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ABSTRACT
Trying to extract features from complex sequential data for classification and prediction problems is an
extremely difficult task. This task is even more challenging when both the upstream and downstream
information of a time-series is important to process the sequence at a specific time-step. One typical
problem which falls in this category is Protein Secondary Structure Prediction (PSSP). Recurrent Neural
Networks (RNNs) have been successful in handling sequential data. These methods are demanding in terms
of time and space efficiency. On the other hand, simple Feed-Forward Neural Networks (FFNNs) can be
trained really fast with the Backpropagation algorithm, but in practice they give poor results in this category
of problems. The Hessian Free Optimization (HFO) algorithm is one of the latest developments in the field of
Artificial Neural Network (ANN) training algorithms which can converge faster and more accurately. In this
paper, we present the implementation of simple FFNNs trained with the powerful HFO second-order learning
algorithm for the PSSP problem. In our approach, a single FFNN trained with the HFO learning algorithm
can achieve an approximately 79.6% per residue (Q3) accuracy on the PISCES dataset. Despite the simplicity
of our method, the results are comparable to some of the state of the art methods which have been designed
for this problem. A majority voting ensemble method and filtering with Support Vector Machines have also
been applied, which increase our results to 80.4% per residue (Q3) accuracy. Finally, our method has been
tested on the CASP13 independent dataset and achieved 78.14% per residue (Q3) accuracy. Moreover, the
HFO does not require tuning of any parameters which makes training much faster than other state of the art
methods, a very important feature with big datasets and facilitates fast training of FFNN ensembles.

INDEX TERMS Hessian free optimization, neural networks, protein secondary structure prediction, second
order learning algorithms.

I. INTRODUCTION
Machine Learning (ML) is a subfield of Artificial Intel-
ligence (AI) that provides a system the ability to learn
from data without being explicitly programmed. Usually,
ML methods consist of a parameterized learnable model and
a learning algorithm [1], [2]. These methods are mostly used
for classification and prediction on static and sequential data.

Even though a number of theoretical ML algorithms have
been designed to process and make predictions on sequential
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data, the mining of such data types is still an open field of
research due to its complexity. Analysis and development
of optimisation algorithms for specific ML techniques for
sequencial data must take into account how to (a) capture and
exploit sequential correlations, (b) represent and incorporate
loss functions, (c) identify long-distance dependencies, and
(d) make the optimisation algorithm fast [3]. Successful ANN
models which have been designed to handle sequencial data
are the classes of Recurrent Neural Networks (RNNs) [4] and
Deep Learning (DL) methods [5]. More specifically, RNNs
are universal approximators of dynamical systems [6] that
can associate patterns which are located far away from each
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other on a sequence and create a kind of short and long range
dependencies between data. Such models are Long-Short
Term Memory (LSTM) blocks [7], [8], Echo State Networks
(ESNs) [9]–[11], Conceptors [12] and Clockwork RNNs
(CW-RNN) [13] as architectural improvements of RNNs.
On the other hand, DL and more specifically Convolutional
Neural Networks (CNNs) [5] have shown superior results
in various sequential problems [14]–[16]. All these methods
are new established models in the ML field which can build
high quality feature extraction procedures and achieve high-
performance classification of sequential data.

Moreover, predictions on sequential data are particu-
larly challenging when both the upstream and downstream
information of a sequence is important for a specific
time-step. Application examples include Phoneme Speech
Recognition [7], [17] and Bioinformatics problems, such
as the Protein Secondary Structure Prediction (PSSP)
[18]–[20] and other related problems (e.g., Transmembrane
Protein Topology Prediction [21]). In such sequence-based
problems the events are dynamic and located downstream
and upstream, i.e., left and right in the sequence. To predict
these events, researchers have used many ANN models but
also utilise specific ANN architectures, such as Bidirectional
Recurrent Neural Networks (BRNNs) [18], [19], [22], [23]
which are usually trained with an extension of the Back-
propagation Through Time (BPTT) algorithm or with
second order learning algorithms [24]. In general, a ML
model designed for such data has to be in position to
extract relevant features, and at the same time reveal any
long/short range interdependencies in the sequence of data
given.

Knowledge of a protein’s secondary structure is important
as a step towards elucidation of its 3D structure, which
is crucial to understand its function. This problem is even
more timely since the rapid growth of the number of
available protein sequences has far outpaced the experimental
determination of their structures. Thus, there is a growing
need for a computational approach to the problem of protein
structure prediction. The prediction of Secondary Structure
(SS), i.e., the local structure commonly defined by hydrogen
bond patterns and local geometry, is a critical first step
towards this end and, therefore, it has attracted a large
amount of interest over the past 60 years [25]. With respect
to their secondary structure, amino acid residues in protein
chains are usually assigned into three main classes, namely
helix, extended and coil/loop [26]. Feed-Forward Neural
Networks (FFNNs) trained with the Gradient Descent (GD)
algorithm were firstly used to tackle this problem but the
accuracy was less than 70% [27], [28]. Ensembles of BRNNs
trained with the GD algorithm have proved to be a very
efficient method for the PSSP problem with accuracy of
approximately of 76%-79% [18], [23], [29]. Even though
manyML algorithms andmethodologies have been employed
to tackle this problem [18], [25], [30]–[36], only a few of
them will be discussed in this paper, which are closely related
with the methods used in the present study.

