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ABSTRACT The remarkable growth in the demand for multimedia streaming over wireless networks is chal-
lenged by spectrum scarcity. To mitigate the effect of such a challenge, Cognitive Radio Networks (CRNs)
were introduced as a promising technology since CRNs offer a great advantage to unlicensed users, also
known as secondary users (SUs), by allowing them to opportunistically access the licensed bands when
these bands are not used by their primary users (PUs). In this work, an LTE-based CRN is proposed with
the objective of guaranteeing continuous video playback at the SUs end at acceptable perceptual quality.
To accomplish this objective, different resource allocation schemes are introduced to adaptively assign the
available channels to SUs while considering the quality of these channels as well as the buffer occupancies
of the different SUs. In addition, a streaming algorithm is proposed to ensure the delivery of the base and
enhancement layers of the scalable video frames within the delay constraints with priority given to the base-
layers of the video frames to guarantee the continuity of video playback. Furthermore, adaptive modulation is
used based on the channel state information (CSI) as fed-back by the SUs. The performance of the proposed
schemes is evaluated through extensive Monte-Carlo simulations.

INDEX TERMS Cognitive radio networks, Markov chains, primary radio user activity, resource
allocation, LTE.

I. INTRODUCTION
Over the past few years, the demand for bandwidth-hungry
applications (e.g., Netflix, Youtube, etc.) has been exponen-
tially growing. These applications have generated the major-
ity of traffic in wireless and wired networks over the last
decade [1] and is expected to account for 82% of traffic in
2022 [2]. Therefore, despite the recent advances in wire-
less technology, multimedia applications will continue their
increase in the demand for more bandwidth. As a result,
the expected growth in wireless multimedia applications will
always be challenged by their stringent quality-of-service
(QoS) requirements in addition to the expected shortage of the
radio spectrum, also known as the spectrum scarcity problem.
However, it was argued in [3] that spectrum scarcity is not
mainly due to shortage in the availability of the resources, but
due to how they are licensed and how they are utilized, which
is usually caused by the static assignment of the licensed
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spectrum. Recent measurements have generally shown that
only less than 5% of the statically assigned spectrum is
efficiently used [4], [5]. To improve spectrum utilization, the
concept of opportunistic access of the available spectrumwas
first presented in [6]. This is also known as dynamic spectrum
access (DSA)where an unlicensed user, also called secondary
user (SU), is allowed to access the unused or idle bands
of the licensed spectrum of the licensed or primary users
(PUs) [3]. When a PU is absent from a particular frequency
band (i.e., idle) at distinct points in time and space, this is
known as a spectrum hole [7]. Specifically, a spectrum hole
is a reserved segment of the spectrum that is idle. A recently
introduced technology that is expected to help to overcome
the scarcity problem is cognitive radio (CR), which is a DSA
technique that efficiently uses the spectrum and hence can
help in satisfying the growing demand for innovative wireless
services.

This inspired many researchers to propose different
schemes with the objective of enabling dynamic allocation
of inefficiently utilized spectrum to SUs in need. Therefore,
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Cognitive Radio Networks (CRNs) were introduced as a
promising solution for efficient spectrum utilization by
enabling interactive wireless users to sense and learn the
surrounding environment and correspondingly adapt their
transmission strategies [8].

The nature of bandwidth-hungry multimedia applications
allows them to become one of the candidates that can fully
benefit from the many potentials of CRNs. The main chal-
lenge of video streaming over a CRN is to maintain sta-
ble and optimal video quality under the time-varying nature
of the underlying wireless channels. Recently, CRNs have
been considered to be the future of the cellular networks in
the context of spectrum sharing between different operators.
Spectrum sharing allows a lightly loaded operator to share
their unused spectrum with another operator to achieve effi-
cient spectrum utilization. This is relevant in the context of
the 4G cellular standard 3GPP LTE-A due to the recently
introduced feature of carrier aggregation (CA) [9], [10]. The
LTE is a technology that offers high spectral efficiency, fast
adaptation to time-varying channel conditions and robustness
against interference [11], [12] and more importantly spec-
trum flexibility. Such advantageous characteristics resulted
in choosing LTE as the implementation platform of CRNs.
The authors in [9] suggested the use of sensing for dynamic
spectrum sharing in cognitive LTE-A cellular networks. They
developed and analyzed energy detectors that were designed
to solve the problem of sensing in the presence of a desired
signal in an LTE-A based system. Also, the target of the
work in [13] was to implement a spatial interweave LTE-TDD
based cognitive radio. The authors argued that using LTE as
the physical layer of the CRN would result in an increase
of the network spectral efficiency. In addition, they focused
on spatial interweave CRNs in which a SU uses an antenna
array to perform null-beamforming in the PU’s direction in
order to spatially reuse the spectrum. They also proposed
innovative solutions to avoid interference to the primary
system where an over-the-air calibration technique at the
secondary base station was designed in addition to a beam-
forming strategy based on the channel reciprocity hypothesis
inherent in TDD systems. Furthermore, the authors in [14]
proposed a CR-based coordinated dynamic spectrum access
scheme for LTE, where a Spectrum Policy Server (SPS)
is responsible for spectrum management in an LTE multi-
operator heterogeneous network (HetNet). They stated that
their proposed architecture improved the spectral efficiency
and thus achieved enhanced data rates. The work in [12]
investigated the allocation of transmission power and band-
width in a cognitive LTE based network that contains a
secondary enhanced NodeBs (eNBs) with different signal-
to-interference-plus-noise (SINR) requirements in addition to
different application-layer quality-of-service (QoS) require-
ments. A novel resource allocation strategy was proposed in
which the total queue size in the eNBs at the PUs and SUs
is minimized subject to interference requirement and queue
stability constraints of the primary eNBs. Their proposed

