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ABSTRACT As a new 3-D ultrasound imaging method, an automated breast ultrasound (ABUS) has been
widely used in breast abnormality examinations. Because of its excellent 3D visualization, ABUS is also
well suited to the detection of an abdominal wall hernia mesh. Due to the inherent low signal-to-noise
ratio of ultrasound imaging and the large amount of data generated during ABUS scanning, mesh detection
based on subjective observation is extremely time-consuming and prone to missed detection. Therefore,
we proposed a novel abdominal hernia wall mesh detectionmethod based on the you only look once version 3
(YOLOv3) method named the YOLOv3 for mesh (YOLOM) method to detect abdominal wall hernia mesh
to speed up the ABUS reading process. To make a YOLOM method with a good detection efficiency,
we utilized a lightweight cross stage partial attention network (CSPA-Net) as the backbone and applied
a feature enhancement network (FEP-Net) to boost the mesh detection accuracy. An improved loss function
with completed intersection-over-union (CIoU) and the Swish activation function were also employed to
optimize the proposed YOLOM method. We designed ablation study to verify the validity of the proposed
method. The average mesh detection precision reached 98.36%, which was 12.51% and 2.35% higher than
that of the YOLOv3 and you only look once version 4 (YOLOv4) methods, respectively. The experimental
results and comparisons demonstrated that the proposed YOLOM detector is efficient for abdominal wall
hernia mesh detection.

INDEX TERMS Abdominal wall hernia mesh, automated 3-D ultrasound, YOLO, attention mechanism.

I. INTRODUCTION
An abdominal wall hernia is one of the most common
complications of abdominal surgery. According to clinical
data statistics, the probability of an abdominal wall hernia
occurring is 2% - 11%. If infection occurs, the probabil-
ity of occurrence will increase to 23% [1]–[3]. Abdominal
wall hernias do not heal on their own and gradually expand
outward from the infected area; therefore, prompt surgery
is the only treatment option [4], [5]. Mesh repair surgery
has become the standard procedure for repairing abdominal
wall hernias worldwide. However, a variety of mesh-related
complications, such as mesh infection, migration, hematoma
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and intestinal adhesion are possible [6], [7]. Therefore, the
correct preoperative detection of an abdominal wall hernia
mesh can help surgeons adjust the surgical plan to predict
the difficulty of an abdominal wall hernia mesh surgery and
reduce the incidence of related complications or the removal
of a previous mesh.

With the rapid development of mesh materials, meshes
have become increasingly lightweight. Lightweight (LW)
mesh is the first choice for abdominal hernia surgery.
However, because the detection range of a handheld ultra-
sound (HHUS) probe is relatively narrow, it is impossible to
completely and reliably detect and identify a LW mesh at the
same time. It is difficult to detect meshes in either the axial
or sagittal plane using 2-D ultrasound due to the light and
thin characteristics of the LWmesh. As a new 3-D ultrasound
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imaging method, ABUS provides more comprehensive diag-
nostic information through the coronal plane [8], [9] and has
been a concern of sonographers and scholars [10]–[14]. Com-
pared to narrowing the HHUS detection range, the ABUS
scanning range has been greatly improved, but in practical
applications, ABUS may need to scan repeatedly to obtain
an image of a large area, which leads to the amount of
data generated by ABUS for each patient being tremendous.
This causes the following two problems in the detection
of a LW mesh: 1) It is time-consuming and labor-intensive
to manually examine the ABUS ultrasound images. 2) The
detection accuracy is heavily dependent on the experience
of sonographers, which easily leads to missed diagnoses
and misdiagnosis. Therefore, imaging studies have become
important for the detection and identification of abdominal
wall hernia meshes, which can provide effective guidance for
follow-up surgery and treatment.

