Apache
Parquet and Apache Spark. The design and implementation
of the optimization strategy for vector-raster spatial join eval-
uation is explained in Section V. Section VI discusses the
results of the experimental evaluation that compares the per-
formance of the present and state of the art implementations.
Section VII concludes the paper and outlines issues for future
work.

II. RELATED WORK
Most of the research undertaken in the area of Spatial Data
Management has been focusing the effort in the effective and
efficient management of spatial entity datasets, where vector
representations for entity geometries are always considered.
As a result of the above research, mature spatial SQL-based
DBMSs [1], [2] are currently available, which implement
the spatial part of the ISO SQL/MM standard [18]. Further
on research has lead to the incorporation of spatial data
management in modern columnar DBMSs [19] and NoSQL
systems [20], [21].

Regarding raster data, current applications use to adopt
specific data storage formats and processing libraries. The
emergence of efficient scientific array data management sys-
tems such as Rasdaman [3] and SciDB [4] has opened the
possibility to enable general purpose declarative raster data
analysis. However, although some of the above spatial DBMS
already incorporate specific raster data storage features, and
despite of the existence of specific array data managers,
to the best of these authors knowledge, effective and efficient
declarative integrated management of vector and raster data
has not been achieved by any available implementation.

If we restrict to data modeling, the integrated management
of relational and array data is the aim of the SciQL [22]
approach. However, spatial semantics are not implicitly
included in array data, and the model becomes complex
due to the combination of relational with array structures.
On the other hand, integrated multiresolution spatial seman-
tics are incorporated in MAPAL (Mapping Analysis Lan-
guage), defined in the scope of the design of SODA [23],

VOLUME 10, 2022 29407



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

a framework for Spatial Observation Data Analysis. The
authors do not report on any available MAPAL implemen-
tation that proofs the viability of the approach. The data
model assumed by the present implementation is based on
the MAPAL data model.

Regarding large scale spatial data analysis, many systems
have been already implemented. In general, all of them
extend some already existing high performance data pro-
cessing framework, either Apache Hadoop [6] or Apache
Spark [7]. Data storage structures may be extended with
spatial data representations, spatial partitioning and spa-
tial indexing, whereas the data processing engine may be
extended with new spatial operations and spatially enabled
optimization strategies.

Hadoop GIS [8] enables running large scale spatial queries
on top of Hadoop. A more efficient approach is adopted by
SpatialHadoop [9], which extends Hadoop with spatial fea-
tures at both storage and MapReduce layers. SpatialHadoop
has been extended to provide native support for spatio-
temporal data [24].

The broadmajority of themost recent approaches are based
on Apache Spark [7]. A nice survey that includes a per-
formance comparison of the most relevant implementations
is available in [25]. GeoSpark [10] extends Spark Resilient
Distributed Datasets (RDD) with spatial data types, spatial
partitioning and spatial indexing. On top of the Spatial RDD
layer, spatial query processing is implemented with specific
algorithms for spatial range, join and KNN queries.

The SpatialSpark [11] prototype implements spatial join
queries on Spark. Different geometric types are supported,
including points and polygons. Various spatial partitioning
alternatives are provided and spatial indexing is done using
R-trees. Range queries and both spatial and distance joins are
supported.

Magellan [12] achieves distributed spatial analytics by
extending SparkSQL [26] with spatial data types, such as
points, linestrings and polygons, and predicates such as
within and contains. Spatial indexing and spatial query pro-
cessing is supported through the use of z-order curves.

Spatial query operators such as spatial range, spatial
kNN, spatial join and kNN join are provided by Loca-
tionSpark [13] as a spatial query API on top of Apache
Spark. It incorporates advanced query scheduling features
that enables efficient management of query skew (uneven
distribution of queries in space). As in most implementa-
tions, spatial indexing is used globally for spatial partition-
ing (either Grid Files or Quadtrees may be chosen) and
also locally inside each partition (either R-trees, Quadtrees
or Grid Files). Finally, the recording of statistics on data
access is used to cache in memory most frequently used
data.

Simba [14] (Spatial In-Memory Big Data Analysis)
extends SparkSQL [26] with spatial data types and functions.
It supports spatial indexing, both at global and local level,
and it implements a cost-based query optimizer for effective
spatial query plan selection.

GeoTrellis [15] is a high performance geoprocessing
engine and programming toolkit, aimed at providing support
for high performance geoprocessing web services. Contrary
to all the above implementations, GeoTrellis supports both
vector and raster data, however, integrated analysis of both
through vector-raster joins operations is not supported.

Large scale spatio-temporal data analysis on top of Spark
is implemented by Stark [16]. The implementation includes
spatio-temporal operators for filter and join with different
predicates, a kNN search operator and spatial partitioning and
indexing.

In summary, many systems have been implemented to sup-
port the efficient spatial analysis of vector spatial data, includ-
ing spatial DBMSs [1], [2], [19], NoSQL systems [20], [21]
and many high performance distributed solutions based on
either Hadoop [8], [9] or Spark [10]–[16]. Besides, scientific
array data management systems [3], [4] may be used to per-
form analysis over raster datasets. However, integrated and
efficient analysis of very large vector-raster datasets, through
the support of vector-raster spatial joins, is not provided by
any available solution.

III. DATA STRUCTURES AND OPERATIONS
The integrated data model for vector and raster data fol-
lows the approach proposed in [23] for heterogeneous
spatio-temporal observation data. Data types, structures and
operations are formalized below.

A. DATA TYPES
Besides the conventional data types typically supported by
any data management system, the proposed model incorpo-
rates multiresolution parametric 2D spatial data types, which
consist of fixed precision versions of those already pro-
posed by the spatial part of the ISO SQL/MM standard [18].
If P (Precision) and R (Resolution) are two integer numbers
(P,R ∈ Z), then amongst other, the following two paramet-
ric spatial data types are incorporated (⊥ is used to denote the
null value).

• Point2D(P,R): {(x · R, y · R) | x, y ∈ Z∧−10P < x, y <

10P} ∪ {⊥}.
• Polygon2D(P,R): Vector polygons whose borders are
defined by sequences of elements of Point2D(P,R).

