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ABSTRACT This paper aims to present a flexible method for interpreting the Long Short-Term Memory
Recurrent Neural Network (LSTM-RNN) for the relational structure between the roots and the coefficients
of a polynomial. A database is first developed for randomly selected inputs based on the degrees of
the univariate polynomial which is then used to approximate the polynomial roots through the proposed
LSTM-RNNmodel. Furthermore, an adaptive learning optimization algorithm is used specifically to update
the network weights iteratively based on training deep neural networks data. Thus, the method can exploit
the ability to find the individual learning rates for each variable through adaptive learning rate strategies to
effectively prevent the weights from fluctuating in a wide spectrum. Finally, several experimental results
are performed which shows that the proposed LSTM-RNN model can be used as an alternative approach
to compute an approximation of each root for a given polynomial. Furthermore, the results are compared
with the conventional feedforward neural network based artificial neural network model. The results clearly
demonstrate the superiority of the proposed LSTM-RNNmodel for roots approximation in terms of accuracy,
mean square error and faster convergence.

INDEX TERMS Long short-termmemory, recurrent neural network, deep neural network, adaptive moment
estimation algorithm, error cost function.

I. INTRODUCTION
Finding the roots (zeros) of a polynomial is a key prob-
lem in a variety of scientific and technical fields. There
are several traditional iterative methods for determining
the roots of a polynomial, e.g., Newton’s method, Bisec-
tion method, Durand-Kerner (D-K) method and Laguerre’s
method, etc. [1], [2]. However, some common problems asso-
ciated with these conventional methods are: (1) root leaping
may occur, resulting in failure to achieve the desired result,
as well as an inflection point; (2) choosing an estimate that
is close to the root may require several iterations, leading to
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a slow convergence; and (3) the calculation of the first or
second-order derivatives since being computationally inten-
sive and therefore is not always possible.

To overcome the limitations of the conventional
approaches, a two-layer feedforward neural network (FNN),
as one of the neural networks (NN), was proposed to do poly-
nomial factorization with two or even more variables [3], [4].
It is shown that the NN can adequately resolve the computa-
tional problems related to polynomial root searching. Also,
the classical method for backpropagation algorithm (BPA)
used in FNN with, nevertheless, gradient descent shows a
slow convergence [5], [6]; thus, its use in NN computing
is drastically limited. It is found that the BPA needs a lot
of time for convergence unless the initial network synapse

28194 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1398-8129
https://orcid.org/0000-0003-2065-6739
https://orcid.org/0000-0001-7341-8625
https://orcid.org/0000-0001-5617-4198
https://orcid.org/0000-0003-0655-3303
https://orcid.org/0000-0003-2143-2438


M. Bukhsh et al.: Interpretation of LSTM-RNN for Approximating Roots of Polynomials

weights corresponding to the roots are selected properly.
In 1997, Perantonis et al. initiated the use of constrained
learning (CL) methodology to train BP networks and fac-
torize two-dimensional polynomials by incorporating prior
information from problems and the parameters for network
structure learning [7]. In 2001, Huang, based on the 6-5
structured NN [8], [9] proposed an artificial neural network
(ANN) and included a priori information about the connec-
tions between the roots and the coefficients to discover a
particular polynomial real and complex root [10]. In [11],
Freitas and colleagues proposed a FNNbasedANN technique
for approximating roots of a given polynomial. Although the
suggestedANN approach does not surpass the accuracy of the
traditional iterative methods, the results are encouraging and
show the effectiveness of the NN techniques for approximat-
ing the polynomial roots (complex or real). Furthermore, it is
commonly known that by using flexible parallel architectures
in NNs, we may obtain all roots simultaneously and in
parallel, especially when the computations are performed
on a parallel-computing machine. On the other hand, most
nonlinear numerical algorithms can only identify one root
at a time, thus increasing the number of processors will
not speed up the process. As a result, numerical methods
are significantly slower than the NN methods in terms of
speed [10].