Two-stage detectors, such as a region-based convolutional
neural network (R-CNN) [15], Fast R-CNN [16] and Faster
R-CNN [17], are performed in two stages. In the first stage,
a region proposal network is used to process images and
generate box proposals where objectsmay exist. In the second
stage, these box proposals are used as features from the
intermediate feature maps. Then, these features are fed to
the final layers to localize and classify the objects of each
box proposal. However, two-stage detectors usually use more
proposal regions, which help to obtain local optimal solu-
tions and improve detection accuracy at the cost of longer
computational time. In contrast, single-stage detectors, such
as the You Only Look Once (YOLO) [18]–[21] and Single
Shot Multibox Detector (SSD) [22] algorithms, are usually
faster and yield less desirable results than two-stage detec-
tors. The YOLO series is a typical single-stage detection
method. Compared with the two-stage algorithms, the YOLO
series algorithm does not require the region proposals stage,
and directly predicts the category probability and location
information of the target. It transforms an object detection
problem into a regression problem, which can completely
achieve end-to-end detection. However, the limitations of the
YOLOv3 [20] algorithm for object detection on ultrasound
images are as follows: (1) The performance in detecting small
objects is often not good when the image noise is large, the
resolution is low and the background is complex. (2) The
YOLOv3 method fuses all low-level features directly with
high-level features. In fact, not all the low-level detail fea-
tures are beneficial to detection. (3) The aspect ratio of the
bounding box is different from the ground truth, which is not
conducive to postoperative evaluation of the implanted mesh.
Recently, the YOLOv4 [21] algorithm, which uses the cross-
stage partial network as the backbone network to extract the
feature and applies a large number of data augmentation tech-
niques, has receivedwidespread attention. However, the num-
ber of parameters and themodule storage size of the YOLOv4
algorithm are much larger than those of the YOLOv3method,
which increases deployment costs and reduces training and
reasoning speed.

To solve these problems, we proposed a novel real-
time detector for abdominal wall hernia mesh based on the
YOLOv3 algorithm named the YOLOM method to improve
the detection efficiency. Our main contributions are as
follows:

1) In the feature extraction process, we introduce a cross-
stage partial network to design a more lightweight feature
extraction network, which enhances the feature extraction
capability of the backbone, improves the detection effect
for small targets, and reduces the amount of calculation and
model storage size. At the same time, we introduce a channel
attention mechanism SE-Net to make the network pay more
attention to the features of the mesh target during the feature
extraction process.

2) Multiscale spatial pyramid pooling (SPP) is added to the
convolutional layer at the end of the proposed backbone. The
SPP block performs pooling operations on the input feature
map at different scales and connects the three pooled feature
maps and the input feature map to increase the receptive field
of the feature map in such a way that the YOLOM method
can detect the object more comprehensively.

3) To ensure the consistency of the bounding box aspect
ratio and accelerate the network convergence, we introduce
Complete-IoU (CIoU) to optimize the YOLOv3 loss func-
tion. The shape of the postoperative mesh is an important
guide for doctors to evaluate the condition of the implanted
mesh and the recovery of the hernia area.

The rest of this paper is organized as follows. The related
work is introduced in the second part. The third part presents
the overview of the proposed YOLOM detection method,
including the motivation and the structure of the YOLOM
method. In part four, experimental results and discussions are
given, where the billion floating point operations per second
(BFLOP/S), the model size, mean average precision (mAP),
the different subscripts of mAP represent mAP calculated
under different IoU conditions. The real-time performance
of frames per second (FPS) are compared. Furthermore, the
comparison results between the YOLOM and other state-of-
the-art detection algorithms are given in part four. Finally,
conclusions are drawn in part five.

II. RELATED WORK
A. MESH DETECTION DATASET
An ABUS database was collected from three types of exper-
iments: gelatin phantom experiments, animal (porcine peri-
toneal) ex vivo experiments and patient experiments. There
were three sets of gelatin phantom experiments, five sets of
animal ex vivo experiments, and data from 97 patients. Signed
informed consent from patients was waived because it was
a retrospective study. The study was approved by the Ethics
Research Committee of our institute. All the images were
taken from the ABUS scanner. The built-in linear array probe
model is 14L5BV, the frequency range is 5 MHz to 15 MHz,
and the maximum scanning depth is 6 cm. Each scan pro-
duces 318 frames of axial images, 730 frames of sagittal
images and 573 frames of coronal images. As shown in Fig. 1,
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FIGURE 1. An ABUS image of the incision site with LW mesh in a
45-year-old male patient.