algorithm showed low complexity and outperformed previ-
ously proposed schemes.

Generally, resource allocation is a keymechanism in decid-
ing on the optimal assignment of the available resources
among different SUs such that the performance of the CRN is
optimized. Such optimization could be based on some criteria
such as maximizing the throughput, fairness, spectral effi-
ciency [15]. However, a fundamental requirement of CRNs
is that the SUs should not cause any interference to the PUs.
Nevertheless, the nature and requirements of the underlying
applications over CRN should still be taken into consideration
when assigning CRN resources. Therefore, in what follows,
we shed light on the requirements of video streaming appli-
cations and common techniques in the literature for resource
allocation in CRNs. In [16], [17], the authors focused on
streaming scalable encoded video-on-demand over CRNs in
an infrastructure-based CR system. They proposed a channel
allocation scheme that jointly considers the status of the
playback buffers at the SUs and the quality of the available
channels while allocating channels among active SUs. They
also presented an adaptive video streaming algorithm that
employs Scalable Video Coding (SVC) while adapting the
modulation level based on the channel conditions with the
objective of meeting a target bound on the achieved bit error
rate (BER). Also, in [18], a content driven proportionate chan-
nel allocation scheme for streaming SVC over CRNswas pro-
posed. It takes into consideration the various requirements of
secondary applications while maintaining the long term fair-
ness among SUs. The main aim of the work was to improve
the overall satisfaction of the SUs by increasing the quality-
of-experience (QoE) especially for rapidmotion (RM) type of
video users. The work in [19] investigated the problem of
multicast multimedia streaming in multi-hop CRNs and pro-
posed an intelligent multicast routing protocol for multi-
hop ad hoc CRNs that can support multimedia streaming.
The proposed protocol performs path selection and channel
assignment for the different multi-cast receivers. Path selec-
tion is based on the shortest path tree (SPT) that performs the
expected transmission count metric (ETX). Channel selection
is based on the ETX, which is a function of the probability
of success (POS) over the different channels, which, in turn,
depends on the channel-quality and availability. In [20], the
authors proposed a heuristic channel allocation mechanism to
lower the complexity of their obtained optimization problem,
which is of order O(n3), where n is the number of the active
SUs in the network. The proposed algorithm randomly selects
a PU and a SU at each iteration. During each iteration, the
selected SU scans the selected primary channel to gather
information about the transmission power of the PU and
channel status. Assuming that the number of PUs is less
than the SUs, after some iterations, all the primary channels
will be scanned and thus the SUs can select their channels.
In [21], the problem of resource allocation was formulated
as an Integer Linear Programming (ILP) problem where a
heuristic scheme was proposed to solve this ILP problem.
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The idea of the scheme is to divide the available bands intoM
sets and each SU forms a preferable channel list for the other
SUs. Based on the distance from other users and the SINR
of the channel, channels with lower SINR will be assigned to
the closest users.

The performance of CRNs is highly dependent on effi-
cient modeling of the PUs’ behavior. Several models have
been proposed in the literature. For example, the authors
in [8] and [22] modeled the traffic patterns of PUs using an
M/G/1 queuemodel in which arrivals areMarkovian, service
times have a general distribution, and the packet arrival pro-
cess is a Poisson random process with average packet arrival
rate λ. While [23]–[26] assumed that the activity of a PU
follows the Poisson model, however, [27] argued that such
a model neglects the short-term fluctuations as well as the
bursty and spiky features of the PU activities. Thus, a first-
difference filter clustering model was proposed to overcome
the drawbacks of the Poisson model. Another approach that
is widely used in the literature is the Markovian based model.
For example, the work done in [28]–[30] used continuous-
and discrete-time Markov chains (MC) models. A special
case is the 2-state MC model where there are only two states,
namely, the busy state, which is the state when the radio
channel is occupied by the PU, and the idle state, which is the
state when the radio channel is free and a SU can opportunis-
tically access the channel. By the same token, in [31]–[37],
the PU activity pattern in each channel was assumed to be a
continuous ON/OFF random process where the ON-period
represents the time when a PU channel is busy i.e., occu-
pied by one of the PUs, and the OFF-period represents the
time where a PU channel is idle. The ON/OFF periods are
assumed to be exponentially distributed with parameters λON
and λOFF, respectively.
In this work, we consider a CRN over an LTE plat-