In the aforementioned literature survey, although slightly
compromising the accuracy as compared to the traditional
iterative methods which need larger processing time, the NN
techniques show their potential and significance and can be
an alternate way for finding the roots of polynomials with
fewer effort. Therefore, this paper proposes a more advanced
deep neural network (DNN) technique, namely the long
short-term memory recurrent neural network (LSTM-RNN),
for approximating the roots of a univariate polynomial. The
purpose is to tackle the limitation of the conventional NN
techniques such as FNN based NN models which do not
make use of the initial interpretation capacity of NN for
approximating the roots of a given polynomial. Furthermore,
two common drawbacks of FNN based NN are: (1) falling
into local minimum; and (2) the slow convergence makes the
fully connected FNN inefficient to train and tend to overfit the
model [12], [13]. On the other hand, to tackle such problems,
the LSTM-RNN has become a very ardent research topic
over a few years and which was first developed by Hochre-
iter and Schmidhuber in 1997 [14]. Several applications,
such as neural computation and time series forecasting, filter
design, unauthorized broadcasting identification, quality of
transmission estimation etc. [15]–[20], are examples where
the LSTM-RNN models have been successfully applied.

The LSTM-RNN based DNN technique can impose a con-
fined relationship between the roots and the coefficients of
a given polynomial. Also, the methodology can effectively
train and validate the NN model. Similarly, how the datasets
of coefficients and the roots of a given nth order polynomial
can be generated and then the roots are approximately validat-
ing through the LSTM-RNN model are the research focus of

this paper. LSTM-RNN structure mainly depends on layers,
which consist of a set of recurrently connected blocks, known
as memory blocks. These blocks can be called as a differ-
entiable model, each one containing one or more recurrently
connectedmemory cells and threemultiplicative units: (1) the
input gate; (2) the output gate; and (3) the forget gate. The
particular gates provide the cells with continuous analogs of
writing, reading and resetting operations. In addition, an error
cost function is coupled with a constrained condition to alle-
viate the weight fluctuations in a wide range [21]. Besides,
momentum is added to the learning algorithm to speed up the
convergence [22].

The following is the organization of the rest of the paper.
Section 2 presents the fundamental concept of univariate
polynomial roots, discusses the LSTM-RNNmodel including
the error cost function, and describes the optimizer based
on the adaptive moment estimation (ADAM) algorithm and
parameter learning. Section 3 shows the numerically exper-
imental results with the discussions. Finally, Section 4 sets
out several concluding remarks and directions for the future
research.

II. METHODOLGY
A. nth-ORDER ARBITRARY POLYNOMIAL
The main focus of this study is to compute approximations of
the roots of an nth degree univariate polynomial based on its
coefficients ai(i = 1, 2, . . . , n). Hence, without loss of gen-
erality, four cases of n = 5, 10, 15 and 20 are considered in
this study. A given nth-order polynomial f (z) can be described
as [6]:

f (z) = a0zn + a1zn−1 + a2zn−2 + . . . .an−1z+ an

=

n∑
k=0

an−kzk (1)

where n ≥ 2, a0 6= 0 and is usually taken to be 1. Suppose
that there exist n approximate real or complex roots of f (z).
Then (1) can be factorized as,

f (z) = a0zn + a1zn−1 + a2zn−2 + . . . .an−1z+ an

≈

n∏
i=1

(z− wi) (2)

where wi = (i = 1, 2, .., n) is the ith real or complex root
of f (z).

The following section will discuss the interpretation of the
LSTM-RNN model for obtaining the approximate roots wi
for the nth order polynomial f (z) = 0 with real coefficients.

B. LSTM-RNN NETWORK
1) THE FUNDAMENTAL CONCEPTS BEHIND LSTM-RNN
In many applications, deep learning has received significant
attention because it performs well in comparison with other
NN techniques. The reason is that it can avoid gradient
vanishing problem in the deep network. In fact, RNN finds
a similar problem that it recognizes conditions only in a
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FIGURE 1. Block diagram of the LSTM model with ut as the current and
ut−1 the previous observations.

relatively short period, i.e., if we need the data after a short
period, it may be reproducible; but once a lot of suppositions
are weighted, somewhere the data get lost. A popular way for
solving such issues is to use a particular sort of RNN, i.e., the
LSTM-RNN [14].

