
Received January 30, 2022, accepted February 25, 2022, date of publication March 8, 2022, date of current version March 31, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3157325

Efficient, Geometry-Based Convolution
CHANON KHONGPRASONGSIRI , (Student Member, IEEE),
WATCHARAPAN SUWANSANTISUK , (Member, IEEE), AND PINIT KUMHOM
Department of Electronic and Telecommunication Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

Corresponding author: Pinit Kumhom (pinit.kumhom@mail.kmutt.ac.th)

This work was supported by the King Mongkut’s University of Technology Thonburi under the Petch Pra Jom Klao Master’s Degree
Research Scholarship. The work of Watcharapan Suwansantisuk was supported in part by the Faculty of Engineering, King Mongkut’s
University of Technology Thonburi, under the Research Strengthening Project.

ABSTRACT Several computationally intensive applications in machine learning, signal processing, and
computer vision call for convolution between a fixed vector and each of the incoming vectors. Often, the
convolution need not be exact because a subsequent processing unit, such as an activation function in a
neuron network or a visual unit in image processing, can tolerate a computational error, hence allowing
the optimization of the convolution algorithm. This paper develops a method of approximate convolution
and quantifies its performance in software and hardware. The key idea is to take advantage of the known
fixed vector, view a convolution as a dot product, and approximate the angles between the fixed vector and
an incoming vector geometrically. We evaluate the proposed method in terms of the accuracy, running time
complexity, and hardware power consumption on the field programmable gate array (FPGA) and application-
specific integrated circuit (ASIC) hardware platforms. In a benchmark test, the accuracy of the approximate
convolution is 3.7% lower than that of the exact convolution, a tolerable loss for machine learning and signal
processing. The proposed method reduces the number of operations in the hardware, and reduces the power
consumption of conventional convolution by approximately 20% and the existing approximate convolution
by approximately 10%,whilemaintaining the same throughput and latency.We also test the proposedmethod
on 2D convolution and convolutional neural network (CNN). The proposed method reduces complexity,
power consumption for 2D convolution, and power consumption for CNN of the conventional method by
approximately 22%, 25%, and 13%, respectively. The proposed method of approximate convolution trades
off accuracy with running time complexity and hardware power consumption, and it has practical utility in
computationally intensive tasks that tolerate a margin of convolutional error.

INDEX TERMS Convolution, dot product, power consumption, FPGA.

I. INTRODUCTION
Discrete-time convolution is an important operation in
machine learning, signal processing, and computer vision [1].
For example, the neural network architecture AlexNet [1], [2]
uses five embedded convolution layers for image recognition
to achieve a recognition rate of 84.7%. ResNet-152 [3] uses
152 convolution layers to improve classification accuracy and
achieve a recognition rate of 96.5%. The more convolution
layers there are, the better the performance is, leading to a
massive use of convolution operations.

Although extensive convolution improves performance
in one area, it undesirably leads to high computational
complexity [4] and power consumption. AlexNet takes 1.4

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

giga operations per second (GOPS) to process a single
224 × 224-pixel2 image, while ResNet takes 22.6 GOPS
[5]. This high computational complexity prevents massive
convolution from taking place on ubiquitous small devices
and Internet of Things (IoT) nodes that have limited com-
putational resources. An extensive number of convolu-
tions also leads to high power consumption, mainly due to
memory access and processing elements in the hardware.
To see the amount of power used, consider a typical exam-
ple of massive signal filtering, which performs convolu-
tion 10 million times, each time between two 1000-element
vectors. On hardware using 45 nm CMOS technology, one
memory access consumes 5 pJ of power on a 32-bit SRAM
cache and 640 pJ on DRAM [6]. Massive convolution is
not possible on a fast SRAM cache because the power
consumption of (10M − 1000)(1000)(5pJ) ≈ 0.005W on the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 33421

https://orcid.org/0000-0001-8628-0610
https://orcid.org/0000-0003-0195-7616
https://orcid.org/0000-0003-3059-4877
https://orcid.org/0000-0001-9315-1788

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

local memory is too large. In this example, the convolu-
tion must be performed on a slower DRAM, consuming
(10M − 1000)(1000)(640pJ) ≈ 6.4W of power, an amount
similar to CPU power usage [7]. High computational com-
plexity and power consumption are bottlenecks in hardware
and require a new design strategy for convolution.

Applications that require massive convolution have a com-
mon characteristic that can be exploited for efficiency and
lower power consumption, namely, a tolerance for compu-
tational errors [8]–[10]. In image processing, a small visual
error in an output image is acceptable and often undetectable
to humans due to limitations in human perception. In deep-
learning classification, exact computation of convolution at
a neuron is less significant than the method of inference
that is being used. Convolutional neural networks tolerate
errors from approximated schemes [11] and accept com-
putations with 4-bit precision without sacrificing inference
accuracy [12]. Furthermore, many digital signal processing
applications rely on probabilistic models, which have been
designed to deal with noisy data. A trade-off between accu-
racy and hardware-software efficiency is the key to develop-
ing a method of convolution.

In this paper, we develop a method of approximate convo-
lution that is sufficiently accurate and consumes low power.
This method preprocesses the known, fixed vector in con-
volution to save subsequent computational effort, treats the
convolution as a dot product between two vectors, and effi-
ciently approximates the angles between the two vectors
geometrically. The main contributions of this paper are the
following:

• Amethod of approximate convolution that is suitable for
massive error-tolerant applications;

• The hardware architecture of the proposed method for
FPGA and ASIC platforms;

• A comparison of the proposed method with state-of-the-
art methods in terms of accuracy, running time complex-
ity, number of hardware operations, throughput, latency
and power consumption.

The proposed method reduces the number of operations in
hardware, reduces the power consumption by approximately
25%, and reduces the area by approximately 13%, while
incurring a loss of approximately 3.8% in accuracy compared
to conventional convolution. The proposed method has prac-
tical utility in machine learning, signal processing, and com-
puter vision applications that requiremassive convolution and
can tolerate computational errors.