3-D ultrasound shows the side of the LW mesh in the axial
and sagittal planes. Because the LW mesh is very thin (the
thickness of the LW mesh is only 0.5 mm), doctors usually
choose the coronal plane to detect and evaluate the mesh
in clinical diagnosis. In this paper, we also used multilayer
coronal images for mesh recognition and detection.

B. THE INTRODUCTION OF YOLOV3
The YOLOv3 method is composed of the newly designed
backbone network Darknet-53 and a multiscale detection
network, as shown in the Appendix part A.

The main idea of Darknet-53 is to use five continuous
downsampling modules to change the size of the resolution
of the input image from 416 × 416 to 13 × 13. To solve the
gradient problem caused by network deepening, the resid-
ual module in ResNet is introduced in each downsampling
module. To preserve more image information, the YOLOv3
method uses a convolution stride of 2 instead of the tra-
ditional max-pooling layer. Each down-sampling module
contains a different number of stacked residual units. The
method of multi-scale prediction based on feature pyramid
networks (FPNs) is used to predict the multi-size targets in
the YOLOv3 algorithm, especially for small object detection.
Darknet-53 generates three feature maps of different sizes.
The prediction results of YOLOv3 are the relative positional
relationship between the anchors and the bounding boxes.
Anchor is a set of boxes with only width and height parame-
ters obtained by k-means clustering on the ground truth (GT)
of the dataset. We can convert the prediction results of YOLO
into bounding boxes through (1) to (4).

bx = σ (tx)+ cx (1)

by = σ (ty)+ cy (2)

bw = pwetw (3)

bh = pheth (4)

where tx , ty are the offset of the coordinates, and tw, th are
the ratio coefficients of the width and height of the bounding
boxes relative to the anchors, respectively. pw, ph are the
weight and height of the anchors. We can divide the image
into N ×N grid cells according to the size of the feature map,
and cx , cy are the coordinates of the upper left corner of the
grid cell where the feature map is located. σ is the sigmoid
activation function, which can normalize the coordinate offset
between 0 and 1.

C. SQUEEZE AND EXCITATION NETWORK
For ultrasound images, to disregard invalid information in
images more efficiently and guide where the network should
pay attention, the selection of a suitable attention mechanism
in the CNNs is important. Jie et al. designed a lightweight gat-
ing mechanism named Squeeze-and-Excitation (SE) network
to improve the expression ability of the whole network [23],
which established the relationship between channels using
an efficient fully connected layer. The structure of the SE
module is shown in Fig. 2, which can be roughly divided into
three stages: squeeze, excitation and combination. And we
put the details in Appendix part B.

D. SWISH ACTIVATION FUNCTION
The choice of activation functions in deep networks has a
significant effect on the training dynamics and detection per-
formance [24]. In 2017, Ramachandran P et al. proposed the
Swish activation function to speed up network convergence
and improve classification accuracy. In this study, we used
Swish in the residual module. Swish is defined as (5),

f (x) = x(1+ exp(−βx)−1) (5)

which means that the result is obtained by multiplying the
input value with the sigmoid activation function. β is either a
trainable parameter or a constant parameter. The characteris-
tics of a good activation function should generally be smooth
and robust to negative values. ReLU function can solve the
gradient disappearance problem when the input x > 0, but it
sets all the values of the input as negative numbers to 0. If an
outlier appears, the biases of the neural network are likely
to become very large, making subsequent normal inputs all
become negative numbers, which will make the parameters
no longer update. However, as an activation function between
linear function and ReLU function, Swish can effectively
alleviate this problem. If β = 0, Swish becomes the linear
function f (x) = x/2, and as β → 0, the sigmoid component
approaches as a function from 0 to 1, so Swish becomes like
the ReLU function.