It is noticed that data type Polygon2D(P,R) enables the
integrated representation of both vector points and raster
cells.

B. DATA STRUCTURES
Two data structures, namely Dimensions and Extensional
MappingSets, enable the representation of both vector spatial
entity sets and raster fields. A Dimension d over data type
T , denoted d : T , is defined as a non-empty finite subset of
T − {⊥}. Dimensions may be defined over any conventional
data type, and also over data type Point2D, but not over geo-
metric types like Polygon2D. Spatial Samplings are special
cases of Dimensions of major interest for the present work.

29408 VOLUME 10, 2022



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

FIGURE 1. Illustration of spatial data structures.

Formally, if s = (sx , sy) and e = (ex , ey) are two elements of
some type Point2D(P,R), then a 2D Sampling W from s to e,
denoted W (s, e), is defined as the following Dimension over
Point2D(P,R).

W (s, e) = {(x, y) ∈ Point2D(P,R) |

sx ≤ x ≤ ex ∧ sy ≤ y ≤ ey}

An Extensional MappingSet is a finite set of map-
pings (Extensional Mappings), with a shared domain,
defined by the Cartesian product of Dimensions. Formally,
if d1, d2, . . . , dn is a sequence of Dimensions and T is
a data type, then an Extensional Mapping with signature
M (d1, d2, . . . , dn) : T is defined as a mapping M :

d1, d2, . . . , dn → T . Based on the above, an Extensional
MappingSet with signature EM (d1, d2, . . . , dn | M1 :

T1,M2 : T2, . . . ,Mm : Tm) is defined as the following set of
mappings:

{M1(d1, d2, . . . , dn) : T1,M2(d1, d2, . . . , dn) : T2, . . . ,

Mm(d1, d2, . . . , dn) : Tm}.

Spatial vector entity sets are represented in the model
following a functional database approach [27]. Thus, Fig. 1
illustrates the representation of a collection of municipalities
within an Extensional MappingSet with signature

Municipality(MunCode | Name : CString,

Geo : Polygon2D(9, 10)),

where MunCode is a Dimension over data type Integer , that
records municipality identification codes. Extensional Map-
pings Name and Geo yield respectively the name and geom-
etry of the municipality corresponding to each identification
code. Regarding raster fields, they are elegantly represented
by Extensional Mappings whose domain is a 2D Sampling.
Thus, Extensional MappingSet Topo(Loc12m|Elevation :
Real) in Fig. 1 represents a raster field of elevation above
sea level. The bounds and resolution of raster domain are
recorded in the 2D Sampling

Loc12m(Ps : Point2D(6, 12),Pe : Point2D(6, 12)).

It is important to remark that, in general, the values of a
Dimension have to be explicitly recorded in order to represent
it, as it is the case of Dimension MunCode above. However,
in the case of a 2D Sampling such as Loc12m above, it is
enough to store the bound values (Ps and Pe in the example),
since all the other may be automatically generated.

C. OPERATIONS
The set of operations on Dimensions and Extensional Map-
pings that enable integrated vector-raster spatial analysis is
introduced in this subsection.

1) DIMENSION OPERATIONS
They enable scanning Dimensions from storage, generate 2D
Samplings from constants, performing set operations between
Dimensions, and obtaining Dimensions from Extensional
MappingSet projections.
• ScanDimension[name]. Scans the Dimension called
name from the storage.

• SamplingDimension[name](K1,K2). Generates a new
2D Sampling name(K1,K2) using as bounds the values
of Constants K1 and K2.

• Union(D1,D2). If neither d1 nor d2 is a 2D Sampling
then it obtains a new Dimension by performing the set
union between Dimensions d1 and d2. If either of d1,
d2 is a 2D Sampling, then the result is the 2D Sampling
with minimum extension that contains both d1 and d2.

• Intersection(D1,D2). Obtains a new Dimension by per-
forming the set intersection betweenDimensions D1 and
D2. Contrary to the case of operationUnion, the result is
a 2D Sampling only if bothD1 andD2 are 2D Samplings.

• ProjectDimension[s][c](MS). Operand MS is an Exten-
sional MappingSet, parameter s is a reference to either
a Dimension or a Extensional Mapping of MS, and
parameter c is a reference to an Extensional Mapping
ofMS of a Boolean type. The result is a new Dimension
containing all the values of s where c has true value.

2) EXTENSIONAL MappingSets OPERATIONS
They generate new Extensional MappingSets from existing
Dimensions, Extensional MappingSets and Constants.
• Product[name](D1,D2, . . . ,Dn). Generates a new
Extensional MappingSet, without Extensional

VOLUME 10, 2022 29409



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

Mappings, whose domain is the Cartesian product D1×

D2 × . . .× Dn.
• Product(MS,D). The domain of the result Extensional
MappingSet is extended to the Cartesian product
between the domain ofMS and D.

• ProjectMappingSet[s1, s2, . . . , sn](MS). The result
Extensional MappingSet has the same domain of MS,
but only the mappings ofMS referenced by s1, . . . , sn.

• IMappings[m1,m2, . . . ,mn](MS). Enables the evalua-
tion of primitive intensional mappings over the Exten-
sional Mappings and Dimensions ofMS. Each mi in the
list of parameters is an expression of the form

M = pm(s1, s2, . . . , sm)

where M is the name for a new Extensional Mapping
that will be added to MS, pm is a primitive mapping
supported by the systems and each si is a reference to
either a Dimension or an Extensional Mapping of MS.

• EMapping[m](MS1,MS2). Enables the evaluation of an
Extensional Mapping of MS2 over the Dimensions and
ExtensionalMappings ofMS1. The expressionm has the
form

M = em(s1, s2, . . . , sn)

whereM is the name of a new Extensional Mapping that
will be added to MS, em is the name of an Extensional
Mapping of MS2 and each si is a reference to either a
Dimension or Extensional Mapping of MS1. To be able
to do the evaluation, the domain of MS2 must be com-
posed of a sequence of Dimensions D1×D2× . . .×Dn
such that the data type of each Di is compatible with the
data type of the relevant si.