form. This CRN consists of N PUs and M SUs where it
is assumed that the activity pattern of the PU follows the
widely accepted 2-state continuous-time MC model. In this
model, state 1 indicates that the PU is idle and thus the
corresponding channel can be used by any of the SUs. Sim-
ilarly, state 0 implies that the PU’ channel is busy and thus,
cannot be allocated to any SU in demand for a channel. It is
also assumed that the PU channels switch from state 1 to
0 and from state 0 to 1 with exponential rates, respectively.
The objective is to guarantee uninterrupted video playback at
the SUs with acceptable perceptual quality. To achieve such
an objective, various resource allocation schemes are intro-
duced. These schemes adaptively allocate the idle PU chan-
nels to SUs while considering the quality of their assigned
channels in addition to their buffer occupancies. Furthermore,
a streaming algorithm is introduced to guarantee the delivery
of scalable video frames. Specifically, this algorithm aims
to deliver the base and enhancement layers within the delay
constraints with higher priority granted to the base-layers
to ensure the continuity of video playback. Additionally,
adaptive modulation is employed while taking into consider-
ations the channel state information (CSI) as fed-back by the

reporting SUs. Extensive Monte-Carlo simulations are used
to evaluate the performance of the proposed schemes.

The rest of the paper is organized as follows. In Section II,
the system model and problem formulation are introduced.
The proposed dynamic resource allocation algorithms are
introduced in Section III. Numerical and simulation results
are discussed in Section IV before the paper is finally con-
cluded in Section V.

II. SYSTEM MODEL
In this work, we consider a CR system over an LTE plat-
form, where N SUs denoted by SU1, . . . ,SUN share a set of
M orthogonal primary channels denoted by PU1, . . . ,PUM
each with K resource blocks (RBs), which are denoted by
RB1, . . . ,RBK . This system assumes an interweave mode of
transmission such that the PUs and SUs cannot simultane-
ously access the CR spectrum. Therefore, once a channel is
declared idle by the base station (BS), it will remain available
until the end of a certain period of time denoted by Tslot.
In this model, RBs are scheduled every transmit time interval
(TTI), which is set to 1 ms. In addition, the proposed model
adopts equal power allocation to guarantee that the same
transmission power is allocated to all RBs. In this case, this
allocated power is equal to the maximum power assigned
to the BS divided by the total number of RBs [38]–[40].
This system model is illustrated in Fig. 1. The behavior of
any of the PU channels is modeled by the discrete 2-state
MC shown in Fig. 2 with a transition probability matrix Pm
where each of the states represents whether the m-th channel,
m ∈ {1, 2, . . . ,M}, is available or not. When in the ‘‘Idle’’
state, the m-th PU channel is available and can be allocated
to any of the SUs, while when in the ‘‘Busy’’ state, the m-th
PU channel can not be allocated to any of the SUs. The
CR base station (CR-BS) allows the opportunistic access of
the available PU channels through efficient spectrum sens-
ing and channel assignment of any available PU channels
among the SUs. Spectrum sensing [41] and management [9]
are extensively addressed in the literature and therefore are
beyond the scope of this work. Moreover, it is assumed that
theN SUs are interested in streaming video sequences via the
CR-BS from a video source hosting video sequences that are
scalable-encoded using the H.264/SVC standard and can be
rate controlled without the need for transcoding.

The idle (i.e. available) PU channels are allocated to
the active SUs based on the information they feedback to
the streaming algorithm. This includes the instantaneous
buffer occupancies of the SUs as well as the signal-to-noise
ratio (SNR) of the available PU channels as measured by
interested SUs. The channel gain hBS,SU is assumed to be
constant within each TTI. The micro urban channel model
introduced in [42] is adopted in this work. Additionally,
shadow and Rayleigh fading are also assumed in this work.
The log-normal random distribution is used to model the
shadow fading whereas the path loss for the BS-SU link is
defined as 36.7 log10 (d[m]) + 22.7 + 26 log10( f [GHz]).
The duration of an idle time slot Tslot is assumed to be fixed
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FIGURE 1. Proposed video streaming scenario.

FIGURE 2. Primary user channel model.

and equal to one TTI. In this work, it is assumed that each
available channel can only serve one user every TTI, however,
a SU can be assigned more than one PU channel based on
availability and on the current requirements and reported
information by other SUs. Once a channel is declared idle, the
CR-BS schedules the transmission of video frames under the
constraints of a maximum bit budget of each of the allocated
channels while meeting the delay deadline according to the
proposed channel allocation and streaming algorithms as will
be explained later.