III. PROPOSED METHOD
A. YOLOM NETWORK
The entire YOLOM detector architecture is shown in Fig. 3.
The detector mainly consists of three modules: feature extrac-
tion, feature enhancement and multiscale detection. First,
we replaced the traditional Darknet-53 network with a cross-
stage partial attention network (CSPA-Net). To extract deeper
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FIGURE 2. The structure of SE module.

FIGURE 3. The entire architecture of YOLOM.

semantic information, we designed a feature-enhanced pyra-
mid network (FEP-Net). The images are input to the
CSPA-Net to extract two feature maps with different sizes.
Then, in the feature enhancement stage, the feature map
obtained from the last residual block in the feature extraction
module is input to the FEP-Net module to obtain a more
efficient feature. In the multiscale detection stage, the two
feature maps with different sizes obtained from the residual
blocks in the feature extraction module are up-sampled and
concatenated to obtain feature maps with different receptive
field sizes. The sizes of the two feature maps are 13× 13 and
26 × 26, respectively. Finally, we used the YOLO head of
the YOLOv3 method to generate the bounding boxes. In this
paper, the number of category is 1, and the channel number
of each feature map is 18. Therefore, the YOLOM method
generated 2,382 proposals on each abdominal wall hernia
mesh image, while 8,265 proposals were reduced compared
to the YOLOv3 method.

B. CSPA-NET: FEATURE EXTRACTION NETWORK
CNNs often face the problem of too much calculation in
the training and detection processes, which directly leads to
model training and detection slowdown. Cross-stage partial
network (CSP-Net) [25] can restrict the variability of the
gradients by integrating feature maps from the beginning
and the end of a network stage, which reduces computa-
tions by 20% with equivalent or even superior accuracy.
And it is easy to implement and general enough to cope
with architectures based on ResNet. To reduce the amount
of calculation while keeping or even improving accuracy,
we proposed a new backbone based on a CSPNet. We divide
the input in the channel dimension into two: one part is
extracted through a residual network (ResNet), and then the
two parts of the feature map are feature-fused to achieve a
lightweight backbone. Due to the heavy computation and
high complexity of Darknet-53, a novel lightweight back-
bone network CSPA-Net is proposed. CSPA-Net is composed
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FIGURE 4. The structure of SE_Res module.

of CBS modules and SE_Res modules. A CBS module is
a 3 × 3 convolution kernel, batch normalization and a Swish
activation function. A SE_Res module is shown in Fig. 4.
At the shortcut connection, we divide the input in the channel
dimension into two, and half goes through the downsam-
pling operation of the CBS modules, followed by feature
fusion through concatenation. The shortcut operation does
not increase any parameters or computational complexity.
The SE module restricts the interdependence between the
channels before the feature fusion process of the shortcut and
adaptively recorrects the corresponding strength of the fea-
tures between the channels through the global loss function
of the network. Here, the max-pooling window size is 2.

C. FEP-Net:FEATURE ENHANCED PYRAMID NETWORK
The YOLOv3 algorithm utilizes the global features of differ-
ent convolutional layers of the network but does not make full
use of themultiscale local region features of the convolutional
layer. SPPNet [26] is able to fuse the receptive fields of dif-
ferent sizes and improve the scale invariance of the network,
so that the detector has better robustness to mesh targets of
different sizes. To effectively make use of the local region
features of the backbone, we proposed a feature-enhanced
pyramid network (FEP-Net) based on a SPPNet to fuse the
multiscale local and global features, as shown in Fig. 5. Here,
the multiscale SPP block is composed of three max-pooling
layers, and the size of the pooling window can be computed
from (6).

Sizep =
Sizef
ni

(6)

where Sizep represents the size of the pooling windows, and
Sizef represents the size of the feature maps, and ni = 1, 2, 3.
Due to the large amount of convolution operation parameters
of the deep neural network, the inference speed of the neural
network are reduced. Therefore, we introduced the depthwise
separable convolution (DSconv) [27] into this module. And
we can obtain the pooling windows from (6) are 1, 5, 9, 13,
respectively. The strides of the pooling windows are all 1,
and the input feature maps are padded with 0 to ensure that
the output feature maps after pooling are the same size as the
input.