• KMapping[name](MS,K ). Appends a new Extensional
Mapping called name to MS with a Constant value K .

• AggMapping[gb][ob][c][ag1, ag2, . . . , agn](MS). Gen-
erates a new Extensional MappingSet by computing
aggregates over part of the domain of MS. Parameter
gb is a sequence of Dimensions strictly contained in the
domain ofMS. Parameter ob is an order by specification
expression composed of pairs (s, o), where s references
either aDimension or Extensional Mapping ofMS and o
is an ordering direction, eitherAscending orDescending.
Parameter c is an Extensional Mapping of MS of a
Boolean data type. Each agi is an expression of the form

M = aggregateMapping(s1, s2, . . . , sm)

where aggregateMapping is a primitive aggregate map-
ping supported by the system, such as sum, avg, count,
rank, etc. and each si is a reference to either aDimension
or Extensional Mapping ofMS. The domain of the result
Extensional MappingSet is defined by gb Dimensions,
and it has anExtensionalMapping recording the result of
each agi expression. The aggregate mapping is evaluated
only over elements where c is true. The order by speci-
fication ob is optional and required for some aggregate
Mappings like rank.

FIGURE 2. Catalog example.

Complex spatial analysis tasks may be expressed with
combinations of the above operations. A practical example
that will be used to describe important optimizations is given
below, which uses the data shown in Fig. 1 to obtain the
average of elevation inside each municipality.

1) D1 = ScanDimension(MunCode)
2) D2 = ScanDimension(Loc12m)
3) MS1 = Product(D1,D2)
4) MS2 = EMapping[Geo = Geo(MunCode)]

(MS1,Municipality)
5) MS3 = IMapping[c = contains(Geo,Loc12m)] (MS2)
6) MS4 = EMapping[elev = Elevation(Loc12m)]

(MS3,Topo)
7) MS5 = AggMapping[MunCode][][c] [avgElev =

avg(elev)](Ms4)

IV. DISTRIBUTED IMPLEMENTATION
An implementation of the data structures and operations
introduced in Section III in a distributed large scale data
processing platform is described in the following subsections.
The platform used is based on the combination of the column-
oriented distributed Apache Parquet [17] data format with the
large scale data analysis engine Apache Spark [7].

A. DATA STRUCTURES IMPLEMENTATION
Efficient structures to record both data and metadata
of Dimensions and Extensional MappingSets have been
implemented. Structures for both primary (in-memory) and
secondary (disk) storage are described in the following sub-
sections. To enable the recording of values of the spatial
data types in Spark and Parquet, relevant Spark User Defined
Types (UDT) where first implemented.

1) DISK STRUCTURES
A Catalog recording relevant metadata of Dimensions and
Extensional MappingSets is stored in disk and loaded in main
memory on system startup. Fig. 2 illustrates the contents of
the Catalog with the metadata corresponding to the example
of municipalities and elevation data of Fig. 1.

29410 VOLUME 10, 2022



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

Besides the name, data type and size, stored metadata
for Dimensions includes a boolean property that specifies
whether the Dimension is a 2D Sampling or not. The values
of the bounds (start and end value) of 2D Samplings are
directly recorded in the Catalog. On the other hand, for
non-sampling Dimensions, the path to the file with the data
is required instead. For each Extensional MappingSet, the
Catalog records its name, a reference to eachDimension of its
domain and the path to the data file. The name and data type
of each Extensional Mapping is also recorded in the Catalog.
The data of each non-samplingDimension and each Exten-

sional MappingSet is stored in a Parquet file. A Dimension
Parquet file has two columns, one to record the actualDimen-
sion values and another one that records an automatically
generated reference of a long integer type. This reference col-
umn is used to enable late materialization [28] of Dimension
values, as it will become clear later.

Regarding Extensional MappingSet data, the relevant Par-
quet file contains one column of the appropriate data type per
Extensional Mapping plus an additional reference column.
Each different value of the reference column is actually ref-
erencing a combination of values of the Dimensions of the
Extensional MappingSet domain. More precisely, if D1 ×

D2,× . . .× Dn is the domain of an Extensional MappingSet
MS, then a reference RMS inside the Extensional MappingSet
MS may be obtained from the references RDi inside each
specific Dimension Di and vice-versa as follows.

RMS =
∑
i

RDi ∗∏
j>i

size(Dj)


RDi =

⌊
RMS mod

∏
j≥i size(Dj)∏

k>i size(Dk )

⌋
Due to the above, combinations of the domain for which

all the Extensional Mappings are undefined do not need
to be recorded and late materialization [28] of Extensional
Mappings is still enabled.

The compression techniques and appropriate encoding sys-
tems enabled by the Parquet storage format provides a drastic
reduction of the storage payload. Besides, the use of fixed
precision parametric spatial data types enables also the opti-
mization of the storage for vector geometries, since integer
values of appropriate sizes may now be used to store the
coordinates, contrary to the double precision real values used
by other approaches.

2) IN-MEMORY STRUCTURES
An appropriate structure, composed of data and meta-
data (header) areas, has been defined to record Dimen-
sions and Extensional MappingSets in main memory. The
header includes metadata such as name, size and data type.
A boolean attribute IsStored is recorded in the header to iden-
tify whether the Dimension has been obtained form disk or
generated in memory as a result of some operation. Attribute
StorageName references the name of the Dimension stored

FIGURE 3. Illustration of in-memory Dimension structures.

FIGURE 4. Illustration of in-memory Extensional MappingSet structures.

in the Catalog. A boolean attribute IsMaterialized is used to
identify Dimensions materialized in main memory. Dimen-
sions are materialized only when their specific values are
needed for some computations [28]. Notice that the refer-
ences of aDimensionmay be generated inmemory, as soon as
they are required, from its size. The references and values of
a Dimension are recorded in memory in a Spark Dataframe.
Fig. 3 shows the header and DataFrame of three Dimensions,
a materialized stored Dimension, a non-materialized stored
Dimension, and a materialized non stored Dimension. Notice
that a non materialized non stored Dimension has no sense.