Prior to channel allocation, the buffer occupancies as well
as channel state information (CSI) are reported by the SUs to
the CR-BS. Based on this reported information, the CR-BS
estimates the number of RBs required by the n-th SU using
the following metric:

RBReq
n =

rn
1
N

∑N
j=1 rj

×
Rreqn

1
N

∑N
j=1 R

req
j

, (1)

where Rreqn is the required throughput of the n-th SU and rn is
defined as

rn =
1
K

R∑
i=1

SNRn,i, (2)

where SNRn,i is the SNR of the n-th SU on the i-th RB over a
specific TTI. The achievable rate of any user is then assumed
to be calculated using the well-known Shannon’s capacity
formula.

III. PROPOSED DYNAMIC RESOURCE ALLOCATION
ALGORITHMS
The goal of the proposed algorithms is to maintain the con-
tinuity of the video playback at the SUs end while guaran-
teeing the quality of the streamed scalable video sequences.

Therefore, the channel allocation algorithms are designed
to sense and identify available PU channels then adaptively
allocate the RBs at these PU channels to the SUs based
on their reported information, which is periodically received
every Tslot. In this work, it is assumed that the CR-BS
always gets the feedback information from the SUs before
the next transmission (i.e., during Tslot) on a reliable error-
free reverse channel. This information includes the buffer
occupancy of the SU as well as the measured SNR on the
different channels from that SU’s perspective. Three resource
allocation schemes are proposed and investigated in terms
of their performance. The pseudocodes for the proposed
resource allocation algorithms are explained in what follows
in Algorithms 1, 2, and 3, respectively.

A. BUFFER-BASED ALLOCATION
The first allocation strategy is solely based on the status of the
playback buffer as detailed in Algorithm 1. In more details,
available RBs are allocated to the SUs by the the BS. This
is done based on a comparison of their buffer occupancies
to a predefined threshold, 1th, to decide on the urgency of
sending the video frames to each of the SUs. Thus, the SUs
with lower occupancies are served first to avoid starvation,
however, they may not be allocated a good quality RBs.
Therefore, this Buffer-Based algorithm considers the follow-
ing two scenarios:

• All SUs have their buffer occupancies larger than the
threshold (1n > 1th,∀n = 1, 2, . . . ,N ), or all their
buffer occupancies are below or equal the threshold
(1n ≤ 1th,∀n = 1, 2, . . . ,N ). In this case, the avail-
able RBs are equally allocated to the SUs in a Round
Robin fashion, starting with the SU with the minimum
occupancy. The procedure is repeated until all the avail-
able RBs are fully allocated to the SUs.

• Some SUs are underflowing (1n ≤ 1th, n =

1, 2, . . . ,Nu) with NU ≤ N . Thus, the available RBs are
only allocated to the SUs in need starting with the SU
of the minimum occupancy and so on. The procedure is
repeated until all the available RBs are allocated in full
to the SUs.

B. SNR-BASED ALLOCATION
The second allocations scheme is solely based on the
reported SNR of the different RBs as seen by the SUs
as detailed in Algorithm 2. Each SU reports to the
BS a vector of the measured SNRs over all the avail-
able RBs, SNRn= [SNRn,1, SNRn,2, . . . ,SNRn,K ],∀n =
1, 2, . . . ,N . To elaborate, assume that the nth SU has the
largest SNR reported for the k th RB, thus, SNRk,n =
max(SNRk,1,SNRk,2, . . . ,SNRk,N ). Hence, the BS will
allocate the k th RB to the nth user who can achieve the
maximum quality when assigned that RB. When two or more
SUs have the same quality level for on the sameRB, this RB is
allocated randomly to any of them. However, it is important
to note that allocation that is only based on reported SNRs
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Algorithm 1: Buffer-Based Allocation

Input : K ,1n,RB
Req
n , n = 1, 2, . . . ,N

Output: RBSU1 ,RBSU2 , . . . ,RBSUN // Vector of RBs
allocated to each SU.

Set : 1th = x; // Buffer threshold.
1 if 1n > 1th or 1n ≤ 1th,∀n = 1, 2, . . . ,N then
2 sort(11,12, . . . ,1N ) // sort in the ascending order.

Allocate required RBs to all SUs on Round Robin
basis;

3 K ← K − RBReq
n // the remaining available RBs

4 end if
5 else if 1n ≤ 1th, n = 1, 2, . . . ,Nu then
6 sort(11, 12, . . . ,1Nu ) // sort in the ascending

order. Allocate required RBs to all SUs on Round
Robin basis;

7 K ← K − RBReq
n // the remaining available RBs

8 end if

may assign the RBs with good quality to SUs that are not
starving while ignoring those in need. Clearly, when the state
of the playback buffer is ignored, this may result in starvation
instants and hence interruptions in the playback for some of
the SUs. As before, the procedure is repeated until all the
available RBs are fully allocated to the SUs.

Algorithm 2: SNR-Based Allocation

Input : K ,SNRn, n = 1, 2, . . . ,N ,RBReq
n .