In addition, DL and LSTM-BRNN methods fed with
sequence profile inputs have achieved around 80%-84% per
residue accuracy [32], [37]–[43]. However, considering the
theoretical limit of the three-state prediction which is around
88-90% [25], there is still room for improvement. These
results are even higher (approximately 92% per residue accu-
racy) when the observed secondary structure from homologs
in the Protein Data Bank (PDB; http://www.rcsb.org/) is
used. The major key point that needs to be considered when
trying to solve the PSSP problem is the complex sequence
correlations and interactions between the amino acid residues
of a protein molecule. In order to maximize the prediction
accuracy of a proposed ANN technique for a specific amino
acid in a protein molecule, the adjacent amino acids have to
be considered by the proposed ANN architecture.

Training RNNs is a demanding task in terms of time and
space efficiency because of the compexity of the models
where many parameters have to be handled in order to specify
the model’s architecture and characteristics. Furthermore,
training of these models is a difficult task because of the
vanishing gradient and exploding gradient problems, where
the gradient is getting smaller as the information moving
backward through hidden layers is getting very big at the
early layers of a model [44]. The most common algorithm
to train these models is based on the GD minimization
method. Unfortunately, this kind of algorithms have a poor
convergence rate [45]. Moreover, they depend on parameters
which have to be specified by the user and are usually crucial
for the performance of the algorithm.

In order to improve these drawbacks, simple models and
more efficient algorithms need to be used. Simple FFNNs
can be trained really fast with low demands in terms of time
and space. The most common learning algorithm for training
FFNNs is the Backpropagation learning algorithm (BP) [46]
which is based on the GD method. Unfortunatelly, it has
been proven that FFNNs have poor results in this kind of
problems [27], [28]. On the other hand, latest developments
in the field of ANN training algorithms, such as the Hessian
Free Optimization (HFO) [47], [48] second order learning
algorithm, can converge faster and more accurately. This
algorithm has been found to be superior to the conventional
BP algorithm in terms of accuracy, convergence rate and
the vanishing-gradient problem [47], [48]. In addition, the
original form of the algorithm [47], [48] does not depend on
any parameters.

The HFO [47], [48] second order learning algorithm
demonstrated promising results on problems such as the
noiseless memorization problem, the 3-bit temporal order
problem and the random permutation problem [48]. In this
algorithm, the finite differences method is applied on the
model’s gradient vector in order to quickly calculate an
approximation of the Hessian Matrix. The system’s gradient
vector and Hessian Matrix approximation are used to
compute the system’s Taylor expansion function. Then, the
Preconditioned Conjugate Gradient algorithm (PCG) [48],
which is a variant of the CG algorithm, is used to optimize
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the calculated Taylor expansion function. The PCG algorithm
is used to give a new step size and a direction to update the
system’s parameters. Moreover, it has been proven that this
algorithm, which was based on the works of [45], [49], [50]
and [51], can manage well to train RNNs. Consequently, the
HFO has been applied to deep ANN architectures and it was
demonstrated that it outperforms other learning algorithms in
specific sequential problems [48].

The need to build efficient methods in terms of accuracy,
convergence time and simplicity for sequential data where
both the upstream and downstream information of a sequence
is important for a specific time-step and more specifically
for the PSSP problem, has been the initial motivation for
this work. Consequently, in this paper we demonstrate that
providing profiles of protein sequences for training simple
FFNNswith the HFO algorithm yields results which compare
well with much more complicated ANN architectures in the
3-state PSSP problem. Furthermore, we demonstrate that a
simple majority vote of 5 HFO-trained FFNNs, coupled with
a SVM classifier for filtering purposes, achieves performance
directly comparable to the current state-of-the-art methods.

The paper is organized as follows: Section II covers
the PSSP application domain, the related data and existing
methods, while Section III presents our methodology based
on the HFO learning algorithm. Section IV presents results,
discussion and comparison of our methodology with other
methods for the PSSP problem. Finally, Section V gives the
conclusions and future directions for research in the field.