Fig. 4 illustrates the in-memory metadata and data struc-
tures of the Municipality Extensional MappingsSet of Fig. 1.
The header records metadata of both Dimensions and Exten-
sional Mappings. Dimension metadata is the same to that
recorded for isolated Dimensions, which was explained
above. Regarding Extensional Mappings, the name and data
type is recorded in the header. Besides, the expression
that was used to compute the Extensional Mapping is also
recorded, to avoid duplicate computations during query eval-
uation. If a new Extensional Mapping has to be computed

VOLUME 10, 2022 29411



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

with an expression that is already in the header, the computa-
tion is avoided and the new name is simply added to the list of
names of the Extensional Mapping. Finally, the list of Dimen-
sions of the Extensional MappingSet domain from which the
Extensional Mapping is directly dependent is also referenced.
Notice that some computed Extensional Mappings might not
depend on the whole domain, and this information is very
useful during the evaluation of the AggMapping operation,
as it will be explained in the following subsection.

The data of each Dimension and Extensional Mapping of
a given Extensional MappingSet is recorded in-memory in
a Spark Dataframe. As in the case of isolated Dimensions,
each Dimension of the domain may need two Dataframe
columns, one to record the values and another one to record
references. In the case of Extensional Mappings, one column
is always needed to record the values, but additionally, if those
values reference values already recorded in some Dimension
then additional reference columns may also be recorded.
The fact that one or various Dimensions are referenced by
a specific Extensional Mapping must also be recorded in the
header, to enable the interpretation of the relevant Dataframe
columns.

B. OPERATIONS IMPLEMENTATION
Spark Dataframe operations are used to implement those
operations defined in Subsection III-C. Implementation
details are given below.

1) DIMENSION OPERATIONS
• ScanDimension[name]. Accesses the Catalog to locate
the stored metadata for the Dimension called name
and generates the references column in the in-memory
structure, using the Dimension size and Spark operation
Range.

• SamplingDimension[name](K1,K2). Generates an in-
memory (non stored) materialized 2D Sampling, called
name, from the values of K1 and K2. The coordinates
of the 2D Sampling Point2D elements are generated by
combining Spark operations Range and Join (equivalent
to a Cartesian Product when called with no conditions),
before they are recorded in the column of the relevant
Point2D Spark UDT.

• Union(D1,D2). Always returns a materialized non stor-
ed Dimension. If at least one of the input Dimen-
sions is a 2D Sampling, then the result 2D Sampling
is computed from the minimum and maximum val-
ues of coordinates of elements recorded in those input
Dimensions. Different scenarios for the evaluation of
this operation with involved 2D Samplings are shown
in Fig. 5. If both Dimensions are non-sampling, then the
operation is implemented using the operations UnionAll
and DropDuplicates of Spark Dataframes. Fig. 6 illus-
trates this operation between two non sampling spatial
Dimensions.

• Intersection(D1,D2). Again, it always returns a materi-
alized non-storedDimension. If any of theDimensions is

FIGURE 5. Examples of operation Union with sampling Dimensions.

FIGURE 6. Examples of operation Union with non sampling Dimensions.

non-sampling, then the operation is implemented using
Dataframe operation Intersect. These cases are illus-
trated in Fig. 7. On the other hand, if both Dimen-
sions are 2D Samplings, the bounds of the result are
directly computed from the input bounds and next
the result 2D Sampling is generated as in operation
SamplingDimension. This case is illustrated in Fig. 8.

• ProjectDimension[s][c](MS). This operation generates
a non stored Dimension. To implemented it, first the
Filter Dataframe operator is applied to the Dataframe of
MS to evaluate condition c and discard relevant tuples.
Next, Dataframe operation Select is used to project on
the desired columns, referenced by s, and finally oper-
ation DropDuplicates is executed to eliminate dupli-
cates from the result. Notice that duplicates have to
be eliminated regardless of whether the Dimension is
materialized or not.

2) EXTENSIONAL MappingSets OPERATIONS
• Product[name](D1 . . .Dn). The Cartesian Product of
the input Dimensions is generated using the Dataframe
Join operation.

• Product(MS,D). Again, the Dataframe operation Join
is used to perform the Cartesian product between the
Dataframes ofMS and D.

• ProjectMappingSet[s1, . . . , sn](MS). Dataframe opera-
tion Select is here used to project from the input
MS Dataframe the columns referenced by parame-
ters si. Given that Extensional Mappings are always
materialized, non-materialized Dimensions referenced

29412 VOLUME 10, 2022



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

FIGURE 7. Examples of operation Intersection with non sampling
Dimensions.

FIGURE 8. Examples of operation Intersection with sampling Dimensions.

by si must be materialized before applying the operator
Select.

• IMappings[m1,m2, . . . ,mn](MS). Firstly, one SQL-like
expression is generated for each mi. Then, DataFrame
operator SelectExpr can be used to evaluate them and
generate one new column per intensional mapping
expression. Notice that primitive mappings must be
available as Spark User Defined Functions (UDFs) in
order to be called by operator SelectExpr.

• EMapping[m](MS1,MS2). Remember that input param-
eter m is an expression of the form

M = em(s1, · · · , sm),

where em references an Extensional Mapping of MS2,
and each si is the name of either a Dimension or an
Extensional Mapping of MS1. If D1, . . . ,Dm are the
Dimensions of the domain of MS2, the evaluation of
em is performed with an equi-join operation between
MS1 andMS2 where each column of references of each
Di inMS2 is equal to a relevant column of references of
si in MS1. Such reference columns of MS1 have to be
obtained from each Dimension Di before the equi-join
is performed.

• KMapping[name](MS,K ). A new column containing
the same value in all rows is generated from K and
passed as parameter to the Dataframe operatorWithCol-
umn to be added to the DataFrame ofMS.