Over several time steps, the LSTM retains a significant
gradient. This means that the extended sequences can be used
to train the network. In RNNs, an LSTM unit is made up
of four major components: a memory cell and three logistic
gates. The memory cell is in charge of storing data. The data
flow inside the LSTM network is defined by the write, read,
and forget gates. Similarly, the write gate manages writing
data into the memory cell, whereas the read gate controls
reading data from the memory cell and returning it to the
recurrent network. The forget gate decides whether to keep
or erase data from the information cell, or in the other words,
how much old data to forget.

In short, these gates are the LSTM operations that per-
form some function on a linear combination of the network’s
inputs, hidden state, and prior output. In addition, LSTM is
observed to be more efficient in sequence prediction than
other deep learning NN. Hence, the objective of the proposed
network is to interpret the roots which will factorize the poly-
nomial into more sub-factors and then use these factors for
concurrent execution in the hidden layer of the network. The
key element of the LSTM-RNN is the state of cells; the state
is identical to a conveyor belt with only a few insignificant
linear interactions. It runs straight down to the entire hub
and is very convenient for the data to move relatively and
produce an active effect on response across it. The LSTM-
RNN can eliminate or add information, strictly regulated by
its specific gates, which are an alternative way to maintain the
data respectively.

2) LSTM-RNN MODEL STRUCTURE
For a nth order polynomial, a multi-layered LSTM-RNN con-
taining hidden layers is designed to approximate the roots of
the given polynomial. Similar to RNN, the hyper-parameters
of the LSTM-RNN model are fitted by back propagation

through time (BPTT). Hyper-parameters for our network
model include the right number of layers in which training,
evaluating and learning rate are the most essential and obvi-
ous ones.We design our model structure with multiple hidden
layers through a network. The first hidden layer is the LSTM-
RNN layer with 200 neurons and the second layer is the fully
connected dense layer with 100 nodes. The block diagram
of the LSTM-RNN structure is shown in Fig.1. Besides, the
hyperbolic tangent sigmoid (tansig) is used as an activation
function for learning parameters [23], which also calculates
faster and is less prone to saturation ∼0 gradients for the
network.

The input layer is fed by a vector of coefficients of a
polynomial and the output layer gives the predicted roots
of a given input polynomial. Additionally, limitation in the
proposed model is to meet the computational efficiency with
dropout rates between many layers. Although, to avoid the
model overfitting factor which is tackled by increasing the
LSTM layers. Furthermore, supplementary hidden layers
are added during simulations while keeping certain learning
parameters unchanged.

A test dataset can be used in a confirmatory way to ver-
ify that a given set of input to a given function produces
some expected results. The training over multiple epochs
completely passes through the datasets for evaluating the test
datasets performance at each epoch to determine when to
stop.

FIGURE 2. Flow chart of LSTM-RNN.

Therefore, in general, the LSTM stacking layers can
improve the efficiency and estimation of the network model.
Furthermore, an ADAM [24]–[26] optimizer based on
RMSProp [27] and momentum as an update controller is used
to improve the learning process. Finally, to normalize the
results with better prediction and performance, mean square
error (MSE) and mean absolute error (MAE) [28], [29] are
used with an identity regression value of 0.001 and a decay
rate of 1 × 10−8.

In mathematical terminology, the output of the ith

hidden neuron in the network is compiled as ûi =

z − wi.1 = z − wi where wi(i = 1, 2, . . . .., n), the network
weights of the function-to-hidden layer, i.e., the roots of the
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polynomial, are to be predicted. The output of the LSTM-
RNN performing multiplication with the hidden layer can be
characterized as:

ŷ(z) =
n∏
i=1

µ̂i=
n∏
i=1

(z− wi) (3)

The output ŷ(z) of the network is the externally supervised
learning which allows to collect data or produce a data output
from the previous experience signals. In addition, if (3) is ren-
dered after an absolute operation, the following logarithmic
transformation can be extracted:

ȳ = ln |ȳ(z)| =
n∑
i=1

ln |(z− wi)| (4)

whereas, ‘z’ belongs to the given output polynomial.