The rest of the paper is organized as follows. We review
the existing literature in Section II and give the problem
statement in Section III. We develop the proposed method
of approximate convolution in Section IV and describe the
hardware implementation architectures for 1D and 2D con-
volutions in Section V. Finally, we evaluate and discuss the
performance of the proposed method in Section VI, and
conclude the important findings in Section VII.

II. RELATED WORK
Methods of reducing the computational complexity and
power consumption of convolution can be broadly classi-
fied into two categories: exact convolution and approxi-
mate convolution. Exact convolutions are suitable for precise
applications, which cannot tolerate errors, and they reduce
power consumption by optimizing multiplications in the
hardware. Approximate convolutions are suitable for error-
tolerant applications, such as those focused on in this paper.
We review the related work in both categories.

Exact convolutions divide a convolution operation into
subproblems that involve the multiplication of the input vec-
tor with constants [13]. To optimize multiplication, related
work [14]–[16] uses an adder graph tree structure that
expresses addition, subtraction, and bit shifting. The nodes
of the graph represent an adder or subtractor, and the edge
weights belong to the bit shifts. These tree structures domi-
nate the number of multiplications, while the number of addi-
tion and subtraction operations significantly increases, which
is the main issue for constant multiplication. Kumm [14]
obtains the optimal number of addition or subtraction opera-
tions by reducing the adder graph. To implement this design,
Kumm et al. [16] uses a pipeline architecture to optimize the
adder depth and timing constraints. A fast, exact multiplica-
tion results in a fast, exact convolution.

In addition to research work that optimizes a multiplica-
tion, several studies treat an exact convolution as a matrix-
vector multiplication [17]–[25]. To reduce the complexity,
a kernel expansion is used with the approximate Fastfood
transform [18]. Other methods that use a fast convolution
algorithm include the FFT convolution and Winograd con-
volution, which transform matrix multiplications into the
Hadamard products [19]. Fast-convolution algorithms reduce
the number of operations from2(n2) to2(n log2 n) and incur
some errors from the kernel transformation, where n is the
number of rows and the number of columns of the convolu-
tion matrix for the Fastfood and FFT convolutions. For the
Winograd convolution [25], many transformed matrices exist
to provide fast results, although memory issues may occur
when amortizing those matrices [21]–[24]. Another issue of
theWinograd convolution is numerical instability [20], which
occurs, for example, in an implementation [26] due to huge
kernels. Fast convolution methods can be implemented in
hardware using a parallel and pipeline architecture, which
results in a high throughput. However, a drawback of fast
convolution methods is in large power consumption. Related
work in the category of exact convolution focuses on resource
utilization and throughput.

Approximate convolutions use approximate adders or
approximate multipliers in circuits. K. Du [27] introduces
carry-select adders, which gain speed at the expense of circuit
area and achieve mean relative error distances of approx-
imately 2% to 10% compared to a 16-bit adder. Another
architecture is the approximate full adder, which modifies the
truth table of the full adder circuit [28], [29]. This architecture

33422 VOLUME 10, 2022

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

occupies a small circuit area and reduces the delay of its
throughput by approximately 50%, but it has an accuracy of
approximately 60%. This level of accuracy is considered low
and may cause errors to accumulate in a massive convolution
operation. On the other hand, approximate multipliers can be
achievedwith one of these two approaches. The first approach
is to approximate a partial product by using the K-Map for
a 2 × 2 bit multiplier to create a 4 × 4 bit multiplier [30].
This approach also includes the approximate multiplication
of [10], which generates the partial product by shifting the
bits of a multiplicand and has an approximately 10% mean
relative error. The second approach is to approximate a mul-
tiplier by using approximate compressors [31]–[40], such
as the 4-2 approximate compressor. Although the accuracy
of the approximate multiplier depends on the multiplication
architecture, the mean relative error distance is often 5–15%,
while the power reduction compared to exact multiplication is
approximately 10–50%. In other words, the greater the power
reduction is, the lower the accuracy of the multipliers.

Existing methods of approximate convolution are limited
in a fundamental way. The number of addition and multipli-
cation operations cannot be reduced due to the computation
equation, which accounts for the restriction of power con-
sumption improvement while maintaining the accuracy of the
system. A method that addresses these limitations will break
through the restriction on the number of operations, leading
to power reduction while sacrificing little accuracy.

III. PROBLEM STATEMENT
We are interested in exploring a convolution implementation
that yields better performance per watt by sacrificing some
computational accuracy. The performance of an implementa-
tion of an algorithm can be measured by means of throughput
and latency. To gain better performance, we usually have to
pay a price in terms of the area and power consumption of the
hardware. In general, for a given computation task, multiple
algorithms usually exist by which correct computation results
are produced with different performance levels. In turn, there
exist various approaches for implementing a given algorithm
on a chosen computation platform, resulting in a very large
space of possible solutions. Hence, we need to scope down
this solution space.

In this paper, we target our convolution implementation
on an embedded computation platform whose computa-
tional resources are limited in terms of both area and avail-
able power, while the needs for high throughput and low
latency continue to grow. One approach for overcoming these
challenges is to implement the computation of interest as
hardware, which is a digital system specifically designed to
perform the computation problem. In particular, we target our
design for an FPGA or ASIC chip.

With the target hardware setup, we are interested in convo-
lution computation by the following definition. Let x and h
denote two discrete-time functions acting as the input signal
and the impulse response, respectively. We are interested in
applying convolution in cases where the impulse response h

TABLE 1. Vector xk defined in Eq. (4).

has a finite number of tabs (weights) that are predetermined.
The input signal x is a window of a streaming discrete-time
signal. Moreover, this implementation is for applications that
can tolerate some computational error at each sample point
of the convolution. In fact, such errors are already inherited
in the digital abstraction due to the finite representations
of numbers. Furthermore, since we aim for an embedded
implementation, we adopt an n-bit fixed-point representation
in which the zero level is 2n−1 for each sample of h and
x. Based on this setup, we define the computation task as
follows.