Output: RBSU1 ,RBSU2 , . . . ,RBSUN // Vector of RBs
allocated to each SU.

1 for k = 1, 2, . . . ,K // for each available RB do
2 SNRk,n = max(SNRk,1,SNRk,2, . . . ,SNRk,N ); //

Allocate the required RBs to SUn with max SNR
3 K ← K − RBReq

n // the remaining available RBs
4 SNR(:,n) = 0 // remove SUn
5 end for

C. JOINT BUFFER AND SNR BASED ALLOCATION
The third allocation scheme is a joint one in which allocation
is based on both the channel quality and playback buffer occu-
pancy as detailed in Algorithm 3 and Fig. 3. The BS allocates
SUs with buffer occupancies below the threshold (1n) the
available RBs on channels with the highest SNR. Such a
strategy is expected to reduce the possibility of any needed
retransmissions and hence results in efficient utilization of
the available resourceswhilemaintaining uninterrupted video
playback at acceptable quality.

D. PROPOSED STREAMING ALGORITHM
The streaming algorithm is responsible for scheduling of the
video frames within the slots of the allocated RBs based
on certain constraints, which, for example, could be frames
deadlines to guarantee continuous playback. In this work,

FIGURE 3. Joint buffer and SNR based allocation algorithm flow chart.

Algorithm 3: Joint Buffer and SNR Based Allocation

Input : K , SNRn, n = 1, 2, . . . , N , RBReq
n .

Output: RBSU1 ,RBSU2 , . . . ,RBSUN // Vector of RBs
allocated to each SU.

Set : 1th = x; // Buffer threshold.
1 if 1n > 1th or 1n ≤ 1th, ∀n = 1,2, . . . , N then
2 sort(11, 12, . . . ,1N ) // sort in the ascending order.

Allocate the required RBs to all SUs on Round
Robin basis;

3 for k = 1, 2, . . . ,K // for each available RB. do
4 SNRk,n = max(SNRk,1,SNRk,2, . . . ,SNRk,N );

Allocate the required RBs to SUn with max
SNR;

5 K ← K − RBReq
n // the remaining available RBs

6 SNR(:,n) = 0 // remove SUn
7 end for
8 end if
9 else if 1n ≤ 1th, n = 1, 2, . . . ,Nu then
10 sort(11,12, . . . ,1Nu ) // sort in the ascending order.

Allocate RB to only in need SUs on Round Robin
basis according to their ascending order;

11 for k = 1, 2, . . . ,K // for each available RB. do
12 SNRk,n = max(SNRk,1,SNRk,2, . . . ,SNRk,Nu );

Allocate required RBs to SUn with max SNR;
13 K ← K − RBReq

n // the remaining available RBs
14 SNR(:,n) = 0 // remove SUn
15 end for
16 end if

video sequences are encoded using the H.264/SVC encoding
standard into one base layer (BL) and two enhancement layers
(ELs). It is well known that receiving only the BLs provides
the basic acceptable quality level, however, the quality level
can be enhanced by guaranteeing the correct transmission

28184 VOLUME 10, 2022



M. Helmy et al.: Spectrum Allocation Techniques for Cognitive Radio Networks

of more ELs. If the buffer occupancy of a SU is below the
desired threshold, then the BL of the video sequence of that
SU is transmitted for the purpose of maintaining the playback
continuity. After the successful transmission of all scheduled
BLs of the SUs, the streaming algorithm checks whether
there is still available RBs or not. If yes, then the algorithm
schedules the transmission of more ELs to further improve
the achieved quality. To decide which EL layers to transmit,
the number of layers L of a frame f should be received before
the deadline of that frame. This is done by adding the current
time slot t to the time required to transmit ELs using

t +

∑L
l=1 b

f ,l
n

rn
< display time of frame f , (3)

where bf ,ln is the number of bits in the l th EL of frame f and
rn is the average rate of the nth SU.

IV. SIMULATION RESULTS
In this section, we provide the details of the simulation
setup and results to study, compare and validate the proposed
allocation and streaming strategies. For the simulation envi-
ronment, we used MATLAB and all numerical results are
averaged over 50 simulation runs where each run lasts for
30 seconds. In all simulations, the BS transmits encoded
video sequences to N = {3, 8, 15} SUs over M = 3 PUs’
channels that are opportunistically accessed according to the
discrete-time two-state Markov chain model with transition
matrix

P =
(
0.957 0.043
0.9 0.1

)
(4)

with limiting probability π1 = 0.3. Moreover, in our simu-
lations, we consider a single LTE cell with a BS located at
the center of the cell with a radius of 500 m and a number
of downlink RBs = {6 − 100}. PUs and SUs are distributed
randomly in the cell. Available RBs are uniformly distributed
among the PU channels by the BS. For example, if the BS
operates at 20 MHz, there will be 100 RBs available, in total,
to be distributed among the 3 PUs. Clearly, the total number
of RBs available for SUs depends on the number of available
(i.e., idle) PU channels. For instance, if there is only one idle
PU channel, then 33 RBs are available, if 2 PU channels are
idle then 66 RBs are available, and so on. Finally, according
to the LTE standard, the transmission power of the BS is set
to the maximum value of 46 dBm (39.8 W).