II. APPLICATION DOMAINS, EXISTING
METHODS, AND DATA
The prediction of a protein’s SS from its Primary Struc-
ture (PS) can be an important intermediate step to the pre-
diction of a protein’s three-dimensional (3D) structure [52],
[53]. A protein’s PS is a sequence composed of 20 different
amino acid types which are connected and interact to create
the SS, the local (geometrical) structural patterns defined
by hydrogen bonding patterns which may be short, mid-
or even long-range. When an experimentally-determined 3D
structure is available, each amino acid can be assigned to a
SS class, usually under a commonly accepted scheme: helix
(H ), extended (E) and coil/loops (L) [26].
Knowledge of a protein’s three-dimensional (3D) structure

can be an important step in studying the functional properties
of protein molecules, which are the functional workhorses
in all living cells. Experimental biochemical methods for
the characterization of the molecular structures of individual
proteins in atomic detail are expensive, time consuming
and frequently inefficient [18]. Since genomic technologies
provide genetic sequences at an ever increasing pace, the
gap between our knowledge of protein sequences (primary
structures) and the corresponding experimentally determined
3D structures is widening exponentially. Even though it
has been reported that a high fraction of residues from
proteins encoded in the human genome and other model
species can be mapped to a 3D structure (either by

experimental or theoretical methods) [54], the same does
not necessarily hold for non-model species, especially for
some ‘‘exotic’’ pathogens, whose genomes often encode
protein molecules with peculiar sequence features. For
example, of the >5000 proteins encoded in the malaria-
causing parasite Plasmodium falciparum isolate 3D7 for
which no experimental structural information exists in the
Protein Databank, less than half (2459) can be mapped
onto 3D structures using sequence similarity methods
(source UniProt: https://www.uniprot.org/uniprot/accessed
May 9 2019).

Over the past 30 years, the accuracy for secondary structure
predictive methodologies has improved significantly with
machine learning techniques [27] and evolutionary informa-
tion from multiple sequence alignments [28] having a crucial
role. These methods are commonly evaluated based on the
per residue accuracy (Q3) and the segment overlap (SOV)
metrics [55], [56]. The Q3 metric is defined as the three-state
overall percentage of correctly predicted residues. On the
other hand, the SOV metric is defined as a measure that
is based on the average overlap between the observed and
the predicted segments instead of the average per-residue
accuracy [55], [56]. A brief review of these methodologies
can be found in [57]. Furthermore, a more recent review
presents all the latest developments in the field of PSSPwhich
have achieved more than 80% per residue accuracy [25].
These results rely on increasingly larger databases of
protein sequences, the use of templates and powerful deep
learning models. More specifically, a method based on Deep
Convolutional Neural Fields (based on CNNs) [33] and
the MUFold-SS method [31] have shown promising results.
In addition, the work of [43], which is based on CNNs,
has achieved a noticeable accuracy above 80%. Finally, the
work of [32], which is based on LSTM [8] BRNNs has
produced an 84% Q3 accuracy which is one of the highest
scores reported so far [25]. Current state-of-the-art methods
for predicting protein SS from PS are based onML classifiers
fed with sequence profile inputs and achieve around 82%-
84% Q3 accuracy, whereas the SOV is circa 73-75. Finally,
many kernel methods have demonstrated noticeable results
for this demanding problem which are approaching 80%
accuracy [58], [59].

Pollastri and colleagues [23] have shown results on
the SSpro method where they have used an ensemble
of 11 BRNNs to achieve a prediction accuracy of 78%.
Moreover, the SCRATCH server uses the SSpro 5 method
trained on newer datasets to achieve an accuracy of 79%
[29], [60]. This method has been trained and validated on
a large dataset of approximately 11000 sequence profiles,
using an elaborate training process where individual BRNNs
were trained on different subsets of the training data.
Furthermore, this method uses an ensemble of 100 BRNNs.
With SSpro 5 [60] an additional step of using the observed
secondary structure from homologs in the PDB to infer the
final prediction was introduced, reaching an accuracy of
approximately 92%.
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FIGURE 1. Data Representation: Each amino acid is within a window (W ) centered at the residue of interest, encoded by a
20-dimensional MSA profile vector.

Furthermore, several PSSP prediction methodologies have
used a multi-step process with ensemble methods [61]–[63]
and filtering techniques [20] to improve the quality of results.
Ensembles reduce the mis-predicted residues by averaging
the results of multiple classifiers. For example, these methods
show improved generalization capabilities that outperform
those of single networks [64]. However, for aggregation to
be effective, the individual networks must be as accurate
and diverse as possible. In addition, filtering techniques
remove conformations that are physicochemically unlikely.
For instance, helical conformations in proteins usually consist
of at least three, four or five residues for 310-helix, α-
helix and π -helix, respectively. Since the different types of
helices are usually grouped in a single category by PSSP
methods, a predicted helical structure would be expected
to have a minimum number of three consecutive residues
in order to fulfill geometric and hydrogen-bonding require-
ments. Hence, predictions of isolated helical residues are
physicochemically unrealistic, because one residue cannot
form a helix. To tackle this problem, both machine learning
algorithms [65] and empirical rules [28], [35], [66] have been
used in the past with variable levels of success, highlighted in
a comparative study [20].

High quality datasets for training and validation purposes
are mandatory when constructing a prediction model. For
the purpose of this paper, we have used the non-redundant
PISCES dataset [67], as reported previously [68].