A DSconv can greatly decrease the number of parameters.
Hence, the computation time and model size are reduced.
We can factorize a normal convolution into a DSconv.
A DSconv includes depthwise and pointwise layers based
on the dotted box in Fig. 5. The former carries out a single-
channel convolution operation on the input, but such an oper-
ation does not make use of the spatial information between
the channels of the input feature map, so the latter carries
out a convolution operation on the former results in the depth
direction to ensure that the number of layers of the network
can be deepened and the performance of the network can be
improved while reducing the amount of convolution opera-
tion computation.

To make the network have a better detection effect on mesh
targets of different sizes, we fused feature maps of different
scales.We used fiveDBLmodules to enhance the featuremap
output by FEP-Net, and used up-sampling to change its size
from 13 × 13 to 26 × 26, and concatenated it to the output
of the last SE_Res block. The result also went through five
DBL modules that were used for feature fusion, and finally,
we obtained two feature maps with sizes of 13× 13× 18 and
26× 26× 18.

D. IMPROVING YOLOV3 LOSS FUNCTION WITH CIoU
The YOLOv3 loss function is a linear sum of three parts: the
coordinate loss, classification loss and confidence loss. The
loss function can be denoted by (7)

Loss = Losscoord + Lossconf + Lossclass (7)

where the Losscoord denotes the coordinate loss, the confi-
dence loss is presented by Lossconf , and Lossclass is calculates
the classifying loss. The Losscoord of the YOLOv3 method
regards (w,h) and (x,y) in (1) as independent variables for
loss calculation. In fact, there is a certain spatial constraint
relationship between the center point coordinates and the
width and height between the bounding box and the GT.
Using a traditional IoU to improve the loss function will
cause the loss function to not be a derivative and make the
network training unable to converge if the bounding box and
the GT do not stack or if the bounding box includes the GT.
To overcome these disadvantages, we introduced intersection
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FIGURE 5. The structre architecture of FEP-Net.

over union (CIoU) [28] by considering three geometric mea-
sures, overlap area, central point distance and aspect ratio,
which better describe the regression of the bounding box.
Therefore, in our research, CIoU is utilized to improve and
modify Losscoord . As shown in the Appendix part C, the
purple, gray and yellow rectangles represent the bounding
box, the GT and the smallest enclosing box covering two
boxes, respectively. The improved Losscoord using CIoU
is as in (8),

LossCIoU = 1− IoU +RCIoU

IoU =
BoudingBox ∩ GroundTruth
BoudingBox ∪ GroundTruth

RCIoU = d/C2
+ αv

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2

α =
v

(1− IoU + v)
(8)

where C is the diagonal length of the smallest enclosing box
covering two boxes, and d = ρ(b, btg) is the Euclidean
distance between the central points of two boxes. IoU is
the intersection-over-union between the bounding box and
the GT, which constrains the overlapping area between the
bounding box and the GT, RCIoU uses d and C to address
the problem of the loss possibly not being able to update the
gradient when the bounding box and the GT are not stacked,
α is the scale factor, v ensures the consistency of the aspect
ratio by calculating the diagonal slopes of the bounding box
and the GT.

IV. EXPERIMENTAL ANALYSIS
In this paper, all experiments are conducted on aWindows 10
(64-bit) Dell workstation with 64 GB of memory an Intel(R)
Xeon(R) E5-2650 V3 2.30 GHz CPU and an NVIDIA Titan
XP GPU with 12.0 GB video memory. The deep learning
framework was PyTorch, and the map and precision-recall
curve were used to evaluate the proposed method. Based on
a priori knowledge of the abdominal thickness range, with
the removal of a large number of frames unlikely to contain
mesh, we collected 2100 original coronal images, divided the
images into a model building set and an independent testing
set using a ratio of 9:1, and further divided the model building
set into a training set and a validation set using a ratio of 9:1.
To ensure that the trained model has certain generalization,
we adapted data augmentation techniques including rotation,
flipping, scaling, and random cropping in the training set to
obtain 13,608 images for model training. In addition, Adam
was used for gradient optimization, and the initial learning
rate was set to 0.0001.