A. STREAMING SINGLE-LAYERED VIDEO
In this work, the trace file for the single layer H.264 encoded
Sony Demo video sequence with a playback rate of fp =
30 fps and a group of picture (GoP) structure of G16B15 is
used. A main objective of this study is to maintain continuous
playback at the SUs end by preventing/limiting starvation
instants at the playback buffer by providing SUs in need
with channels of the best possible quality while guaranteeing
fairness among the SUs. To evaluate the performance of the
proposed allocation schemes, two metrics are applied: the

average buffer occupancy of each of the SUs and the Jain’s
fairness index. The Jain’s fairness index is a metric used in
network engineering to determine fairness among users. The
result ranges from 1

N (worst case) to 1 (best case). The Jain’s
fairness index is calculated using

J (RSU1 ,RSU2 , . . . ,RSUN ) =
(
∑N

i=1 RSUi )
2

N ×
∑N

i=1(RSUi )2
. (5)

Figure 4 shows the Jain’s fairness index calculated
using (5) for different numbers of RBs and different num-
bers of SUs for the proposed allocation strategies. For the
SNR-based allocation, two scenarios are considered and
labeled in the figure as greedy SNR and SNR-based allo-
cation, respectively. The difference between the two tech-
niques is that in the greedy SNR approach, SUs reporting
the highest SNR during the different TTIs will be always
allocated the available RBs. However, in the SNR-based
technique, the SUs in need could be assigned RBs only once
in every TTI. Intuitively, the greedy SNR approach is the
worst in terms of fairness for all cases and thus is not recom-
mended. Whereas, the joint buffer and SNR-based technique
outperforms the other approaches in terms of fairness as the
number of SUs decreases. Such behaviors are depicted in
Figs. 4(a), 4(b) and 4(c). Figure 4 also shows that the buffer-
based allocation technique has comparable performance to
the joint and SNR-based approaches as the number of SUs
increases and the number of RBs decreases.

Figures 5(a), 5(b) and 5(c) show the effect of the steady
state (i.e., limiting) probability of finding a channel (say the
m-th channel) idle (i.e., π1,m) on the average buffer occu-
pancy per user. In this figure, the number of RBs is fixed to
6 for a different numbers of SUs {3, 8, 15}. It can be seen
that the joint buffer and SNR-based approach outperforms
the SNR-based and buffer-based, when deployed individu-
ally, in most of the cases. Also, the figure shows another
intuitive result, which is as the number of SUs increases,
the average number of frames at the SUs’ buffers decreases.
Such behavior is expected since the fixed shared resources
are now distributed among a higher number of users. Also,
it is noticed that as π1,m increases, the average number of
frames at the SUs’ buffers increases. This is expected since
a higher number of video frames could be transmitted as the
probability of having more idle channels increases.

Figures 6(a), 6(b) and 6(c) show the effect of increasing
the number of RBs on the average number of frames at the
SUs’ buffers. Figure 6, once again, shows that the SNR-based
scheme is the worst in terms of the achieved buffer occu-
pancies since it assigns resources on available channels to
SUs that might not be underflowing while ignoring the buffer
status of those suffering from underflow conditions. Specif-
ically, allocation is completely done based on the reported
SNR while disregarding the states of the playback buffers
of the different SUs. On the other hand, it can be seen that
the performance of the joint buffer and SNR-based scheme is
comparable if not even better than the buffer-based scheme in
almost all cases. This should be clear since the main objective
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FIGURE 4. Jain’s index for greedy SNR, SNR, buffer, and joint buffer and
SNR based allocation techniques vs. the number of active SUs for
different number of available RBs.

is met by maintaining a number of video frames at the SUs’
buffers while taking into account the SNR as seen by the

FIGURE 5. The effect of probability of PUs’ channels availability on the
number of frames at the SUs’ buffer.

different SUs so as to guarantee efficient utilizations of the
shared resources, which is reflected in the successful trans-
missions of the video frames. Another important observation
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FIGURE 6. The effect of the number of RBs on the average buffer
occupancy per user.

is that as the number of the SUs increases from 3 to 15,
the gap in performance between each of the schemes widens
reflecting that the joint buffer and SNR-based outperforms

the other two schemes. It can also be noticed that the trend
is more obvious when the maximum number of available
RBs is small (e.g., 15 and 25) and becomes less obvious
as the number of available RBs increases. This is simply
explained by the fact that when the available resources are
plenty there will almost be no compromises to make, and all
the SUs in need will get the chance to meet their deadlines
and avoid starvation in both schemes. On the other hand,
when the number of available RBs is limited, the joint buffer
and SNR-based outperforms the other schemes for the same
reasons mentioned above.