Let x[j] denote the jth sample point of the streaming input
x, for j = 0, 1, . . . ,M − 1 and let h[m] denote the mth
coefficient (tab) of the filter impulse function h, for m =
0, 1, 2, . . . ,N − 1. Without loss of generality, and by switch-
ing the computation task of interest, the convolution of the
function x ofM points with the function h of N points can be
described by Eqs. 1 and 2:

y = (y[0], y[1], . . . , y[M − 1])T = x ∗ h (1)

y[k] =
N−1∑
j=0

x[j]h[k − j] =
N−1∑
j=0

x[k − j]h[j]

= h · xk , (2)

where h is a vector of size N that stores the coefficients (tabs)
of the filter impulse function h (Eq. 3) and xk is a vector
storing theN points of data collected from the sliding window
covering the input samples from point k − N + 1 to k as
described in Eq. (4), where x[j] = 0 for j < 0 and for j ≥ M :

h = (h[0], h[1] . . . , h[N − 1])T (3)

xk = (x[k], x[k − 1], . . . , x[k − N + 1])T . (4)

Table 1 lists the vectors forM samples of input x; i.e., x[k] for
k = 0, 1, . . . ,M + N − 1. Based on this setup, the proposed
approach is described in the next section.

IV. PROPOSED METHOD
A. PROBLEM ANALYSIS
Let us consider the computation of consecutive convolution
points y[k] and y[k + 1] following Eq. (2). Note that y[k]
and y[k + 1] are the dot products of the same h with xk and

VOLUME 10, 2022 33423

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

xk+1, respectively. Since the data vectors xk and xk+1 are the
results of two consecutive sliding windows, the only element
of xk+1 obtaining a new sample is xk+1[N − 1] = xk+1,
while xk+1[j] = xk[j + 1], for j = 0, . . . ,N − 2. However,
this nice relationship does not help reduce the complexity of
the dot product computation; i.e., it still requires a number of
basic computations, multiplication and accumulation (MAC),
on the order of 2(N). In this paper, we aim to exploit this
relationship to reduce the computational complexity by sac-
rificing some computation accuracy.

Our proposed idea is based on the geometric definition of
the dot product following Eq. (5):

a · b =
N∑
i=1

aibi = |a||b| cos θ, (5)

where a and b are two vectors of the same size. Applying the
dot product’s geometric interpretation to the computation of
y[k] and y[k + 1], we have

y[k] = h · xk
= |h||xk | cos θk (6)

y[k + 1] = h · xk+1
= |h||xk+1| cos θk+1, (7)

where θk is the angle between vectors xk and h.
As |h| are precomputed because the vector h is known,

we need to calculate |xk |, cos θk , |xk+1|, and cos θk+1. We can
exploit the relationship of xk and xk+1 in computing |xk | and
|xk+1| as follows:

|xk |2 = x[k]2 + x[k − 1]2 + . . .+ x[k − N + 1]2 (8)

|xk+1|2 = x[k + 1]2 + x[k]2 + . . .+ x[k − N + 2]2

= |xk |2 − x[k − N + 1]2 + x[k + 1]2. (9)

Due to the shifting property of xk and xk+1, we can reduce
the number of squares in computing the two magnitudes from
2N to N + 2 by amortizing a large part of |xk+1|2 in |xk |2.
Moreover, since we have to compute at least N consecu-
tive dot products, we can reduce the square computations
from N 2 to 3N − 2. Combined with the two multiplications
among |h|, |xk |, and cos θk for each y[k], the overall num-
ber of multiplications for computing N -point convolution is
approximately 5N given that cos θk is computed separately.
Although this computation is on the same order as the original
computation, the hardware architecture for implementing this
computation is simple. This advantage, however, comes with
the price that we need to compute the value of cos θk for each
computation of yk . Next, we explain the proposed approach
to tackle cos θk .
Finding cos θk is a challenge when the vector’s dimension

is large. A known algorithm for finding θ is by using a rotation
matrix [41]. However, this method is only practical in 2D
space because finding a rotation matrix is difficult for a high-
dimensional space. Moreover, the complexity of applying
the rotation matrix to find θ is also high. Given that the
coordinates of the two vectors are known, the best way to find

FIGURE 1. The percent error between cos θ and cos(θ +1θ).

the angle θ between the two vectors is to use the dot product’s
geometric definition as in Eq. (10):

θ = arccos
(

a · b
|a||b|

)
. (10)

However, in our case, the dot product is what we want to
compute. We need a clever method to apply Eq. (10).

We propose an approximate computation of cos θk . Based
on Eq. (5), we observe the effects of the drift of θ on cos θ
by plotting the percent errors of cos θ against the drift in θ
denoted by1θ , as shown in Fig. 1.We partition the variable θ
from 0◦ to 90◦ in two parts, 0◦ < θ ≤ 45◦ and 45 < θ ≤ 90◦.
Since the rate of change in cos θ increases as θ does, the error
in cos θ of the upper part of the angle is higher, as shown
in Fig. 1. Nevertheless, if we can maintain the drift in θ at
approximately 5 degrees, the average absolute difference for
cos θ and cos(θ + 1θ) is approximately 5% and 10% for
the lower and higher ranges of θ , respectively. These results
indicate that approximation of θk can tolerate higher errors.

Given that h is known, the two keys of our proposed
implementation of convolution computation are as follows:

(1) we propose an efficient method for approximating θk so
that it can be applied in computing convolution using
the geometric definition of the dot product with the
assumption that some computation error is allowed, and

(2) the computation of the magnitude of xk+1, the input
vector for generating y[k + 1], is amortized due to the
relation of xk+1 and xk .

We explain the proposed method for the θk approximation in
the next subsection. Then, the overall convolution computa-
tion based on the geometric definition of the dot product is
described.