• AggMapping[gb][ob][c][ag1, ag2, . . . , agn](MS). Impl-
ementation of this method is as follows. First, the

DataFrame operation Filter is applied to MS to dis-
card element for which condition c do not hold. Next,
DataFrame operation Select is used to drop from MS
those Dimensions not referenced in input argument gb
and thoseExtensionalMappingswhose domain contains
Dimensions not present in input argument gb (except
those referenced by aggregated mappings). Notice that
non-materialized Dimensions referenced by aggregated
mappings must be materialized. Then, the DataFrame
operatorGroupBy prepares the DataFrame ofMS for the
subsequent application of relevant aggregate mappings
by using DataFrame operator Agg. Appropriate aggre-
gate mappings, implemented as UDFs, are used by this
operator. Aggregate mappings that require an order by
specification like rank are not supported yet.

V. VECTOR-RASTER SPATIAL JOIN OPTIMIZATION
The evaluation of Cartesian Products in Extensional Map-
pingSet operation Product, involving either Dimension ref-
erence columns or raster points, makes the implementation
described in the previous Section highly inefficient. However,
the optimization of the data structures, with the incorpo-
ration of compact representations for reference ranges and
raster geometries, enables the implementation of vector-raster
spatial join efficiently, by avoiding the theta-joins that must
be used in other approaches. This optimization is illustrated
below with the help of the query example introduced in
Subsection III-C.
It is first noticed that, actually, steps [1-5] of the example

are performing a spatial join with spatial predicate Contains
between municipality polygons and topo raster elements.
In step (1), Dimension MunCode is scanned and therefore,
a Dataframe with as many references as the size of the
Dimension is generated (314 elements in this example). It is
obvious that, those references are not needed until they are
used to evaluate some Extensional Mapping of Extensional
MappingSet Municipality (This will be done in step (4)).
Therefore, the set of references could be replaced in the
mean time by a compact range representation, composed of
a couple of integers. The Dataframe recording such com-
pact representation of references for Dimension MunCode is
shown in Fig. 9 (a). The same optimization is applied also
to the ScanDimension of step (2), whose compact result for
Dimension Loc12m is depicted in Fig. 9 (b).
Operation Product in step (3) was very costly before the

above described optimization, and it can now be applied
without any problem, since each Dataframe contains just one
row. The result Dataframe forExtensionalMappingSetMS1 is
depicted in Fig. 9 (c), and as it may be observed in the figure,
it maintains the compact range representation for Dimension
references.
In step (4), the Geo Extensional Mapping of Municipality

has to be evaluated for each MunCode of MS1. To be able to
perform this evaluation with operation EMapping, references
are needed for MunCode. To obtain those references this
operation must unnest the compact range representation of

VOLUME 10, 2022 29413



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

FIGURE 9. Illustration of optimized intermediate structures.

FIGURE 10. Rectangles of the optimized SpatialJoin operator.

the references. Next, those referencesmay be used to generate
references for Extensional MappingSet Municipality, which
will be used in an equi-join operation to attach theGeo Exten-
sional Mapping to the Dataframe ofMS2. Such a Dataframe,
with the unnested references column for Muncode and the
Geo column is depicted in Fig. 9 (d).
The Intensional Mapping Contains that has to be evalu-

ated by operation IMapping in step (5) needs materialized
Municipality polygons and raster points. Municipality poly-
gons were already obtained in the previous step, however,
raster points are still not available in the input Dataframe.
To minimize the number of rows generated by this operation,
Contains has to be optimized to be applied between polygons

FIGURE 11. Combustion model MBRs.

and raster geometries (rectangles). To achieve this, each raster
element in the Dataframe is decomposed in rectangles using
the minimum bounding rectangle of each Municipality poly-
gon. This rectangle decomposition, which is based on the
regular decomposition of space followed by Quadtrees and
z-curves is illustrated in Fig. 10. The decomposition process
stops when one of the following condition holds: 1) the
rectangle is inside the polygon, 2) the rectangle is outside
the polygon, and 3) the rectangle size reaches the raster
resolution. The rectangles that are inside the relevant polygon
will have a True value in the new Extensional Mapping c.
The Dataframe of the result Extensional MappingSet, which
contains raster rectangles and c boolean values is depicted in
Fig. 9 (e).
It is noticed that the data recorded in the Dataframe of

Extensional MappingSet MS3 of Fig. 9 (e) contains actually
the spatial join between the raster points and the vector
polygons, although raster points are represented in a compact
format in the form of rectangles. It is also notice that up to
this point, there system did not executed any costly Cartesian
Product or theta-Join operation, and of course it did not
needed any spatial indexed nested-loop join algorithm, which
is the one commonly used in other approaches.

Finally, although the spatial join has already been per-
formed, it is useless if the elevation data is not obtained
from disk. This is done in step (6), where Extensional Map-
ping Evaluation has to be evaluated for each raster point of
Loc12M in MS3. Given that only points with c value True
are used by the AggMapping operation in step (7), a last
optimization consists in only obtaining from disk elevations
for those points. To achieve this, first the rows with C =
True must be unnested to generate all the required Loc12m
references. Those references are used in a subsequent equi-
join operation to obtain the required elevation data from disk.

29414 VOLUME 10, 2022



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

FIGURE 12. Spatial join runtime in a 40-executor cluster. (a) GeoSpark and Stark dataload results. (b) SpatialSpark and LocationSpark dataload results.
(c) MapalSpark dataload results.

FIGURE 13. Spatial join scalability for a spatial resolution of 50 m. (a) GeoSpark and Stark scalability results. (b) SpatialSpark and LocationSpark
scalability results. (c) MapalSpark scalability results.

The performance of this optimized set of operations is
compared in the next section with the spatial join between
municipality polygons and raster points that is supported by
most of the available Spark-based spatial large scale analysis
systems.

VI. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
This section provides an in-depth comparison between sev-
eral state of the art solutions and the solution proposed in
this work. In order to test the above-mentioned optimiza-
tions, the algorithm introduced in Subsection III-C has been
implemented to obtain the mean elevation (raster data) in
different regions (vector data) of Galicia. Since the number
of municipalities in Galicia is not large, regions with different
combustion properties have been used. Thus, the data analysis
to be performed is ‘‘Obtain the mean elevation of every
combustion region in Galicia’’.