III. METHODOLOGY
A. DATA REPRESENTATION
The major obstacle on trying to solve a complex sequential
data classification problem with any ANN is the represen-
tation of the data, in such a way that the network is able
not only to understand the shape of the input volume, but
also to track the complex sequence correlations among the
input volume. Hence, multiple sequence alignment (MSA)
profiles have been used for data preprocessing and PS
encoding [69]. MSA profiles have been shown to enhance
machine learning-based PSSP, since they incorporate useful

evolutionary information for the encoding of each position of
a protein. More specifically, each amino acid on a protein PS
is replaced by a 20-dimensional vector, which corresponds to
the frequencies of 20 different amino acid types aligned to
the query sequence using PSI-BLAST (Version 2.4.0) [70]
searches (maximum 3 iterations) against the NCBI-NR
(NCBI: http://www.ncbi.nlm.nih.gov/) database.

As shown in Figure 1, the network’s input vector at each
time-step t consists of the MSA information contained in a
slidingwindowW on a protein PS.More specifically, we have
created an input volume by placing MSA [71] profile vectors
of each amino acid one after another to construct an 1D
representation of the MSA profiles of a certain number of
neighboring amino acid residues. Through this technique, the
attention given to any neighboring amino acid correlations
is equally weighted across all the input volume, for each W
given. This lets the FFNN discover and capture any strong
short range correlations among the input records and consider
them all equally in terms of the output volume created. The
target output is the respective class of the amino acid which
is located in the center of a specific input W . The FRNN
processes simultaneously the residues located on the left and
on the right side of the position t to predict the corresponding
SS class.

B. THE HFO LEARNING ALGORITHM
HFO [47], [48] is a second order optimization algorithm
of real-valued objective functions. It is a variation of the
standard Newton’s method [72] which uses local quadratic
approximations to generate update proposals. In high dimen-
sionality problems, for which large ANN models with
many hidden layers are employed, first order optimization
algorithms like GD can be extremely slow and ineffective due
to the vanishing gradient problem [8]. In GD methods, the
updates are proportional to the gradient of the error function
which is back-propagated through the layers of the model.
Each time the error is back-propagated, the gradient becomes
vanishingly small which results in the front layers having
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close to zero information on how to update their weights,
meaning slow to completely ineffective training [47], [48].

The advantage of using a second order optimization
algorithm (i.e., Newton’s method or HFO) is that these
algorithms consider the curvature of the error surface
(Hessian Matrix (HM)) in their optimization process which
results in extremely better step-wise performance. More
specifically, instead of fitting a plane at an initial solution
and then determining the step-wise jump like first order
algorithms, second order methods find a tightly fitting
quadratic curve at that point and directly find the minimum
of that curvature, which is supremely fast and efficient.
Computing the HM for a large ANN with thousands to
millions of free parameters however is not always possible
due to the extremely high memory requirements needed to
store it. Concequently, while there have been a number of
Newton’s variations like Newton-CG, CG-Steihaug, Newton-
Lanczos [73] and Truncated Newton [74], none of them has
been applied effectively to ANN models and concequently
their applications in this domain have been extremely
limited [48].

The Hessian Free method proposes solutions to the high
memory requirements of second order learning algorithms,
which enable it to be effective for ANN training. First of
all, it does not compute and store the whole HM. Instead,
it computes just the dot product of the HM H with an
arbitrary vector u (H · u) [48], using mathematical methods
like finite differences which cost as much as a single gradient
evaluation. This works really well for the HFO algorithm
since it does not require the explicit use of the HM, but
rather many dot products based on H · u. Secondly, the
local quadratic objectives, which are approximated with
second-order methods, can be efficiently optimized using the
linear conjugate gradient (CG) method [75], [76] in order to
compensate for the lack of the HM. While the CG method
needs N iterations to converge in a quadratic function, where
as N is the number of the free parameters of the network,
there is a number of stopping criteria, which terminate it at
early stages when significant progress in the minimization
process has been made. This is extremely important since it
is clearly impractical to wait for a complete CG convergence
when there is a very low margin of further minimization.

It is important to note that even though in HFO no HM
is calculated, there are no approximations done and the
H · u product is calculated accurately. The only difference
between HFO andNewton’s method is that while the standard
Newton’s method performs a complete optimization of the
approximated quadratic information, HFO does not. This
is because the CG does not fully converge [47]. However,
the efficiency-related benefits of avoiding the full HM
calculation and inversion are clearly more beneficiary than
the extremely small difference in accuracy by the not fully
converged CG.

Finally, although the H · u product can be calculated
efficiently and accurately, it is not the one usually used in
HFO. Based on the same theory, the G · u product is used,

where G is an approximation of the HM which is called the
Gauss-Newton matrix [77].While it seems pointless to use an
approximation instead of the correct curvature matrix when
there is no problem in efficiency, Gauss-Newton avoids some
of the problems that the HMmay face and cause the algorithm
to be completely ineffective. In fact, comparing to the usage
of the HM, the use of the G · u matrix consistently results in
better search directions utilizing half thememory and running
twice as fast [47].