B. VECTOR ANGLE APPROXIMATION
Given a constant vector h in a vector space of ` dimensions,
we want to estimate the angle θ of vector x with reference
to h. Let us consider the case of vectors in the 3-dimensional
vector space shown in Fig. 2 as an illustration of the proposed
idea. To simplify the discussion and without loss of gen-
erality, we will assume that the coordinates of two vectors,
the constant vector h = (h1, h2, h3)T and the input vector
x = (x1, x2, x3)T , lie in the positive cube. This assumption is
generalized by the fact that we represent data using an n-bit
unsigned number; i.e., all components of the two vectors,

33424 VOLUME 10, 2022

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

FIGURE 2. All possible cases of xbin in a 3-dimensional vector space are
seven nonzero vectors pointing to the corners of the positive unit cube.

h1, h2, h3, x1, x2, and x3, are zero or positive. The proposed
angle approximation method is based on the following ideas:
• We start with the idea of replacing x with a vector,
denoted by x̂, that has the same direction as x, by which
the angle can be computed following Eq. (11):

θ = arccos
(

x̂ · h
|h||x̂|

)
. (11)

The first step in this approach is to find x̂ such that the
computation x̂ · h has less complexity.

• To this end, we propose using a binary vector of size
N , denoted by xbin which approximate x̂ and whose
coordinates can be expressed as a 1-bit number in each
dimension. Fig. 2 illustrates this idea for the case of 3D
space. With this idea, the vector x is quantized to one
of the seven nonzero corner vectors of the unit cube.
Extending the idea to an N -dimensional space, xbin can
be generalized as Eq. (12).

xbin = (b1, b2, · · · , bN)T , bj ∈ {0, 1} (12)

|xbin| =

√√√√ n∑
k=1

b2k =
√
number of nonzero bk (13)

Using xbin, we eliminate the multiplications in the com-
putation of the dot product xbin ·h as described in Eq. 14
since the element bj in dimension j of xbin is either 0 or 1;
i.e., the dot computation is just a sum of the elements j of
h for all j such that bj = 1. As a result, the approximation
of θ , denoted by θ̂ (xdot), can be calculated following
Eq. (15):

xdot = xbin · h =
∑

∀j s.t. bj=1
h[j] (14)

θ̂(xdot) = arccos
(

xdot
|xbin||h|

)
. (15)

For example, in the 3D space, xbin will be one of the
seven nonzero coordinates at the corners of the unit
cube, as shown in Fig. 2; i.e., for the input vector

FIGURE 3. The approximate cos θ and the exact cos θ .

x = (x1, x2, x3)T , where xj is encoded as an n-bit
unsigned number, the estimated vector xbin of x will
be one of the seven nonzero 3-bit binary tuples
(b1, b2, b3)T , which are (0, 0, 1)T , (0, 1, 0)T , (0, 1, 1)T ,
(1, 0, 0)T , (1, 0, 1)T , (1, 1, 0)T , and (1, 1, 1)T . Note that
for an `-dimensional space, there are 2` − 1 possible
cases of xbin, corresponding to the 2` − 1 nonzero
combinations of the `-bit (b1, b2, · · · , b`)T . The idea
is to quantize each vectors in the `-dimensional space
to one of the 2` − 1 vectors. Although this seems to
be a rough estimate for the angle θ , it yields a much
better estimate for cos θ , especially for θ ≤ 45◦, because
cos θ changes slowly for small θ ; i.e., with a limited
n-bit representation of numbers, cos θ is the same for a
wide range of θ . Moreover, θ is quantized in the look-up
table (LUT) implementation of cos θ , as shown in Fig. 3.
However, this estimation method will have a greater
effect for θk > 45◦.

• While using xbin reduces the computational complex-
ity of xdot = xbin · h, we still need to deal with the
computation of arccos

(
xdot
|xbin||h|

)
. To do so, we rely on

the fact that although x varies, the vector h is known
and predetermined. Using this fact, we estimate θ by
a linear function of xdot as described in Eq. (16) using
linear curve fitting to find the parameters P1 and P0 for
all cases of xdot given h:

θ̂ (1) = P1xdot + P0. (16)

That is, for a given h, we compute θ̂ (xdot) using Eq. (15)
for all possible cases of xbin. Then, parameters P1 and
P0 are determined using linear regression curve fitting,
as shown in Fig. 4 for the case of random h with dimen-
sion ` = 20.

• Note that the parameters P1 and P0 are calculated with
reference to xbin, a vector whose direction estimates that
of vector x. Therefore, to further improve the estimation
of θ , we take random samples of x and compute the
actual θ using Eq. (11) and its estimate θ̂ (1) using the
parameters P1 and P0 from the previous step. We find
that there are shifts of θ̂ (1) from the actual θ . As a result,
we compensate for this bias with the parameter B, which
is the average of the drifts, resulting in the final equation
for angle estimation in Eq. (17):

θ̂ = θ̂ (1) − B. (17)

VOLUME 10, 2022 33425

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

FIGURE 4. The line fitting between xdot and θ̂(xdot).

Algorithm 1 Algorithm for Estimating the Angle of Vector x
With Reference to a Constant Vector h
Require: Parameters P1, P0, and B are predetermined given
h
function FINDANGLE(x,P1,P0,B, `)

xbin← BinarizedX(x, `)
xdot← xbin · h
θ̂ ← P1xdot + P0 − B
return θ̂

end function

Based on these ideas, the proposed algorithm for estimating
the angle θ between a vector x and a constant vector h is
described in Algorithm 1.

The next subsection explains the proposed method of find-
ing xbin used in the function BinarizedX in Algorithm 1.