To best of the author’s knowledge, no standard benchmark
has been developed to compare vector-raster data analysis
operations or systems. Therefore, a number of experiments
have been defined to provide a fair comparison between the
available systems and the system developed in this work.

All the experiments were conducted on a Big Data cluster
consisting of 16 nodes. Each node has the following features:
2 x CPU 2.2GHz, 384 GB RAM 2400MT/s and 32 TB HDD
6Gbps. Spark applications were deployed in cluster mode.
The resource manager was YARN. Two different versions of
Spark, 1.6 and 2.2, were used.

TABLE 1. Spatial resolution and number of points of raster datasets.

For these experiments, elevation data at different spatial
resolutions are used as input raster data, whereas a com-
bustion model dataset is used as input vector polygon data.
Spatial resolutions (in meters) of raster datasets and relevant
size (number of points) are shown in Table 1. Polygon dataset
contains 11057 polygons, with an average of 175 points
in the boundary of each polygon. Both elevation dataset
and Combustion Model dataset are publicly accessible in
the databases of the National Geographic Institute of Spain
(https://www.ign.es/web/ign/portal/inicio).

To ensure a fair comparison between the different dis-
tributed spatial data processing frameworks, the input dataset
has been pre-processed. Since some existing frameworks do
not support columns of non-spatial data types, additional
input columns storing non spatial values (e.g., elevation val-
ues column) have not been included in the analysis tasks
for the remainder solutions, only for the solution proposed
in the present paper. Furthermore, since LocationSpark only
enables spatial processing of rectangular polygons, each
input polygon has been replaced by its Minimum Bounding

VOLUME 10, 2022 29415



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

FIGURE 14. Shuffle read cost and peak execution memory consumption.

Rectangle (MBR). Fig 11 shows theMBR dataset used in this
experiment. Additionally, since the rest of existing solutions
do not provide integrated raster-polygon data analysis, loca-
tion points within the elevation raster are translated to a set
of 2D points for each tested solution.

To test the performance of each solution for different work-
loads, the Spatial Join operation has been executed between
the combustionmodelMBRs and the raster datasets shown in
Table 1. All frameworks were tested with the following Spark
configuration:

• master : yarn
• deploy-mode: cluster

• driver-memory: 8G
• executor-memory: 8G

B. PERFORMANCE COMPARISON
The most relevant distributed spatial processing systems in
the state of art developed on top of Spark (i.e., GeoSpark [10],
LocationSpark [13], SpatialSpark [11] and Stark [16]) have
been selected to be compared against the proposed solution.

Fig. 12 shows the execution times of each solu-
tion for the spatial join between the polygon dataset
and the elevation raster at different spatial resolutions
(12m - 400m). A 40-executors configuration has been used

29416 VOLUME 10, 2022



S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

in this experiment. GeoSpark and Stark, Fig. 12 (a), showed
the slowest performance. For a proper chart representa-
tion, the execution time of Stark for a spatial resolution of
12 meters (7484 s) has not been depicted. LocationSpark and
SpatialSpark, Fig. 12 (b), showed a similar behavior. Spa-
tialSpark suffered a Java Heap Memory Overflow at a spatial
resolution of 12 meters. Both SpatialSpark and Location-
Spark performedmore that 4 times faster than Stark for spatial
resolutions below 50 meters. The proposed solution, named
MapalSpark in the figures, showed the fastest performance,
Fig. 12 (c). For a spatial resolution of 12 meters, MapalSpark
performed more than one order of magnitude faster than
LocationSpark, and more than 2 orders of magnitude faster
than Stark.

In addition to the test for different data loads, a scalability
test was also performed. For this test a spatial resolution
of 50 meters was selected. Scalability behavior of tested
solutions for cluster configurations with different number of
nodes are plotted in Fig. 13. Although showing the slowest
behavior again Stark, Fig. 13 (a), has a good scalability
performance from 2 to 16 executors. Then, execution times
remain constant. GeoSpark showed similar execution times
to Stark but its scalability behavior is much worse. Again,
LocationSpark and SpatialSpark, Fig. 13 (b), showed similar
execution times. Regarding scalability behavior, SpatialSpark
is better than LocationSpark from 2 to 16 executors. Then
SpatialSpark remains almost constant but LocationSpark
keeps improving until 40 executors. MapalSpark execution
times are the fastest again, Fig. 13 (c). Scalability behavior
of MapalSpark is very good from 2 to 48 executors. Then,
it remains also constant.

Additional performance parameters have been studied.
Shuffle Read Cost provides information about the amount
of data read by executors at the beginning of a Spark stage.
Fig. 14 (a) depicts the shuffle read costs of tested solutions for
the scalability experiment. Notice that we found that shuffle
read costs are equal to shuffle write costs for all solutions,
contrary to what is shown in [25], where shuffle read costs
showed to be bigger than shuffle read costs for SpatialSpark.
As expected, shuffle read cost remained constant regardless
the number of executors because the data load also remained
constant (spatial resolution of 50 meters has been fixed).
The best solution is Stark, it showed no shuffle costs at all.
LocationSpark and MapalSpark showed a similar behavior
with a cost about 500MB. SpatialSpark and GeoSpark also
showed a similar behavior with a cost near to 2500MB.
Fig. 14 (b) shows the shuffle read costs for the data load
experiment. The best behavior was showed by LocationSpark
with less than the half of the cost of MapalSpark for a spatial
resolution of 12 meters.

The Peak Execution Memory is the maximum memory
consumption in any stage during the execution. It was already
shown in [25], that the best peak execution memory of the
remainder solutions is obtained by LocationSpark, much
far better than other solutions. Thus, Fig. 14 (c) shows the
comparison between LocationSpark and MapalSpark for the

scalability experiment. Peak execution memory remains con-
stant in both solutions. In this case, Mapalspark shows a
better behavior. For the data load experiment, Fig. 14 (d),
LocationSpark showed a better behavior for spatial resolu-
tions of 200 and 100 meters. As spatial resolution increases,
LocationSpark performance decreases whereas MapalSpark
shows a better support for high data loads.