C. THE PROPOSED METHODOLOGY
In this work, the HFO learning algorithm has been used
for training FFNNs to handle the PSSP problem. Our
methodology appears in Figure 2. As it can be seen, we have
5 levels of processing. In the first level of our methodology,
the protein PS appears in MSA encoding (Figure 1). Input
data is used from 5 individual FFNNs in the second level
of our methodology. The small number of FFNNs has been
chosen based on the work of [18] and [20]. These FFNN
classifiers are trained with the HFO learning algorithm. Each
one of the adequate number of 5 FFNN returns three real
values in the range (0,1) for the central residue of a sliding
local window W , one for each secondary structure state.
Subsequently, the corresponding outputs of each FFNN for
each state are combined through majority voiting in the
ensembles level [61], [62]. Then, the resulting predictions
from the ensembles level are used for the filtering [20]
procedure. In the case of the PSSP problem, the filtering
method which appears to have the best results is based
on SVM models [20]. Consequently, we have created a
stacked network architecture where an SVM model is used
for filtering purposes. More specifically, the predicted SS
sequence of the majority voting ensemble method is used as
input to the SVM model. Each predicted SS state is within a
window (Wsvm) centered at the position t of the residue of
interest. For each position t of the sequence, this window
is used as an input vector to the SVM which predicts the
corresponding corrected SS state. Finally, the last level of
our methodology returns three real values, which represent
the predicted SS class for a specific input vector of a local
window.

IV. RESULTS AND DISCUSSION
Our proposed methodology has been applied to the PSSP
problem and through experimental analysis, various results
have been extracted. The models and learning algorithms
of our methodology have been built with the Python
3.6 programming language. The final results demonstrate the
efficiency and the effectiveness of the method.

A. DATA PREPARATION AND SIMULATION DETAILS
Special care has been taken to retrieve datasets of the highest
possible quality for the PSSP problem relying in specialized
resources. For the purposes of this work, we have used
the PISCES [68] dataset, which consists of 8632 protein
chains. More specifically, high resolution protein structural
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FIGURE 2. Our proposed methodology for the PSSP problem (see text for more details).

data have been obtained from the RCSB Protein Data
Bank (PDB; http://www.rcsb.org/). We have used the DSSP
program (URL: http://swift.cmbi.ru.nl/gv/dssp/, accessed
01/04/2019), to extract the SS class for each amino acid in
each dataset. The DSSP program uses the atomic coordinates
and hydrogen bond patterns for assigning each amino acid in
one of eight classes: H (α-helix), G (310-helix), I (π-helix), E
(extended β-strand), B (isolated β-bridge), T (turn), S (bend)
and C (other/coil). Then, we have reduced the eight classes
to the three predefined SS classes as: H, G, and I to the helix
state (H), E and B to the extended state (E) and the rest to the
loop state (L). Moreover, MSA profiles have been used for
data preprocessing and PS encoding. During this procedure,
the MSA files of our dataset have been analyzed and cleaned
up from data with short or no information. More specifically,
the PSI-BLAST has created some MSA files with arrays of
zeros or arrays with less amount of elements than expected.
The respective protein sequences (342 in total) have been
excluded from the training and validation dataset (Table 6 in
Appendix). Furthermore, we have followed a strict 5-fold
cross-validation approach as described in [68].

As it has already been explained in Section III , the
network’s input vector at each time-step t consists of the
MSA information contained in a local sliding window W
and the target output is the respective class of the amino
acid which is located in the center of that local window.
Firstly, a single FFNN has been trained on different single
folds of the PISCES dataset. At this stage, we carried out
multiple experiments to tune up the architectural parameters
of the FFNN trained with the HFO learning algorithm. More
specifically, we have concluded that, for the purposes of our
methodology, the optimum FFNN architecture is 1 hidden
layer FFNN of 75 Sigmoid neurons with Mean Square
Error (MSE) function. Furthermore, we have used 3 neurons
of this category for the output layer. This architecture has
full connectivity between input-hidden and hidden-output
layers. The only difference between the multiple FFNNs is
the random weight initialization. These models have been

evaluated based on the Q3 and SOV metrics, but only the
Q3 metric was used for tuning. Then, this specific FFNN
architecture has been successfully used for our proposed
methodology (Section III ). For our experiments, a machine
with 6 cores and 32GB RAM of a CISCO UCS C240 M5
server (2 x Intel Xeon 6140 Gold Processors) has been used.

In this work, the PISCES dataset has been used as training
and validation set for tuning the model’s parameters. Finally,
the CASP13 (13th Critical Assessment of Protein Structure)
dataset has been used as an independent dataset to test
the prediction capabilities of the final models. This dataset
consists of only 40 proteins with no significant sequence
similarity to the proteins in the PISCES dataset.