C. FINDING xbin
Given x = (x1, x2, . . . , x`)T , where xj is an n-bit unsigned
number, we want to quantize xj to the 1-bit bj. Using the
case of 3D space as an example, we want to quantize x =
(x1, x2, x3)T to the nearest vector (b1, b2, b3)T . Our proposed
method is as follows. First, we choose the dominant element
by comparing the most significant bits of xj, which depends
on the position of the first nonzero bit of xj starting from the
left-most bit, bit na−1. In other words, we find the significant
bits of xj by counting the number of leading zeros in the binary
representation of xj = (xn−1j xn−2j · · · x0j)2, where x

m
j ∈ {0, 1}

is bitm of xj; i.e., the smaller the number of leading zeros, the
more significant. Let us denote the leading zeros of xj as lzj,
and let lzm be the minimum of lzj; i.e., lzm = min∀j zj. Then,
we find bj of xbin using the rule described in Eq. (18):

bj =

{
1 if lzj = lzm
0 otherwise

(18)

To illustrate the method, let us consider two examples in 3D
space: x1 = (56, 126, 34)T and x2 = (17, 45, 22)T with an
8-bit binary representation of xj. For x1 = (56, 126, 34)T ,
the numbers of leading zeros in the 8-bit binary repre-
sentations of 56 = 001110002, 126 = 011111102, and

34 = 001000102 are 2, 1, and 2, respectively. Hence, the
second element, x2, is the only element of x1 with the most
significant value (lz2 = lzm = 1). This results in xbin =
(0, 1, 0)T for x1. For x2 = (17, 31, 22)T , the leading zeros of
17 = 000100012, 31 = 000111112, and 22 = 000101102 are
all equal to 3, which results in xbin = (1, 1, 1)T . The proposed
method of quantization examines the portion of bits that
affects the direction of the x the most.

Although, theoretically, this method maps the direction of
xk to one of 2N −1 possible directions, the mapping does not
perform well in practice for large N because using the same
`zm in Eq. (18) globally leads to some locally large xj being
quantized to 0. We address this issue by grouping the xj’s
into a group of three. For example, given the 6-dimensional
xk = (x1, x2, x3, x4, x5, x6)T = (56, 126, 34, 17, 45, 22)T

with an 8-bit representation of xj, we find that its xbin is
(0, 1, 0, 0, 0, 0)T , as x2 = 126 dominates. This is not a
good estimation of the direction of xk because while the
actual vector xk has values in all dimensions, the estimated
vector xbin lies in one dimension. To mitigate the detrimental
effect of large N , we propose to quantize each group of xk
separately. The number of elements in each group is 3 or
small number, as a rule of thumb. For example, by separating
the xjs into two groups of three, x1k = (56, 126, 34)T and
x2k = (17, 45, 22)T , where the superscript indicates the group
number, we find that xbin = (0, 1, 0, 0, 1, 0)T as x1k and
x2k are quantized to (0, 1, 0)T and (0, 1, 0)T , respectively.
The modified BinarizeX(x) for finding xbin is described
in Algorithm 2, where the lines beginning with % denote
comments.

D. GEOMETRY-BASED APPROXIMATE CONVOLUTION
The geometry-based approximation of the dot product of
vector x with a constant vector h is used as a core part of
the proposed implementation of the convolution computation.
Since the precomputed parameters P1 and P0 are based on
generating all 2` − 1 cases of xbin of size `, we cannot
practically apply the method to a large vector size. To address
this limitation, we use the superposition property of the dot
product computation; i.e., the dot product of two vectors
of the same size is the sum of the dot products of their
corresponding subvectors. Applying this property to compute
y[k] = h · xk , we partition h and xk into Q parts of size ` as
described in Eq. (19) and (20), respectively, where Q = bN

`
c

and with an additional final part of size R = N − Q` if
N > Q`:

h = (h0,h1, . . . ,hQ−1)T (19)

xk = (xk,0, xk,1, . . . , xk,Q−1)T . (20)

Then, y[k] = h · xk can be described by Eq. (21):

y[k] = h · xk =
Q−1∑
i=0

hi · xki + hQ · xk,Q (21)

33426 VOLUME 10, 2022

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

Algorithm 2 Find xbin of a Given x
Require: All ` elements of x are n-bit unsigned numbers
1: function BINARIZEDX(x, `, n)
2: G← b`/3c
3: % G is the number of groups
4: R← `− G
5: % R is the number of last group’s elements
6: xbin← (0, 0, . . . , 0)T

7: for i← 0 to G− 1 do
8: lzm← n
9: for j← 1 to 3 do
10: xj← x[i× 3+ j]
11: Find leading zeros lz[j] of xj
12: if lz[j] < lzm then
13: lzm = lz[j]
14: end if
15: end for
16: for j← 1 to 3 do
17: if lz[j] == lzm then
18: xbin[i× 3+ j] = 1
19: end if
20: end for
21: end for
22: lzm← n
23: for j← 1 to R do
24: xj← x[G× 3+ j]
25: Find leading zeros lz[j] of xj
26: if lz[j] < lzm then
27: lzm = lz[j]
28: end if
29: end for
30: for j← 1 to R do
31: if lz[j] == lzm then
32: xbin[i× 3+ j] = 1
33: end if
34: end for
35: return xbin
36: end function

Here hi and xk,i are the vectors of ` elements taking from the
ith part of h and xk , respectively, for i = 0, 1, 2, . . . ,Q− 1:

hi = (h[i`],h[i`+ 1], . . . ,h[(i+ 1)`− 1])T (22)

xk,i = (x[k + i`], x[k + i`+ 1], . . . , x[k + (i+ 1)`− 1])T .

(23)

Vectors hQ and xk,Q contain the remaining R elements at the
end of h and xk , respectively:

hQ = (h[Q`],h[Q`+ 1], . . . ,h[N − 1])T (24)

xk,Q = (x[k + Q`], x[k + Q`+ 1], . . . , x[k + N − 1])T .