3) LSTM-RNN ERROR COST FUNCTION
The proposed network model efficiency will be validated by a
lower error cost function (ECF) value, which signifies appro-
priate experimental data prediction. The ECF is therefore
executed as a parameter in the training phase to measure the
efficiency of the LSTM-RNN network architecture to further
calculate the network output for higher degree polynomials.
Thus, the ECF can be defined as:

E(wi) =
1
2N

N∑
t=1

e2N (wi) (5)

E(wi) =
1
2N

N∑
t=1

(ut+i − yN )2 (6)

Similarly, wi(i = 1, 2, . . . .., n) is the set of all the neural
network weights as for the resurrection of coefficients with
polynomial roots, which is homologous to the network fac-
torization model. Correspondingly, yN is the predicted output
value, ut+1 is the actual targeted value, N is the training
pattern respectively. In addition, the hidden neurons compute
linear divergences and transform into nonlinear hidden neu-
rons with a logarithmic activation function, while the output
neuron computes linear summation rather than multiplica-
tion. This logarithmically triggered design is compared to the∑
−
∏

architecture described in [8], [9]. Therefore, we need

to evaluate the yN =
n∑
i=1

ln |zN − wi| as a target signal and

ut+i = ln |f (zN )| as a network actual output in the LSTM-
RNN model, which can be defined as:

ut+i
actualvector

= f (ut , ut−1, . . . ut−n+1)
network model

+ ε
irreducible error

(7)

where (u1, u2, u3 . . . ut+i) with i = 1, 2, . . . , n is a series of
the actual vector information in the model. Also, ε shows an
irreducible error such that the data from the previous output
n-time steps are used to calculate the next predicted output
vector yN . In addition, the actual vector (u1, u2, u3 . . . ut+i)
represents an input matrix [(t − n + 1)∗n] and output vector

[(t − n+ 1)∗1] given below:


ut ut−1 . . . ut−n+1
ut−1 ut−2 . . . ut−n
...

...
...

un un−1 . . . u1


 (8)

where

yN =




ut+i
ut+i−1
...

un+i


 (9)

Moreover, without loss of generality, the ECF objective func-
tion L(ut , θ) can be defined as:

ECF = L (ut , θ) = min
i∑
t

1
2
(ut+i − yN )2 (10)

where θ depends on all the weights across the input
and hidden layers with biases ignored, and is defined as
θ =

{
wxo,wxi,wxf ,wxc,wuo,wui,wuf ,wuc

}
. In order to

get an improved understanding of the analysis, (10) can be
re-written as

L (t) =
1
2
(ut+i − yN )2 (11)

4) LSTM-RNN WITH ADAM GRADIENT EVALUATION
In this section, detailed information on how to drive gradi-
ent through ADAM optimizer in the LSTM-RNN model is
discussed. ADAM is an algorithm for gradient based first-
order optimization of probabilistic objective functions based
on lower-order adaptive estimation. The approach is intuitive
to implement, computationally efficient, with low memory
needs, invariant to diagonal gradient resizing and problems
that are large in terms of data and/or parameters. Hence,
ADAM is based on both Momentum and RMSProp’s infinity
heuristics. A general implementation of ADAM optimizer is
mentioned in [24]–[27]. ADAMoptimizer in the LSTM-RNN
model is embedded with a connection between weights and
polynomial coefficients which involves a combination of
two gradient descent methodologies. Besides, the momen-
tum parameter operates to accelerate the gradient descent
algorithm by taking exponentially weighted average of the
gradients to train the polynomial roots. As shown in Fig. 3,
the LSTM-RNN depends on the memory cell ct has the same
inputs (ut+1 and ut ) and outputs yN , and have more gating
units to control the flow of information. Therefore, at the time
step t, we can take a partial derivative w.r.t ct for updating the
gradient as:

∂L (t)
∂ct

=
∂L (t)
∂ut

∂ut
∂ct

(12)

Similarly, at time step t−1, the derivative L(t−1) w.r.t. ct−1
can be written as:

∂L (t − 1)
∂ct−1

=
∂L (t − 1)
∂ut−1

∂ut−1
∂ct−1

(13)
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Fig. 3, shown below, describes the unfolds memory unit
of the LSTM to make it easy to understand, because the
LSTM-RNN model is fitted by BPTT. However, according
to Fig. 3, the error is not only backpropagated via L(t − 1)
but also from ct . Thus, the final gradient w.r.t. ct−1 is defined
as [30]
∂L (t − 1)
∂ct−1

=
∂L (t − 1)

∂ct

∂ct
∂ct−1

+
∂L (t)
∂ut

∂ut
∂ct

∂ct
∂ct−1

(14)

From ct−1 to ct only elementwise multiplication by func-
tion ft , then by chain rule, (15) can be written as:

dct−1 = dct + ft ◦ dct (15)

In a similar manner, (15) can be derived at any time step.