B. CROSS-VALIDATION AND TESTING SIMULATIONS
In order to validate the robustness of our proposed method-
ology as well as to prove its efficiency to the exposure of
various training and validation data, we had to complete the
evaluation of the PSSP problem on the PISCES dataset, using
a 5-fold cross-validation test. All the experiments conducted
are with the optimal parameters of the model which is
described in detail in Section IV (A). In Table 1, we present
the results of a single FFNNwith the optimal parameters after
we manage to get the highest possible Q3 score. As shown in
Table 1, the Q3 accuracy and SOV score results of a single
FFNN with a 5-fold cross-validation are 79.57% Q3 and
0.728 SOV respectively. These results, compared to the
results of other methods which are mentioned in Section II ,
are high enough to be considered as a good solution for the
PSSP problem. Given the simplicity of the model, we can say
that the learning algorithm is powerful enough to optimize
the problem and relate the neighboring amino acids to a SS
based on the strong information which is coming from local
dependencies of a protein PS. Furthermore, as it can be seen
from Table 1, our method can predict better the H and L
classes, whereas some difficulty is shown in the prediction
of E class.
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TABLE 1. Experimental results for a single FFNN trained with HFO: Q3 and SOV results for each fold of PISCES dataset.

TABLE 2. Experimental results for an ensemble of 5 FFNNs trained with HFO: Q3 and SOV results for each fold of PISCES dataset.

TABLE 3. Experimental results for an ensemble of 5 FFNNs trained with HFO and filtered with a SVM: Q3 and SOV results for each fold of PISCES dataset.

A major improvement in the results of single FFNNs
trained with the HFO algorithm has been achieved when
the majority voting ensemble method and filtering tech-
niques [20] have been used. In this paper, we employ an
ensemble of 5 FFNNs as described in Section III (C). The
results of the majority voting ensemble method are shown
in Table 2. Clearly, this method corrects some missclassified
SS states, thus increasing Q3 by 0.55% and SOV by
0.0234 overall. Based on these results, the majority voting
ensemblemethod improves themethod’s accuracy.Moreover,
based on the SOV results, it improves significantly the quality
of the predicted SS sequence.

The resulting predictions are then used for SVM filtering,
as explained in [20]. More specifically, after gathering the
predictions from the majority voting ensemble method of
FFNNs, we have trained a SVM using a window of SS states
predicted by the FFNNs. In this case, we have used a 5-
fold cross-validation approach based on the folds which have
been used for the training of our FFNNs. After performing
several experiments using different kernels, misclassification
penalty parameters (C) [78], Gamma values (G) [78] and
window sizes (Wsvm), we have decided on the optimal SVM
parameters that lead to the highest Q3 accuracy and SOV
score on the PSSP problem and which are: (a) Kernel:
Radial Basis Function, (b) C = 1, (c) G = 0.001 and
(d) Wsvm = 7. The final results are shown in Table 3.
The final results of our methodology are approximately

TABLE 4. FFNN ensembles and SVM filtering: Statistical analysis of Q3
accuracy and SOV score for fold 0-4 results presented in Table 3.

80.4% Q3 accuracy and 0.77 SOV for the PISCES dataset.
More specifically, the SVM filtering technique can increase
the accuracy of our proposed methodology by only 0.2%
but it can improve significantly the quality of results by
approximately 0.02 SOV units.

As it can be seen in Tables 1−3, the ensemble methods and
filtering techniques which were applied to our methodology
have increased the single FFNN accuracy by approximately
0.8% and the SOV metric by 0.05. Furthermore, in Figure 3
we can see how the algorithm can manage with each SS class.
Obviously, in the case of the PISCES dataset, the algorithm
can predict correctly with 84.41%, 70.60% and 83.61% the
H, E and L classes, respectively. As it can be observed, the H
and L classes are most often predicted as such compared to
the E class, a known shortcoming when applying FFNNs in
the PSSP problem. Moreover, in Table 4, we can see that the
values of Standard Deviation and Variance for the case of the
Q3 metric are very small which indicates that the algorithm

VOLUME 10, 2022 27765



K. Charalampous et al.: Solving PSSP Problem With HFO Algorithm

TABLE 5. Results for CASP13 dataset after training on PISCES dataset.

FIGURE 3. Graph of confusion matrix for actual vs predicted SS classes:
HH, EE and LL are the True Positive scores of our method for each class
after the majority voting ensemble method and SVM filtering technique.
EH, LH, HE, LE, HL and EL are the scores for the mis-predicted classes
where the first letter is the actual class and the second letter is the
predicted class. Based on an average of a 5-fold cross validation
evaluation, the method can predict correctly with 84.41%, 70.60% and
83.61% the H, E and L classes, respectively.

behaves similarly between the different protein sequences of
several dataset folds.

Finally, we have used the CASP13 independent dataset to
test the accuracy of our method. More specifically, we have
trained the FFNNs on the whole PISCES dataset and then
we have used CASP13 as testing dataset. The results can be
seen on Table 5. The final accuracy of the methodology on
CASP13 dataset is 78.14% and the SOV metric is 0.755.