(25)

As a convention, if R = 0, we define hQ = xk,Q = 0.
By computing each dot product hi · xki using the method

Algorithm 3 Procedure for Computing the Proposed
Geometry-Based Convolution
Require: P1,P0,B,hmag are precomputed for a given h
1: function GEO_CONV(x,P1,P0,B,hmag, `,N ,M)
2: Q← bN

`
c and R← N − Q× `

3: xk = (0, 0, . . . , 0)T

4: % fill initial xk with N zeros
5: xmagp = (0, 0, . . . , 0)T

6: % fill previous magnitude with dN
`
e zeros

7: x0 = (0, 0, . . . , 0)T

8: % fill elements just being removed with dN
`
e zeros

9: for k ← 0 to M − 1 do
10: xk[1 : N − 1]← xk [0 : N − 2]
11: xk[0]← x[k]
12: y[k]← 0
13: for i← 0 to Q− 1 do
14: xk← xk[i× Q : i× Q+ `− 1]
15: % Compute |xki|
16: x1← xk[0]
17: xm← xmagp[i]+ x

2
1 − x0[i]2

18: xmagp[i]← xm
19: x0[i]← xk[`− 1]
20: % Find θi
21: θ ← FingAngle(xk,P1[i],P0[i],B[i], `)
22: % Compute hi · xki; combine it with y[k]
23: yk ← hmag[i]×

√
xm× cos θ

24: y[k]← y[k]+ yk
25: end for
26: if R > 0 then
27: xk← xk[Q× ` : N − 1]
28: x1← xk[0]
29: xm← xmagp[Q]+ x

2
1 − x0[Q]2

30: xmagp[Q]← xm
31: x0[Q]← xk[R− 1]
32: θ←FingAngle(xk,P1[Q],P0[Q],B[Q],R)
33: yk ← hmag[Q]×

√
xm× cos θ

34: y[k]← y[k]+ yk
35: end if
36: end for
37: return y
38: end function

proposed in the previous subsection, we can describe the dot
product h · xk for computing y[k] in Algorithm 3.
Next, we discuss Algorithm 3. For a given h, the pro-

posed method requires the precomputed parameters and
hmag, where hmag[i] stores |hi|, for i = 0, 1, 2, . . . , dN

`
e.

For section i of size `, its parameters, including P1[i],
P0[i], and B[i], are precomputed using hi following the
method described in the previous subsection. With this setup,
we arrange the computation of y[k] = h · xk in three parts,
as discuss next.

The first part computes the magnitude of xki, subvector
i of the input vector. As described in the problem analysis

VOLUME 10, 2022 33427

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

FIGURE 5. Overall hardware architecture for the proposed convolution computation.

section, we compute the square of the magnitude of xk+1
using the relationship of two consecutive input vectors, xk+1
and xk , representing respective sliding windows of the input
samples. Since, in the proposed procedure, each input vector
xk is partitioned into Q parts of size `, we have to compute
|xki|2 of each part i at time k (line 14). Because xki at clock
k and k + 1 are two vectors from a sliding window of size `,
the computation of |xki|2 follows Eq. 9, in which we need (1)
|xki|2 at time k − 1, (2) the last element of xki at time k − 1,
and (3) the new element of xki at time k . In Algorithm 3,
we use the variables (1) xmagp, (2) x0, and (3) x1 to store
these 3 values. The variables xmagp and x0 are initialized to
all zeros at the beginning and are updated at every step of
k (lines 15 and 16) after their respective current values are
computed. The variable x1 is assigned to the first value of xki
at time k , which is assigned at line 11.
The second part estimates the angle of vector xki using

the function FindAngle described in Section IV-B. In the
third part, the results from the first two parts are used to
compute yk = hi · xk using geometric definitions, and then,
yk is combined with the current y[k]. Note that the first
two parts can be done in parallel, which is suitable for the
hardware implementation described in Section V. Although
the procedure computes y[k] for k from 0 to M − 1, it can
easily be adjusted to compute N additional samples to flush
out all samples of x ∗ h.

V. HARDWARE IMPLEMENTATION OF THE PROPOSED
CONVOLUTION
Although, in general, the proposed approximate convolution
computation can be implemented in many computation plat-
forms, the proposed procedure is targeted for an embedded
environment in which the computing resources and available
power are limited. To this end, we propose a hardware archi-
tecture targeting FPGA or ASIC. Fig. 5 shows the overall
datapath architecture of the hardware implementation for

computing x · h of size `. Note that the size ` is limited since
in the computation of the parameters P1, P0, and B following
the proposed method, we need to generate all 2` − 1 cases of
xbin. We show in Section VI that the suitable ` is 20.
In this architecture, the streaming x[k] at the input port x

is fed to two parallel parts for computing |xk |, i.e., the signal
xmag, and cos θk , i.e., the signal cos_theta. The results
for these two parts are multiplied together with |h| in the
final part to produce the streaming y[k] at the output port y.
All |h|s are precomputed and stored in an LUT denoted as
hmagTab in the diagram. If the size N of h (the number of
tabs) is larger than `, this hardware will be used to produce
xki · hi, i = 0, 1, . . . , Q̃ − 1, where Q̃ = dN/`e is the
number of sections. The results of the xki · his from all
sections are added together to produce y[k]. This modular
design allows us to implement the system based on the
available resources. If we have sufficient resources, multiple
instances of this architecture can be implemented to produce
multiple xki · hi in parallel. Otherwise, a single instance can
be controlled to produce y[k] every Q̃ cycles of the system
clock. As a result, in this minimal hardware case, the max-
imum streaming rate is fc/Q̃, where fc is the system clock’s
frequency.

A. MAGNITUDE COMPUTATION HARDWARE
The computation of xk ’s magnitude follows Eq. (9); i.e.,
|xk |2 = |xk−1|2 + x[k]2 − x[k − `]2, where x[k], the sample
entering the window, is the new element of xk and x[k − `],
the element leaving the window, is the last element of xk−1.
As shown in the upper part of Fig. 5, to implement the
magnitude computation, we need the following components:
(1) twomultipliers or specially designed circuits of the square
operation for computing x[k]2 and x[k−`]2, whose results are
the signals x1_sq and x0_sq, respectively, (2) two adders
for the operation of a+b−c, (3) a register for storing |xk−1|2,
the signal xmag_sq_p, (4) ` cascading n-bit registers for

33428 VOLUME 10, 2022

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

FIGURE 6. Hardware architecture of the BinarizedX module for computing xbin.

FIGURE 7. Hardware architecture for estimating cos θk for a specific filter, h, where the middle block computes xdot.

storing x[k − `], the element leaving the window, and (5) a
square root unit.