C. EVALUATION CRITERION
According to empirical results, the ADAM optimizer per-
forms proficiently as compared to other stochastic opti-
mization methods [31]. The well-known Mean Squared
Error (MSE) and Mean Absolute Error (MAE) functions are
applied to evaluate the model error that analyzes the theoret-
ical convergence properties of the network [28], [29]. If the
change of the function value becomes extremely small, it does
not contribute to the learning process. As a consequence,
the convergence rate has a regret constraint comparable to
the best-known results in the convex optimization domain.
Finally, to evaluate the LSTM-RNN model efficiency, the
following MSE and MAE functions are as follows:

MSE =
1
n

n∑
i=1

(
yN −

∧
yN
)2

(16)

MAE =
1
n

n∑
i=1

∣∣∣(yN − ∧yN)∣∣∣ (17)

where yN denotes the actual ith root (i = 1, 2, . . . , n) in
the test dataset, and ŷN is the corresponding approximation
obtained with the proposed LSTM-RNN approach.

D. DATA SET NORMALIZATION WITH GENERATION
Normalization is the process of restructuring data into a
network that satisfies two basic requirements: (1) there is
no data redundancy; and (2) data dependencies are logi-
cal (all related data objects are stored together). Therefore,
in this study, datasets are scaled in the range [−1, 1] to
improve the training algorithm convergence characteristics.
Using MATLAB, we generate datasets of polynomial coeffi-
cients against the corresponding degree n by randomly choos-
ing (uniformly distributed random numbers) with 10,000
examples in each degree. Hence, for n = 5, 10, 15 and
20 degree polynomials, the generated datasets are 50000,
100000, 150000 and 200000 respectively. Meanwhile, from
the coefficient datasets, the exact (real or complex) roots
are calculated using a symbolic computation package. Thus,
the LSTM-RNN does not know a priori which roots are
real or complex. It is important to note here that double-
precision values are used to generate these datasets although

coefficients and roots are takenwith only four decimal places.
Hence, the coefficient datasets of a particular polynomial
degree n are used as an input with the polynomial roots as
an output, which is then processed by the LSTM-RNNmodel
to produce an approximation of the roots of a real n degree
polynomial.

Tables 1 and 2, respectively show the head of the datasets
that are used with the LSTM-RNN to train and compute
approximations of the roots (real and complex) for n = 5 as
an example. The real and complex parts of the corresponding
roots are represented in Table 2 by the odd and even columns,
respectively, i.e.:

wi = {Re(wi), Im(wi)}, i = 1, . . . ., n (18)

Furthermore, in this study, 80% of our datasets are for the
training set, while the 20% remaining datasets are to test and
validate the model. The head of datasets for polynomial of
degrees 10, 15 and 20 is not tabulated due to large number of
data values and hence only the simulation results are shown.

TABLE 1. Head of the input datasets for training the LSTM-RNN (n = 5)
for computing roots.

FIGURE 3. Unfolds memory unit of LSTM.

III. RESULTS AND DISCUSSION
In this section, the obtained datasets and approximate roots
based on the proposed network methodology are discussed.
The proposed technique has been tested in the following
way: the datasets are first generated using MATLAB pro-
gramming. Then the confusion matrix approximations [32]
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TABLE 2. Head of the output datasets for training the LSTM-RNN (n = 5) for computing roots.

TABLE 3. Estimated datasets generation accuracy for different polynomial degrees.

FIGURE 4. (a) Generated datasets validation using confusion matrix for n = 5 (b) Percentage datasets accuracy.

remain used to verify the effectiveness of the generated
datasets. Finally, the LSTM-RNN model is tested and val-
idated using python tool for computing roots of a given
polynomial degree n. In this study, simulations have
been performed using Intel core i-7 with a CPU clock
of 1.8Ghz and 8 Gb RAM for f(z) with n = 5, 10, 15
and 20 respectively.