A. ALGORITHM COMPLEXITY
Operational efficiency is critical to the implementation of an
algorithm, so we compare the algorithm complexity in terms
of time complexity and space complexity, and the formulas
are shown in (9),

M = (X − K + 2 ∗ Padding)/Stride+ 1

Time = O(
D∑
l=1

M2
l · K

2
l · Cl−1 · Cl)
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FIGURE 6. The detection and visualization results. (a), (d), (g) are the detection results of YOLOM method, (b), (e), (h) are the Grad-CAM visualization
results obtained through the 13× 13 feature map, (c), (f), (i) are the Grad-CAM visualization results obtained through the 26× 26 feature map.

Space = o(
D∑
l=1

K 2
l · Cl−1 · Cl +

D∑
l−1

M2
· Cl) (9)

where M is the width or height of the output feature map of
the kernel, K is the width or height of each kernel, respec-
tively, D represents the depth of the network, Cl represents
the number of channel of each kernels. Time complexity is

the number of operations of a model, and we use floating-
point operations (FLOPs) and multiply accumulated opera-
tions (MACCs) for evaluation. Time complexity determines
the time for model training and detection, and too much
time complexity will seriously affect the model training and
detection speed. Space complexity refers to the number of
parameters of a model, and we use the number of parameters,
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TABLE 1. Compare the YOLOM algorithm complexity with other SOTA.

model size and memory read and write (MemR+W) for
evaluation. Networks with higher spatial complexity have
a large number of parameters, and a large amount of data
is required to train the network. However, a real dataset is
usually not too large, which makes the model prone to over-
fitting. Table 1 shows the algorithmic complexity compari-
son between the YOLOM and other state-of-the-art (SOTA)
methods. The algorithm complexity of the two-stage detector
Faster R-CNN far exceeds that of the one-stage detectors in
both time and space. For the one-stage detector, our proposed
method reduces the time complexity by 80% and greatly
reduces the space complexity.

B. VISUALIZATION OF the MULTISCALE FEATURE MAPS
To illustrate the effectiveness of the multiscale feature maps,
we visualize the classification imformation of the feature
maps in two layers by Gradient-weighted Class Activation
Mapping (Grad-CAM) [29]. As shown in Fig. 6, the first
column shows the detection results and the ground truth
of meshes (the red boxes denote the detection results, and
the green boxes denote the ground truth), and the last two
columns show the locations of clusters with sizes of 13 and
26 our method finds in the feature maps. It is clear that the
multiscale features can detect meshes of different sizes better.
The 13 × 13 feature map has large perspective field so that
it can detect large meshes more efficiently and the 26 × 26
feature map can detect tiny meshes well. Finally, we use
a nonmaximum suppression (NMS) algorithm to filter the
detection results at different scales to obtain the final mesh
detection results. The step of NMS is to select the bounding
box with the highest confidence, and then calculate the IoU
in pairs with other bounding boxes, filter out the bounding
boxes with IoU greater than the threshold, and iterate until
only the last bounding box is left.

C. ABLATION STUDY
In order to verify the effectiveness of each module, we con-
ducted an ablation study. In Table 2, the effects of CSPA-Net,
FEP-Net, CIoU, and the Swish activation function on the
YOLOM method are mentioned. According to this table,
when the YOLOv3 backbone is replaced with CSPA-Net,
the mean average precision (mAP) of the YOLOM method
increases from 85.85% to 89.59%, which fully shows that the
introduction of the cross-stage partial network and SEmodule
into the backbone can make the network better learn the
characteristics of a mesh. The mAP increased from 89.59%

TABLE 2. The ablation experiments analyses of YOLOM.

to 95.47%when we used FEP-Net in our method. This proves
that FEP-Net can expand the receptive field of the featuremap
and is effective for multiscale detection. Moreover, the mAP
increased by 1.87% when the YOLOMmethod uses CIoU to
improve the loss function. CIoU loss takes three geometric
properties into account, the overlap area, central point dis-
tance and aspect ratio, and leads to faster convergence and
better performance. The Swish activation function improved
the mAP by 1.02%, and we can conclude that using Swish
instead of ReLU can improve the detection accuracy without
changing any network structure. The final mAP obtained on
the mesh dataset is 98.36%, which is 12.51% higher than the
original YOLOv3 method. As a result, the components we
used increase the mAP.