Note that the incoming data sample, x[k], the signal x,
is the newest element, whose square, x1_sq, is added with
the previous magnitude, xmag_sq_p. It is also fed into the
` cascading n-bit registers, causing a delay of ` steps; i.e., its
output is x[k − `], whose square, x0_sq, is subtracted from
the sum of x1_sq and xmag_sq_p, resulting in the square
of the magnitude at cycle k in the signal xmag_sq. Finally,
the sum of |xk−1|2, x[k]2, and x[k − `]2 is fed into a square
root unit for streaming out |xk | in the signal xmag.
This architecture is suitable for implementation with the

pipeline technique, allowing simple control of the system by
simply pumping the data in and out at a constant rate. To this
end, a pipeline design technique can be applied for a specific
hardware target with the constraint that the number of stages
of the pipeline matches that of the cos θ implementation.

B. ANGLE ESTIMATION HARDWARE
To gain the benefits of the proposed convolution procedure,
we need to design specific hardware for the approximation
of cos θk . The first specific circuit shown in Fig. 6 gen-
erates a vector xbin for each vector xk . The circuit takes
a group of 3 consecutive samples that are converted to
3 respective bits of xbin. At the entry of the module, an
n-input priority encoder circuit is adopted as the leading
zero computation of the entering sample x, the x[k] sam-
ple. Its result is then fed to the cascading registers, named
LZ0, LZ1, LZ2, . . . , LZ{` − 1}. As the outputs of these
registers are the leading zeros of consecutive samples, the
minimum of the 3 registers’ outputs is found by the mod-
ule LZmin. Finally, the stored leading zeros are compared
with their respective references from the LZmin modules
to generate the binary elements of xbin stored in the output
registers.

VOLUME 10, 2022 33429

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

The generated xbin is fed to the second specific circuit
shown in Fig. 7 for computing xdot = xbin · h, denoted as
xdot. For conventional implementation of the dot product,
the number of additions required for the computation of xdot
is on the order of 2(`). In the proposed implementation,
the module, denoted as XdotGen, does the job in the order
of 2(n), where n is the number of bits representing h[j],
an element of h; i.e., the order of computation is constant with
reference to the problem size, which is specified by N and
M , the number of filter tabs, and the number of data samples.
To explain the proposed implementation, let us define xbin
and h as follows:

xbin = (b0, b1, . . . , b`−1)T , bj ∈ {0, 1}

h = (h[0],h[1], . . . ,h[`− 1])T (26)

h[m] = (a(m)n−1a
(m)
n−2 · · · a

(m)
0)base 2, a(m)j ∈ {0, 1}

=

n−1∑
j=0

a(m)j 2j. (27)

Then, as described in Eq. (29), the computation of xdot can
be expressed as a summation of cj2j, j = 0, 1, . . . , n − 1,
where the coefficient cj =

∑`−1
m=0 bma

(m)
j depends on bm of

xbin and a
(m)
j of h[j]:

xdot = xbin · h =
`−1∑
m=0

bmh[m]

=

`−1∑
m=0

bm
n−1∑
j=0

a(m)j 2j (28)

=

n−1∑
j=0

2j
`−1∑
m=0

bma
(m)
j

=

n−1∑
j=0

cj2j, where cj =
`−1∑
m=0

bma
(m)
j . (29)

Since a(m)j is known for all m = 0, 1, . . . , ` − 1, we can

store all `s of the a(m)j s for each j = 0, 1, . . . , n− 1. In other

words, storing h in an LUT gives us all the a(m)j s for a given
filter, but we need to arrange the LUT by storing the m-bit
(a(m−1)j , a(m−2)j , . . . , a(0)j) in its address j.

Based on this analysis, we propose a design of a spe-
cific circuit, as shown in Fig. 7, that produces cj2j, where
cj =

∑`−1
m=0 bma

(m)
j , for the input xbin, provided that h is

known. This design is modular and is parameterized with
` and n. By storing bit j of all tabs as `-bit data, Hj =
(a(`−1)j , a(`−2)j , . . . , a(0)j), in the respective register H_j, j =
0, 1, . . . , n− 1, a bitwise AND operation between xbin and
H_j produces bma

(m)
j ,m = 0, 1, . . . , `−1. Then, the module

bit_sum in the diagram adds all bits of bma
(m)
j to produce cj.

This is followed by the module shL{j}, which implements
cj2j by shifting cj to the left by j bits, which can be done by
wiring for a given j. The results, denoted as c0×1, c1×2, . . .,

c{n−1}x{w} (w = 2n−1), are added together in the module
adderTree, which employs a tree structure of n−1 adders
to implement

∑n−1
j=0 cj2

j, resulting in xdot.
The estimated θk is produced by the module Linear

Func, which implements the computation of P1xdot+P0−B,
whereas P1, P0, and B for a given h are stored in the module
ParameterTAB. Finally, cos θk is produced by an LUT
storing the cosine function.

C. APPLICATIONS TO 2D CONVOLUTION
Our hardware is considered a scalable array of processing
elements (PEs), which are the base elements for building the
applications. In this section, we explore applications of our
hardware blocks to 2D convolution. First, we design a 2D
engine based on our scalable hardware. Then, we apply the
developed hardware to a state-of-the-art convolutional neural
network.

1) TWO-DIMENSIONAL CONVOLUTION
To develop a 2D geometry-based convolution, we design a
specialized, low-complexity, low-power-consumption hard-
ware. Let x denote the input matrix of size M × N and w
denote a filter of size ñ× ñ, where ñ is a positive, odd number,
i.e., ñ = 2a + 1 for some non-negative integer a.1 Elements
of the output matrix y from the 2D convolution between x and
w are given by

y(i, j) =
a∑

s=−a

a∑
t=−a

w(s, t)x(i+ s, j+ t), (30)

where i and j are row and column indices, respectively. As i
and j vary, the filter’s center visits every pixel of x once.
The 2D convolution can be considered as a summation of 1D
convolutions. Therefore, a hardware for 2D convolution can
be obtained from our 1D-convolution hardware.