B. STREAMING OF SVC VIDEO
Similar to above, in this section, we study, compare and
validate the proposed allocation and streaming strategies
using MATLAB simulations averaged over 50 runs where
each run lasts for 30 seconds. This is done assuming the
same LTE structure as before and the same number of PUs
and SUs while following the same transition matrices and
limiting probability. However, the single layer H.264 encoded
Sony Demo video sequence is now replaced with the Coarse-
Grained video sequence (CGS) encoded Sony Demo video
sequence, which consists of a BL and two ELs at a playback
rate of fp = 30 fps. The peak signal-to-noise ratio (PSNR)
metric will be used when comparing the performance of the
three allocation methods. It is worth noting that in the pre-
vious discussion, the impact of the number of available RBs
was highlighted, and the intuitive conclusion that increasing
resources improves the streaming operation was further sup-
ported. Therefore, in this section, we only investigate two
cases: operating at 20 MHz (i.e., the maximum number of
available RBs is 100) and at 3 MHz (i.e., the maximum
number of available RBs is 15). Buffer threshold (1th) is set
to 5 frames. Figure 7 shows the average PSNR of the received
video for the case when the BS operates at 20 MHz assuming
that the Sony Demo video sequence is transmitted to all SUs.
Figures 7(a), 7(b), and 7(c) show that as the number of SUs
increases from 3 to 15, the quality of the received video
decreases since the share of each user from the available
resources reduces as the number of SUs increase. Addition-
ally, Figs. 7(a), 7(b), and 7(c) demonstrate that the SNR-based
allocation scheme performs the worst similar to the conclu-
sion in Section IV-A. This is also explained by the unfairness
of the used algorithm where the available RBs are allocated
based only on the channel quality as seen by the SUs irrespec-
tive of their buffer state and the urgency with which a frame
should be received. Thus, available RBsmay still be allocated
to non-starving SUs as long as better channels are reported
by these SUs for the available RBs. The figures also show
that an average PSNR value of of 37 dB was achieved for the
SNR-based allocation, which is the minimum PSNR among
the three proposed allocation schemes. Such PSNR value is
achieved as if only the base layer was received correctly.

In spite of the above, as will be shown later, some of the
SUs were not allocated any RBs due to the poor reported CSI
measured by those SUs. Figure 7(a) shows that, on average,
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FIGURE 7. Average PSNR when a maximum of 100 RBs (20 MHz)
available (Sony Demo video sequences).

FIGURE 8. Average PSNR when a maximum of 100 RBs (20 MHz)
available (Ghandhi video sequences).
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FIGURE 9. Average PSNR when a maximum of 15 RBs (3 MHz) available
(Sony Demo video sequences).

all SUs received the transmitted video sequence at the highest
quality at a PSNR of 57 dB (i.e., received the BL and both
of the ELs) when the joint buffer and SNR-based allocation
scheme is used. Similar quality was achieved using the buffer-
based allocation, but there was a slight drop in the quality
at frame 100, which reflects that some SUs did not receive
the two ELs due to the lack of available RBs at this time
slot. Moreover, in Fig. 7(b), when the number of available
SUs increases, the joint buffer and SNR-based clearly outper-
forms the buffer-based approach. There is also a noticeable
degradation in the quality when the buffer-based allocation
approach is used. Such degradation is attributed to the fact
that the buffer-based approach serves the SUs with the lowest
buffer occupancy first through random allocation of avail-
able RBs while ignoring the channel quality of the available
RBs. Clearly, such allocation might not offer SUs in need
with the RBs meeting their transmission rate requirements,
which may cause starvation instants and interruptions in the
playback process. On the other hand, this is not the case
for the joint buffer and SNR-based approach as the buffer
state and quality of RBs are considered when allocation is
performed. Figure 7(c) shows the achieved average PSNR
when the number of SUs is increased to 15 SUs. Although
the buffer-based and joint buffer and SNR-based approaches
have comparable performance, their performance shows that
more SUs are able to receive frames with higher quality.
This means that even when the number of RBs allocated
to each SUs decreases due the increase of the number of
SUs, the joint buffer and SNR-based allocation has better
performance. It is important to note that sometimes the deep
drops in the reconstructed quality of some of the frames is due
to their large sizes (both the BL and ELs) and the situation is
further aggregated when the time to transmit these big frames
experiences limited available resources.

When the BS is operating at 20 MHz, Fig. 8 shows the
average PSNR of the received video when the Ghandhi
video sequences are transmitted to all SUs. Comparing
Figs. 7 and 8, it is clear that both show similar trend. The
joint buffer and SNR-based allocation scheme outperforms
the other two schemes in most of the cases. Clearly, the
figures also show that the SNR-based allocation scheme has
the worst performance. It can also be noticed that the average
PSNR decreases as the number of SUs increases for the
case of SNR-based allocation, which was not the case when
Sony Demo video sequence was used. The reason is that the
Ghandhi video sequence has larger frame sizes because of its
content. This is the reason that the minimum quality, which
can be achieved by correctly receiving the BLs alone, was not
achieved by some SUs, which is expected as the number of
SUs is increased.