A. MATLAB SIMULATION ANALYSIS
Figure 4 shows the confusion matrix based on the
datasets for n = 5. The confusion matrix is devel-
oped using the MATLAB classifier learner. The matrix
can help us identify the areas where the classifier model
has performed poorly. Fig. 4(a) shows the percentage

datasets accuracy for the polynomial coefficients for
n =5 only. However, the observations are similar for other
degrees.

The rows represent the true class, and the columns show
the predicted class with the diagonal percentage values dis-
playing the best approximation and accuracy of the datasets
as shown in Fig. 4(b). In this case, the percentage accuracy for
the polynomial with n = 5 is found to be 99.4%. Similarly,
Fig. 5 shows the analysis for n = 10with the percentage accu-
racy being 99.2%. Correspondingly, the percentage accuracy
for polynomial of degrees 10 and 20 are also found to be over
98%. Therefore, the results justify that the generated datasets
for different cases of polynomial degrees are effective and
valid.
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FIGURE 5. (a) Generated datasets validation using confusion matrix for n = 10 (b) Percentage datasets accuracy.

TABLE 4. Simulation results for different polynomial degrees with different epochs.

Table 3 shows the summarized results with classifier learn-
ing settings for predicting the datasets generation accuracy for
different cases of polynomial degree n.

B. LSTM-RNN MODEL VERIFICATION
In order to compute the polynomial roots based on the
datasets, python programming with 3.7 documentation series
is used to implement the proposed LSTM-RNN model with
ADAM optimizer. In fact, validating the model is also nec-
essary to rely on the model based on its evaluation through
the valid datasets. Hence, it is essential to evaluate the model
on the validation dataset before testing on a training dataset.
For achieving this task there are two ways: (1) Taking the
validation dataset from the training dataset; and (2) Keeping
different validation sets while splitting the main datasets.
Such approaches are being used by many algorithms, includ-
ing the famous Random Forest algorithm [33]. Hence, in our
network model the head of datasets consists of both inputs
and desired (or target) outputs data. Furthermore, to update
the weights of the LSTM model, the validation dataset has
only input values where verification of the loss and accuracy

measures on the training set, while val_loss and val_acc
are measures on the validation set. The following informa-
tion shows the parameters setting of the LSTM-RNN model
during execution period for polynomials of degrees 5, 10,
15 and 20. Other settings for the LSTM-RNN model are
n_test = 100, n_val = 100, draw = 1, n_nodes_hl (hidden
layer) = [80], n_nodes_dense = [100], n_nodes_LSTM =
[200, 200], n_drop_out = [0.2,0.1, 0.2] and verbose = [1].
Similarly, the identity regression of 0.1 and exponentially
decaying rate of e∗10−6 with validation split of 0.1 are the
design parameters set in the network model. Figs. 6(a)-(c)
show the polynomial case of n = 5 under different epochs.
The polynomial roots approximation is evaluated in terms
of both training accuracy and training loss w.r.t valida-
tion accuracy. The results show that the polynomial roots
are computed efficiently without any overfitting. Also, the
LSTM-RNN model with 2000 epochs has an accuracy over
99.82% with validation loss of 0.08%. Similarly, using both
4000 and 6000 epochs, the training model and validation
accuracy is above 99% with validation loss less than 0.5%
respectively.
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FIGURE 6. Validation accuracy vs training loss and training accuracy results for 5th-degree polynomials with (a) 2000 epochs (b) 4000 epochs (c)
6000 epochs.

Similarly, Figs. 7(a)-(c) show the case for n = 10 polyno-
mial degree using the aforementioned network model param-
eters setting. In this case the percentage accuracy using
2000, 4000 and 6000 epochs are respectively 92.7%, 94.8%
and 97.6%.

Figs. 8 and 9 show the cases for polynomials of degrees 15
and 20, respectively. From the aforementioned analysis it is
observed that as the number of epochs increases the validation
accuracy will also increase. Therefore, for n = 15 and 20,
the analysis is only performed for the highest epochs case
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FIGURE 7. Validation accuracy vs training loss and training accuracy results for 10th-degree polynomials with (a) 2000 epochs (b) 4000 epochs (c)
6000 epochs.

i.e., 6000 epochs. The validation accuracies for n = 15 and
20 are 95.2% and 93.6% respectively. Hence, the proposed
methodology for roots prediction can be up to 20th degree.
Moreover, it is obvious that the validation accuracy for higher
degrees can be further improved by increasing the number of
epochs, with however up surging execution time and system
resources.