D. DETECTION SPEED
In Table 3, the detection time of the proposed YOLOM detec-
tor and other SOTA detector algorithms is shown. According
to this table, the average detection time of the YOLOM
detector on an Nvidia TITAN Xp is 21.4 ms for each test
image. In addition, because of the low parameters of the
proposed detector, it is capable of running on a CPU, and
its detection time is also very short. However, the detection
time of the original YOLOv3 method on the same GPU
is 50.5 ms. The two-stage detector Faster R-CNN has the
longest detection time. Therefore, when using GPU for detec-
tion, YOLOM’s detection speed is approximately three times
faster than YOLOV3, which meets the requirements of real-
time ultrasound image detection.

E. VISUAL RESULTS
The detection results of the YOLOM and other SOTA detec-
tors for three test images are visualized in Fig.7. According
to this figure, it can be seen that the proposed YOLOM
detector has a perfect ability to detect mesh objects using
ABUS. As seen in Fig. 7(a), the SSD recognizes the more

VOLUME 10, 2022 31427



S. Chen et al.: Automatic Abdominal Hernia Mesh Detection Based on YOLOM

FIGURE 7. The visualization detection result of the proposed YOLOM and other SOTA detectors for three test images.(a) is a gelatin phantom
experiments image; (b) is an animal (porcine peritoneal) ex vivo experiments image; and (c) is a patient experiments image.

TABLE 3. Comparing the detection time of the proposed YOLOM with
other SOTA detector algorithms.

curved mesh target as two targets. As shown in Fig. 7(c),
the YOLOv3 method did not completely detect the mesh
target, and the SSD detected themesh target with a clear mesh
structure as a single mesh target, while the YOLOv4 method
only detected the mesh with a clear mesh structure. At the
same time, it is not difficult to find that our method is more
similar to the ground truth shape and position and has a better
detection effect on small target objects with subtle differences
between the foreground and background.

F. COMPARASION WITH OTHER SOTA METHODS
The performance comparison between the YOLOM detector
we proposed and the SOTA detectors is shown in Table 4.
All experiments in this paper are conducted on the same
test dataset. It can be seen from the table that the method
proposed in this paper has a perfect detection effect for
the mesh dataset, and can fully ensure the high efficiency
and practicability of clinical auxiliary diagnosis. Compared
with the original YOLOv3 algorithm and the latest YOLOv4
algorithm, the mAP50 of our proposed method is 12.51 and
2.35 higher than them, respectively, and at the same time
greatly improves the detection speed.

The Precision-Recall curve (PRC) is an important indi-
cator for evaluating the object detection model. PRC is a
curve representing precision and recall rate under different
confidence thresholds. In the dataset, we define the label as

FIGURE 8. The Precision-Recall curve of the proposed YOLOM with other
SOTA detectors.

FIGURE 9. Failure cases of YOLOM detection. (a) is a mesh implanted in
the abdominal cavity close to the fascia; (b) is an in vitro images.

mesh as True (T), and the label as mesh as False (F); in the
prediction result, the confidence higher than the threshold is
defined as the correct classification as positive (P), otherwise
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FIGURE 10. The entire structure of YOLOv3.

it is negative (N). As show in (10), precision represents the
percentage of samples with a label of true among the samples
predicted to be positive. And recall means the percentage
of samples predicted to be positive among the samples with
a label of true. The mesh PRC of are illustrated in Fig. 8.
According to this figure, the detection precision is high for
most test images. From the PRC, we can see that the YOLOM
detection of mesh objects has the best effect because it
encompasses all the SOTA algorithm PRC. The performance
of the Faster R-CNN, SSD and YOLOv4 methods are almost
the same, but it can be seen from their intersection with
the black dotted line that the performance of the YOLOv4
method is slightly higher than the other two. The detection
performance of the YOLOv3 method for mesh targets is not
as good as the other SOTA algorithms.