C. COMPARISON OF OUR METHODOLOGY
TO OTHER METHODS
Finally, in order to evaluate the accuracy, quality of results
and computational performance of our method, we have
implemented other well known methods to compare their
results with our method using the same data. More specifi-
cally, we have used the same 5-fold cross validation approach
with the PISCES dataset. Hence, we have used two different
strategies. At first we have used other optimizers to train and
compare the ensemble of 5 FFNNs. Then, we have tested
(using the same 5-fold cross validation procedure on our
dataset) well established ML methods that have been used
on the PSSP.

The optimizers which were chosen to train the ensemble
of FFNNs on the PISCES dataset were the BP [46] learning
algorithm, as the most common benchmark training algo-
rithm in training FFNNs, and the Adam [79] learning algo-
rithm, as one of the latest and most powerful developments
in the field of training algorithms for ANNs. Compared to

FIGURE 4. Q3 accuracy and SOV score for each FFNN optimizer. The red
bar corresponds to Q3 accuracy and the yellow bar to SOV score. The SOV
score has been multiplied by 100 for presentation purposes (see text for
more details).

FIGURE 5. Length of training time of the FFNN optimisers: The length of
training time in minutes is calculated based on the average 5-fold
cross-validation training time of the 5 FFNNs used in each ensemble. The
label of each bar corresponds to ’number of iterations / average iteration
execution time (min)’ (see text for more details).

the HFO learning algorithm, which is a second order learning
algorithm, both BP and Adam are first order gradient descent
learning algorithms. Although all the training algorithms
were applied to the same FFNN architecture, which is
described in detail in Section IV (A), the results are indicative
for this problem. Nevertheless, further optimization can be
done for the FFNN architectures which are trained with the
BP and Adam learning algorithms. The parameters of each
one of the training algorithms were tuned through many
executions on a single FFNN trained for the PISCES dataset.
In the case of BP we have identified as optimal the following
set of parameters: learning rate= 0.01 and momentum= 0.0.
Similarly, in the case of Adam we have used learning rate =
0.001, beta1 = 0.9, beta2 = 0.999. As it can be seen from
Figure 4, the results of BP compared to Adam and HFO
learning algorithms are very poor. On the other hand, the HFO
learning algorithm has achieved 0.8% better Q3 accuracy
and comparable SOV score compared to the Adam learning
algorithm. As it can be seen from Figure 5, although the
HFO algorithm needs only 45 iterations to be trained, each
iteration requires an average execution time of 7.78 minutes.
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FIGURE 6. Q3 accuracy and SOV score for ANN models used for the PSSP
problem. The red bar corresponds to Q3 accuracy and the yellow bar to
SOV score. The SOV score has been multiplied by 100 for presentation
purposes (see text for more details).

On the other hand, the BP and the Adam algorithms
need 200 iterations of 1.46 minutes and 100 iterations of
2.55 minutes each to be trained, respectively. An HFO
iteration is executing multiple times the PCG algorithm,
a number which cannot be estimated before the completion
of an iteration. Therefore, the training time needed for HFO
is approximately 350 minutes. The lengh of this execution
time is 17% and 27% more than the training time needed
for BP and Adam learning algorithms, respectively, despite
needing much less iterations. Nevertheless, the entire process
of building FFNN classifiers is much faster with the HFO
learning algorithm because there are no parameters to be
tuned compared to the three parameters of the Adam learning
algorithm which need to be optimised by trial and error.

Then, we have chosen to compare our method with an
ensemble of 6 BRNNs trained with the BPTT learning
algorithm, as one of the most established methods for this
problem [18], [23], [29], [60] (see Section II) and also
with an LSTM-BRNN, as the method which has been
reported as obtaining the highest results for the PSSP
problem [32]. The BRNN architecture consisted of 1 hidden
layer of 20 hyperbolic tangent neurons for the feed forward
subnetwork and 1 layer of 11 hyperbolic tangent neurons
for each one of the recurent subnetworks. Furthermore, the
BPTT has been tuned to learning rate = 0.1 and momentum
= 0.001. The LSTM-BRNN consisted of 25 Bidirectional
LSTM neurons and it has been trained with the Adam
learning algorithm where the parameters of learning rate =
0.001, beta1 = 0.9, beta2 = 0.999 were used. Both methods
methods use the Mean Square Error function. As it can
be seen in Figure 6, the BRNN trained with BPTT has
achieved 77.61% Q3 accuracy for the PISCES dataset, which
is much lower than our results which were approximately
80.4%. Furthermore, although LSTM-BRNNs are reported
to capture the long range dependencies of a sequence, they
gave comparable overall results to our (more local) method.
Definitely, there needs to be more work in order to compare
the results of the two methods in such detail (work in

progress). Given that our method can capture very well
the short range dependencies, the LSTM-BRNNs may face
difficulties in short range dependencies which results in
the same accuracy to our methodology. Furthermore, our
methodology provides an upper limit on what methods may
be able to capture when they rely on only local sequence
patterns. The biggest advantage of our methodology to these
two methods is the simplicity of the models we use. This is
very important if we take into account the latest developments
in the field which demand very big datasets and network
architectures, which consequently increase exponentially the
amount of training time. In addition, many of these methods
are combined in ensembles, as in [18], where the training
amount of time is even more increased. This is extremely
important if we take into consideration that an increasing
size of ensembles is often used to improve the results of ML
methods [61], [62], [64].