VII. CONCLUSION
In this paper it is shown how the use of an integrated data
model for vector and raster spatial data enables the implemen-
tation of large scale vector-raster spatial analysis systems that
outperform the state of the art by more than an order of mag-
nitude. In particular, a naive implementation of the model on
top of a combination of Apache Parquet with Apache Spark
is described. Next, it is shown how an optimization strategy
based on compact range representation for data references
and raster points enables achieving the performance results
reported above. Performance comparison is done through
experiments with different configuration for both the spatial
resolution of the raster dataset and the number of nodes of the
cluster. Beyond the impressive response times, the proposed
solution shows also good behavior in shuffle read and write
cost and in peak memory consumption, being competitive
in general with the best current solutions. Future work is
mainly related to the completion of a prototype system that
combines the proposed optimizations with spatial partition
and indexing techniques, achieve efficient implementations
of other operators such as range queries, joins with different
predicates, and kNN queries.

REFERENCES
[1] R. O. Obe and L. S. Hsu, PostGIS Action, 2nd ed. Greenwich, CT, USA:

Manning Publications Co., 2015.
[2] A. G. Ravi Kothuri and E. Beinat, Pro Oracle Spatial for Oracle Database

11G. Berkeley, CA, USA: Apress, 2007.
[3] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann,

‘‘The multidimensional database system RasDaMan,’’ in Proc. ACM SIG-
MOD Int. Conf. Manage. Data (SIGMOD), New York, NY, USA, 1998,
pp. 575–577, doi: 10.1145/276304.276386.

[4] P. G. Brown, ‘‘Overview of sciDB: Large scale array storage, processing
and analysis,’’ inProc. ACMSIGMOD Int. Conf.Manage. Data, NewYork,
NY, USA, Jun. 2010, pp. 963–968, doi: 10.1145/1807167.1807271.

[5] B. S. A. LaPlante, Architecting Data Lakes: Data Management Architec-
tures for Advanced Business Use Cases. Sebastopol, CA, USA: O’Reilly,
2016.

[6] C. Lam,Hadoop Action. Stamford, CT, USA:Manning Publications, 2010.
[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

‘‘Spark: Cluster computing with working sets,’’ in Proc. 2Nd USENIX
Conf. Hot Topics Cloud Comput., Berkeley, CA, USA, 2010, p. 10.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1863103.1863113

[8] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, ‘‘Hadoop
GIS: A high performance spatial data warehousing system over mapre-
duce,’’ Proc. VLDB Endowment, vol. 6, no. 11, pp. 1009–1020, Aug. 2013,
doi: 10.14778/2536222.2536227.

[9] A. Eldawy and M. F. Mokbel, ‘‘SpatialHadoop: A mapreduce framework
for spatial data,’’ in Proc. IEEE 31st Int. Conf. Data Eng., Apr. 2015,
pp. 1352–1363.

[10] J. Yu, J. Wu, and M. Sarwat, ‘‘Geospark: A cluster computing framework
for processing large-scale spatial data,’’ in Proc. 23rd SIGSPATIAL Int.
Conf. Adv. Geographic Inf. Syst., New York, NY, USA, 2015, pp. 701–704,
doi: 10.1145/2820783.2820860.

[11] S. You, J. Zhang, and L. Gruenwald, ‘‘Large-scale spatial join query
processing in Cloud,’’ in 2015 31st IEEE Int. Conf. Data Eng. Workshops,
Apr. 2015, pp. 34–41.

VOLUME 10, 2022 29417

http://dx.doi.org/10.1145/276304.276386
http://dx.doi.org/10.1145/1807167.1807271
http://dx.doi.org/10.14778/2536222.2536227
http://dx.doi.org/10.1145/2820783.2820860


S. Villarroya et al.: Enabling Efficient Distributed Spatial Join on Large Scale Vector-Raster Data Lakes

[12] Magellan: Geospatial Analytics Using Spark. Accessed: Nov. 24, 2018.
[Online]. Available: https://github.com/harsha2010/magellan

[13] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, ‘‘Location-
Spark: A distributed in-memory data management system for big spatial
data,’’ Proc. VLDB Endowment, vol. 9, no. 13, pp. 1565–1568, Sep. 2016,
doi: 10.14778/3007263.3007310.

[14] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, ‘‘Simba: Efficient in-
memory spatial analytics,’’ in Proc. Int. Conf. Manage. Data, Jun. 2016,
pp. 1071–1085, doi: 10.1145/2882903.2915237.

[15] GeoTrellis: A Geographic Data Processing Engine for High Perfor-
mance Applications. Accessed: Nov. 24, 2018. [Online]. Available:
https://geotrellis.io/

[16] S. Hagedorn and T. Räth, ‘‘Efficient spatio-temporal event processing with
STARK,’’ in Proc. 20th Int. Conf. Extending Database Technol. (EDBT),
Venice, Italy, Mar. 2017, pp. 570–573, doi: 10.5441/002/edbt.2017.72.

[17] Apache Parquet. Accessed: Nov. 24, 2018. [Online]. Available:
https://parquet.apache.org/

[18] Information Technology—Database Languages—SQL Multimedia and
Application Packages—Part 3: Spatial, Standard ISO/IEC 13249-3:2011,
International Organization for Standardization (ISO), 2011.

[19] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and
M. L. Kersten, ‘‘MonetDB: Two decades of research in
column-oriented database,’’ IEEE Data Eng. Bull., vol. 35,
no. 1, pp. 40–45, 2012. [Online]. Available: http://dblp.uni-
trier.de/db/journals/debu/debu35.html#IdreosGNMMK12

[20] Mongo DB. Accessed: Nov. 24, 2018. [Online]. Available:
https://www.mongodb.com/

[21] M. Ben Brahim, W. Drira, F. Filali, and N. Hamdi, ‘‘Spatial data extension
for CassandraNoSQLdatabase,’’ J. BigData, vol. 3, no. 1, p. 11, Jun. 2016,
doi: 10.1186/s40537-016-0045-4.