Precision =
TP

TP+ FN

Recall =
TP

TP+ FP
(10)

G. LIMITATIONS OF THE PROPOSED METHOD
After testing, it was found that the detection effect of a small
part of the test images is not ideal. We enumerate them to
analyze the limitations of the YOLOM method, as shown in
Fig. 9. In the first column of the image, due to the sharp
deformation of the mesh, YOLOM only detects part of the

TABLE 4. Results comparison.

mesh target. The second column of the image has a large
degree of mesh object curvature that was not detected. From
these two failure cases, we can infer that the reason for the
detection failure are as follows: when a mesh target is com-
pletely perpendicular to the coronal plane, the target may not
be detected accurately. Therefore, in practical applications,
doctors should pay attention to the angle of the mesh scan
and perform multi-angle scans if necessary.

V. CONCLUSION
In this research, a mesh detection method based on the
YOLOv3 method is proposed that utilizes CSPA-Net, FEP-
Net, the Swish activation function and CIoU. The results
of the experiments and comparisons demonstrated that the
proposed YOLOM detector was more efficient than other
existing methods for abdominal wall hernia mesh detection
in ABUS images. In this study, the backbone we used could
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efficiently reduce the number of parameters of the YOLOM
detector.

Since the calculation amount is only one-eleventh of the
original method, we can use a mediocre GPU for training.
In addition, the proposed YOLOMmethod is a flexible detec-
tor because its backbone can be changed from CSPA-Net
to other backbones, such as MobileNet or EfficientNet, for
different datasets without programming difficulties. Due to
the high importance of activation functions and their direct
impact on models, the proposed method employs the Swish
activation function. The results of the experiments show that
Swish improves the efficiency compared with other functions
such as LeakyReLU. In addition, in this study, for bounding
box regression and improving the loss function, the CIoU
method was applied. This method directly minimizes the
normalized distance between central points of two bounding
boxes, which leads to much faster convergence than other
methods such as IoU. Moreover, we found that the coro-
nal mesh texture of an abdominal wall hernia mesh was
particularly effective. Automated 3-D ultrasound can offer
significant evidence for clinical diagnosis and surgical repair
procedures and is a promising detection method for abdomi-
nal wall hernia mesh imaging.

APPENDIX
A. THE STRUCTURE OF YOLOV3 METHOD
The whole structure of YOLOv3 method is shown in Fig. 10.

B. SQUEEZE AND EXCITATION NETWORK
In the squeeze stage, the featuremap is compressed into a (1×
1×N ) tensor by a global average pooling layer. N represents
the global information of each channel. Feature extraction for
each channel as in (11):

zN = Fsq(µN ) =
1

H ×W

H∑
i=1

W∑
j=1

µN (i, j) (11)

where µN is the the feature map of the N th channel, H and W
are the height and width of the feature map, respectively.

In the excitation stage, to obtain theweight of each channel,
the correlation of the channels is established through two fully
connected layers, as shown in (12):

s = Fex(z,W ) = σ (W2δ(W1z)) (12)

where z is the result of the squeeze stage, W1 and W2 are the
fully connected layers, respectively. The number of channel
for W1 is N

r and the number of channel for W2 is N. r is a
scaling factor to reduce the amount of parameters. σ and δ
are the sigmoid and ReLU activation functions, respectively.

In the combination stage, the channel feature is merged
with the original feature map, as shown in (13):

X̃ = Fcom(µN , sN ) = µN × sN (13)

where sN is the weight for each channel.

FIGURE 11. CIoU between bounding box and GT, where the normalized
distance between central points can be directly minimized. C is the
diagonal length of the smallest enclosing box covering two boxes and
d = ρ(b,bgt ) is the Euclidean distance between the central points of two
boxes.

C. CIOU
The detailed description of CIoU as shown in Fig. 11.
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