Table 4 shows the summarized results under different cases
of polynomial degrees with different epochs.

Table 5 shows the comparative simulation analysis of roots
approximation for polynomials of degrees 5, 10, 15 and
20. In this study, the comparative analysis is performed
with the conventional FNN based ANN model. As men-
tioned in section I, the most commonly used ANN tech-
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FIGURE 8. Validation accuracy vs training loss and training accuracy results for 15th-degree polynomials with 6000 epochs.

FIGURE 9. Validation accuracy vs training loss and training accuracy results for 20th-degree polynomials with 6000 epochs.

TABLE 5. Simulation results for comparative analysis between conventional FNN-ANN and proposed LSTM-RNN.

nique for polynomial roots approximation in the previous
research work is the FNN-ANN technique. Therefore, the
same ANN technique is employed for comparison with the
proposed methodology. The performance indices for com-
parison are the mean square error (MSE), execution time
and % accuracy under the fixed epochs i.e., 6000. From
Table 4, the comparative results clearly demonstrate that

the proposed LSTM-RNN model surpasses the FNN-ANN
model for roots approximation in terms of the accuracy and
lower MSE at the cost of slightly higher execution time.
In fact, as stated in section II, due to the memory cells in
the LSTM-RNNmodel, the execution time is obviously more
than the FNN based ANN model. Therefore, there is a trade-
off between the accuracy and the execution time. However,
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the execution time could be reduced with better system
resources.

The graphical roots prediction accuracies under differ-
ent cases of polynomial degrees are shown in Fig. 10. The
results conclude that using the proposed LSTM-RNN model,
the roots prediction percentage accuracies for polynomials
of degrees 5, 10, 15 and 20 evaluated at 6000 epochs are
99.8%, 97.7%, 95.3% and 93.6%, respectively; whereas with
the FNN-ANN model, the percentage accuracies are 96.8%,
94.6%, 91.4% and 89.3%.

FIGURE 10. Model prediction accuracy for different polynomial degrees.

IV. CONCLUSION
This paper presents a performance evaluation of the LSTM
recurrent neural network (RNN) for approximating roots of a
given polynomial. The study started by generating datasets as
an input and target data for testing the LSTM-RNNmodel for
different cases of polynomial degrees. The proposed model
weights were then modified based on the difference between
the actual root values and the values generated by the model,
i.e., approximations to the polynomial roots. Finally, several
experimental results were performed and the consequences
were evaluated in terms of efficiency and validation accuracy
for different cases of polynomial degrees. Moreover, the pro-
posed LSTM-RNNmodel was compared with the commonly
usedNNmodel (namely FNN basedANNmodel) for polyno-
mial roots approximation. Simulation results clearly demon-
strated that the proposed LSTM-RNNmodel outperforms the
FNN-ANN model in terms of accuracy and MSE at the cost
of slightly higher execution time.

From the results, although the percentage efficiency for
a higher degree polynomial is slightly lower but the perfor-
mance can be improved by increasing the number of epochs.
Therefore, it can be inferred that the proposed LSTM-RNN
techniques is efficient and feasible in computing any real
univariate polynomial with real and complex roots.

In summary, the novelties of the present study are:
1. Amore advancedDNN technique, i.e., the LSTM-RNN

has been used for the first time in the proposed method-
ology for approximating the polynomials roots.

2. The validity of the coefficients and roots datasets have
also been evaluated successfully using the MATLAB
confusion matrix.

3. Finally, several experimental have been performed
to prove the validity of the proposed methodology.
Furthermore, the results are compared and examined
with the conventional FNN based ANN. The results
clearly demonstrate the superiority of the proposed
LSTM-RNN model for approximating the roots of the
polynomials.

Though the results presented in this paper are preliminary
for a particular class of polynomials, namely polynomials
with real coefficients, they are highly promising and indi-
cate the potential of the LSTM-RNN based NN model for
computing the polynomial roots. In further research works,
we will consider the case of finding the roots for multivariate
polynomials.
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