[22] Y. Zhang, M. Kersten, and S. Manegold, ‘‘SciQL: Array data processing
inside an RDBMS,’’ in Proc. Int. Conf. Manage. Data (SIGMOD),
New York, NY, USA, 2013, pp. 1049–1052, doi:
10.1145/2463676.2463684.

[23] S. Villarroya, J. R. R. Viqueira, M. A. Regueiro, J. A. Taboada, and
J. M. Cotos, ‘‘SODA: A framework for spatial observation data analysis,’’
Distrib. Parallel Databases, vol. 34, no. 1, pp. 65–99, Mar. 2016, doi:
10.1007/s10619-014-7165-7.

[24] L. Alarabi and M. F. Mokbel, ‘‘A demonstration of ST-Hadoop:
A MapReduce framework for big spatio-temporal data,’’ Proc.
VLDB Endowment, vol. 10, no. 12, pp. 1961–1964, Aug. 2017, doi:
10.14778/3137765.3137819.

[25] V. Pandey, A. Kipf, T. Neumann, and A. Kemper, ‘‘How good are modern
spatial analytics systems?’’ Proc. VLDB Endowment, vol. 11, no. 11,
pp. 1661–1673, Jul. 2018, doi: 10.14778/3236187.3236213.

[26] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, ‘‘Spark
SQL: Relational data processing in spark,’’ in Proc. 2015 ACM SIGMOD
Int. Conf. Manage. Data, New York, NY, USA, 2015, pp. 1383–1394, doi:
10.1145/2723372.2742797.

[27] P. M. D. Gray, The Functional Approach to Data Management: Modeling,
Analyzing, and Integrating Heterogeneous Data. New York, NY, USA:
Springer-Verlag, 2004.

[28] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R.Madden, ‘‘Materialization
strategies in a column-oriented DBMS,’’ in Proc. IEEE 23rd Int. Conf.
Data Eng., Apr. 2007, pp. 466–475.

SEBASTIÁN VILLARROYA received the B.S. and
M.S. degrees in telecommunication engineering
from the Universidade de Vigo, in 2007, and the
Ph.D. degree in information technologies from the
Universidade de Santiago de Compostela (USC),
in 2018. In 2019, he was a ResearchAssociate with
Jacobs University Bremen, working on the inte-
gration of machine learning algorithms and array
databases. Since 2020, he has been a Research
Associate with the Centro Singular de Investi-

gación en Tecnoloxías Intelixentes (CITIUS), USC. Beyond distributed big
data analysis, sensor data acquisition systems, and big spatial data analytics,
he is focused on the integration of machine learning technologies and raster
database management systems.

JOSÉ R. R. VIQUEIRA received the master’s and
Ph.D. degrees in computer science from the Uni-
versity of A Coruña, in 1998 and 2003, respec-
tively. He is currently an Associate Professor
with the Department of Electronics and Computer
Science, Universidade de Santiago de Compostela
(USC), where he is also a Founding Member
of the Computer Graphics and Data Engineer-
ing (COGRADE) Research Group. He is also a
member of the Research Staff of the Centro Sin-

gular de Investigación en Tecnoloxías Intelixentes (CITIUS). During his
career, he has been a member of three other different research groups of
three different universities, namely the Informatics Laboratory, Agricultural
University of Athens (Chorochronos Research Project), the Databases Lab-
oratory, University of A Coruña, and the Systems Laboratory, USC. He is
the author of numerous publications on different topics related to spatial
and spatio-temporal data management applied to GIS. He is also a Founding
Partner of Enxenio S.L., a spin-off of the University of A Coruña. His current
research interests include the management of very large scientific datasets,
with special emphasis on spatio-temporal and environmental data.

JOSÉ M. COTOS has been a Professor with the
Department of Electronics and Computing, Uni-
versidade de Santiago de Compostela, since 1993,
where he is currently a Research Staff with the
Centro Singular de Investigación en Tecnoloxías
Intelixentes (CITIUS) (http://citius.usc.es). He is
also the Coordinator of the Computer Graphics
and Data Engineering Research Group. He has
participated in more than 20 research projects and
in more than 50 contracts with companies and

institutions, mostly related to the transfer of technology to the business sector.
From 2009 to 2013, he was attached to the presidency of a university network
for technology transfer, RedEmprendia. In addition, he was the Founding
Partner and an Administrator of the spin-off Paralaxe, Multimedia and
Virtual Systems S.L., a spin-off company of the Institute of Technological
Research, University of Santiago de Compostela, that was dedicated to the
development of multimedia and virtual reality computer systems. He is also
involved in the machine learning implementation to industrial processes.

JOSÉ A. TABOADA received the Graduate degree
in electronics from the Faculty of Physics, in 1990,
and the Ph.D. degree in applied physics from the
Universidade de Santiago de Compostela (USC),
Spain, in 1996. He is currently an Associate Pro-
fessor with the Department of Electronics and
Computing, USC, where he is also a member
of the Computer Graphics and Data Engineer-
ing (COGRADE) Research Group. He is also a
member of the Centro Singular de Investigación

en Tecnoloxías Intelixentes (CITIUS), USC. He is the author of numerous
publications and he has been a part of several national and European projects
in the fields of intelligent systems. His research interest includes big data.

29418 VOLUME 10, 2022

http://dx.doi.org/10.14778/3007263.3007310
http://dx.doi.org/10.1145/2882903.2915237
http://dx.doi.org/10.5441/002/edbt.2017.72
http://dx.doi.org/10.1186/s40537-016-0045-4
http://dx.doi.org/10.1145/2463676.2463684
http://dx.doi.org/10.1007/s10619-014-7165-7
http://dx.doi.org/10.14778/3137765.3137819
http://dx.doi.org/10.14778/3236187.3236213
http://dx.doi.org/10.1145/2723372.2742797