V. CONCLUSION
In this work, we present a second order-based methodology
for training simple FFNNs for the challenging PSSP problem
where both the upstream and downstream information of
a sequence is important for a specific time-step. In this
methodology, to the best of our knowledge the HFO learning
algorithm is applied for the first time to this problem. More
specifically, we present the development and implementation
of a methodology where ensembles of FFNNs are trained
with the HFO learning algorithm for the PSSP problem.
In contrast to the conventional GD learning algorithm, the
HFO exploits both gradient and curvature information for
fast convergence. The results from the ensembles of FFNNs
are combined through majority voting ensemble methods
which are then fed for filtering purposes to a SVM model for
producing the final results.

The efficiency and effectiveness of simple FFNNs trained
with the HFO learning algorithm have been tested on the
PISCES dataset, achieving approximately 79.6% Q3 accu-
racy and approximately 0.72 SOV score which compare
well with other state of the art methods. The majority
voting ensemble method and SVM filtering techniques have
improved even more the single FFNN Q3 accuracy by
approximately 0.8% and the SOV metric by 0.05. The
final results of our methodology are approximately 80.4%
Q3 accuracy and approximately 0.77 SOV score. In terms
of accuracy, our proposed method outperforms similar
methodologies which are trained based on GD or Adam
algorithms. Although, the GD and Adam algorithms seem
to converge faster than the HFO learning algorithm, the
process of building FFNN classifiers is much faster with the
HFO because there are no parameters to be tuned. Therefore,
our ML method seems to be a particularly good option for
complex feature extraction and prediction on sequential data,
as it takes advantage of the benefits of these techniques.

At first glance, this method seems to have good chances
to outperform in terms of accuracy and convergence time
some of the state of the art methods, such as SSpro and
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SCRATCH [18], [23], [29], [60] where hundreds of BRNNs
are used to achieve an accuracy near to 80%. Hence,
to conclude, the predicted sequences from many simulations
of our proposedmethodology on different PSSP datasetsmust
be carefully extracted and analyzed compared to the results
of these state of the art methods. Furthermore, our method
has comparable results with the method based on the LSTM-
BRNN models which can handle long range dependencies
and it has been reported as the method with highest results
on this problem. In contrast, our approach provides an upper
limit on what methods may be able to capture when they rely
on only local sequence patterns. Consequently, this method
takes advantage of the strong local dependencies of amino
acids. Furthermore, the simplicity of our models is very
important if we take into account the latest developments in
the field with very big datasets, network architectures and
ensembles of networks. Finally, latest developments in the 3D
structure prediction of a protein can benefit from our solution
on the PSSP problem. More specifically, Alquraishi [80] has
presented work, based on deep learning methods, to predict
the 3D structure of a protein from its PS. The author has
indicated a possible improvement to his methodology if he
incorporates PSSP results from other algorithms [80].

The accuracy of 100% will probably never be achieved
for the PSSP problem because of the presence of disordered
regions, the ambiguities inherent in the definitions of
secondary structure, the errors and uncertainties contained in
databases and the role of the solvent and other molecules,
as well as the inherent protein structural dynamics [29]. Nev-
ertheless, the improvement and systematic combination of
sequence profiles, machine learning methods and sequence-
based structural similarity methods seem to be the best
strategy to improve the results related to the PSSP problem.
A contribution on any of these three categories, combined
with other data preprocessing and algorithmic methods may
play a catalytic role on the general improvement of the PSSP
problem results.

As a conclusion to all the results presented in this paper,
we can see that the second order HFO learning algorithm
can effectively detect and extract features from complex
sequential data like the PSSP problem. Furthermore, the com-
bination of multiple ML algorithms seem to be a particularly
good option for complex feature extraction and prediction on
sequential data, as it takes advantage of the benefits of all
techniques. Finally, we demonstrate that a powerful learning
algorithm, such as the HFO algorithm, applied on simple
ANN models for the PSSP problem can produce comparable
results to the most complicated ANN architectures which
have been utilized for this problem. Also, this work, gives
the initiative to other techniques where powerful learning
algorithms can be used for complicated ANN architectures
to produce even more accurate results for the PSSP and other
related problems. Moreover, these methods may be applied
to more problems where the upstream and downstream
information is important for a specific time-step of the
sequence for more generic conclusions.

APPENDIX A
PROTEINS EXCLUDED FROM PISCES DATASET

TABLE 6. Protein sequences which have been excluded from the PISCES
dataset. These protein sequences have been excluded from the datasets
because of miscalculations of the PSI-BLAST.
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