Figure 9 shows the average PSNR when the BS operates
at 3 MHz (i.e., a maximum of 15 RBs available) and when
the Sony Demo video sequence is transmitted to all SUs.
Obviously, there is a great degradation in the quality of the
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FIGURE 10. Average PSNR when a maximum of 15 RBs (3 MHz) available
(Ghandhi video sequence).

FIGURE 11. The PSNR of SU2 when a maximum of 100 RBs (20 MHz)
available (Sony Demo video sequences).
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FIGURE 12. The PSNR of SU2 when a maximum of 15 RBs (3 MHz)
available.

received video compared with Fig. 7, which is expected as the
number of RBs decreases. Generally, the same trend occurs
where the SNR-based approach has the worst performance
and the joint buffer and SNR-based scheme performs the
best. In Figs. 9(b) and 9(c), it can also be noticed that the
SUs using the SNR-based allocation are suffering from huge
degradation in the video quality since they do not even receive
the BLs required to maintain the least acceptable quality.
A reason for that is due to the limited number of available
RBs for the SUs (15 RBs if all the 3 PU channels are idle
and available). Clearly, in such a situation, contention among
the SUs in need is increased. Another reason is due to the
inherent unfairness of the algorithm itself as explained earlier.
The buffer and joint allocation schemes are clearly of compa-
rable performance. However, the joint buffer and SNR-based
allocation scheme offers slightly better performance than the
buffer-based one for the three scenarios. Finally, Figure 10
shows the average PSNR when the BS operates at 3 MHz
for the Ghandhi video sequence. A similar trend to Fig. 9 is
observed.

To study things more clearly, one of the SUs is further
investigated to see how each of the allocation strategies
performs from a user’s perspective and not on average as
seen in the previous figures. To do so, SU2 is selected for
further investigation when the Sony Demo video sequence
is transmitted. Furthermore, we also monitored the changes
experienced when more SUs joined the network for the three
allocation schemes. As can be seen in Fig. 11(a), SU2 experi-
ences similar behavior of smooth continuity at highest quality
when the buffer-based and the joint buffer and SNR-based
allocation schemes are used. On the other hand, when the
SNR-based allocation scheme is used, SU2 can only receive
the transmitted video sequence at its lowest quality, which
is achieved by receiving only the BLs. Similar to before,
as the number of contending SUs increases, the joint buffer
and SNR-based allocation scheme outperforms the buffer-
based allocation scheme as seen in Figs. 11(b) and 11(c).
Figures 12(a), 12(b), and 12(c) show the video quality as
received by SU2 when the BS operates at 3 MHz. Again,
it can be seen that the joint buffer and SNR-based allocation
scheme achieves a better reconstructed video quality at SU2.
Also, Figures 12(b) and (c) explain the degradation in the
average quality as seen in Figs. 9(a) and 9 (b), as SU2 is only
able to receive 20 frames for the case of 8 active SUs and
40 frames for 15 active SUs. This shows that some SUs might
not be able to receive the video sequence fully and thus suf-
fer from unavoidable starvation instants causing unpleasant
interruptions in the playback process. Such situations are not
happening in the case when the joint buffer and SNR-based
approach is used, which always outperforms the SNR-based
approach for all the scenarios.

V. CONCLUSION
In this paper, we proposed and compared the performance
of three allocation strategies to efficiently share available
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resources between contending secondary users (SUs) in an
LTE-based CR network. The proposed allocation approaches
are SNR-based, buffer-based, and joint buffer and SNR-based
schemes. The performance of the proposed schemes was
compared in the context of video streaming. Therefore, the
main objective is to stream the video sequences to the dif-
ferent SUs while guaranteing continuous playback at accept-
able perceptual quality. In addition, to better achieve this
goal, a scalable video coding (SVC) technique is applied to
adapt to the dynamic availability of the primary channels.
SVC is employed to enhance the quality of the received
video sequences by adapting the transmission process to the
changing resources and improving the achieved video quality
by transmitting the enhancement layers of transmitted video
frames only when possible (i.e., when the conditions set
by the streaming algorithm are met). Clearly, the proposed
approach exhibits a relatively low complexity when com-
pared to other approaches. This is attributed to the fact the
proposed approach does not require any reconfiguration for
the codec parameters. The proposed allocation algorithms
adaptively assign available RBs to SUs in need while con-
sidering the quality of their assigned channels as well as
their buffer occupancies. This is all done while guaranteeing
the reception of the video frames within their deadlines.
Simulation results show that the joint buffer and SNR-based
algorithm outperforms the other two algorithms even under
limited resources and even when the number of active SUs
increases.
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