Based on our hardware in Fig. 5, the overall architecture
for 2D convolution is shown in Fig. 8. The architecture dis-
tributes each row of the input matrix into the row of FIFO and
parallelizes the computation by interleaving matrix rows over
the PEs. Every PE stores a partition of weights, i.e., the con-
volution constants, in the BRAM and performs a computation
of row convolution with those values. Finally, the results of
each row from each convolution are added together using
a parallel tree-structured hardware in the addX unit in the
figure. The proposed architecture has m levels of parallelism,
where m is the number of 1D convolutions, which is also
the number of PEs parallelized in the engine. The notation
GC2(m) in the figure denotes the overall 2D convolution
engine. In the proposed architecture, the more PEs, the more
levels of parallelization.

The number of PEs in the proposed architecture should
be a multiple of ñ, i.e., m = βñ, where β is the amount of
output per cycle, so that the proposed hardware can simply

1The consideration that ñ is an odd number is without loss of generality,
since we can pad the filter w with zero elements to achieve the odd numbers
of rows and columns.

33430 VOLUME 10, 2022

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

FIGURE 8. Hardware architecture for 2D convolution.

store the constant and schedule the data directly to each PE.
For illustration, we let β = 1. To generate the first output
row, the first m rows of the matrix, which are row 0 to row
m− 1, are streamed and split into each PE for computing the
1D convolution. After that, the 2D convolution is performed
by adding those results together in the unit labelled addX in
the figure. When the first output row is finished, the second
output row is computed by moving the data to the FIFO
queue, i.e., fetching row 1 to row m of the input matrix to
each GC unit. In the remaining steps, the input matrix will be
scheduled in the same fashion, by moving the input matrix
row by row until the final row is added to the FIFO queue.
This procedure is handled by the unit row schedule in
Fig. 8.

2) CONVOLUTIONAL NEURAL NETWORK
This subsection applies 2D convolution to CNN models.
Given that most CNN architectures use the convolution in
a similar way, we select the AlexNet CNN model as an
illustration. This subsection focuses on applications of our
purposed method to complex CNNs.

We begin on how a 2D convolution is embedded in a CNN.
For illustration, we consider a 4D kernel tensor K, where
element Ki,j,k,l is the connection between a unit in channel
i of the output and a unit in channel j of the input, with an
offset of k rows and l columns. Furthermore, we let V denote
the input data, where element Vi,j,k is the value of the input
unit at row j, column k , and channel i.

We consider a simple case in which the output Z takes the
same format as the input V and comes from a multichannel
convolution:

Zi,j,k =
∑
l

∑
x

∑
y

Vl,(j−1)s+x,(k−1)s+yKi,l,x,y, (31)

where the summations cover all indices l, x and y. Parameter
s is the stride of the convolution. Eq. (31) captures the main
convolution operation in CNNs.
According to Eq. (31), each output Zi,j,k is the sum of

multichannel 2D convolutions with respect to the number of

FIGURE 9. Hardware architecture for multichannel convolution with p
parallelized GC2 units.

filters in each layer and the stride s. To develop a convolution
layer, we propose to use the hardware in Fig. 9 instead of the
conventional convolution hardware, for less power consump-
tion and less complexity. The hardware in Fig. 9 consists of
many 2D convolution GC2(m) units.
In Fig. 9, the proposed architecture takes a stream of mul-

tiple layers of V, together with the configuration parameters,
which consist of the current number of filters and the number
of layers. Each channel of input V is interleaved into each PE
in a scheme of 2D. Meanwhile, the PE clusters execute the
convolutions. The weights and stride s are self-distributed to
each PEs with respect to the sequence of computation. After
that, the stride selection hardware is operated, for downsam-
pling the convolution. The stride selection is built from the
counter. Finally, the parameterized parallel adders PAddX
are operated with respect to the final summation of the 2D
convolutions, as indicated by Eq. (31). The final results of
multichannel convolution are stored in the BRAM, and the
hardware prepares to compute the convolution for the next
layer.

To control the datapath, a conventional unrolling loop is
used. The number of unrolling loops depends on the number
of PEs in the field. The number of groups for parallel adders
also depends on the number of filters according to Eq. (31).
Moreover, the address generator block fetches the desire
address to acquire the data from the BRAM. This core has
two parameters: m, which is the number of 1D convolution
GC; and p, which is the number of 2D convolution GC2.
The core performs the operation convL(p,m) as shown in
Fig. 9. Our hardware blocks are general and able to facilitate
the architectures of 2D convolutions and CNNs.

VI. RESULTS AND DISCUSSION
The proposed approach is evaluated in three respects: com-
putation accuracy, time complexity, and resources, measured
in both area and power consumption.

A. ON ACCURACY
We evaluate the accuracy of the proposed approximate convo-
lution in two steps. In the first step, we consider the errors of
the approximated angle, θ̂ , following Eq. (17), comparedwith
the exact angle, θ , following Eq. (10). Then, the accuracy of

VOLUME 10, 2022 33431

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

TABLE 2. Parameters used in the evaluations.

FIGURE 10. The average difference between the exact and approximate
angles with 10,000 pairs of vectors.

the approximate convolution results is considered. Both eval-
uations are performed with the parameters shown in Table 2.

For the first result, the effect of vector-to-angle approxi-
mation is considered using a random vector as h, the impulse
response. The percent angle errors for the vector size from
4 to 20 are plotted in Fig. 10. As expected, the percent
error decreases for larger vector sizes as the space to which
xbin is quantized grows exponentially with respect to N , the
vector size. The important finding in this evaluation is that
the error is saturated for sizes greater than 18. These results
are used to choose an appropriate value for ` in our proposed
method, as the price for a large value of ` is in the process of
predetermining the values of P1, P0, and B. Based on these
results, we choose ` = 20.
Using the chosen ` = 20, we evaluate the accuracy of

the proposed convolution approximation for 4 different kinds
of filters, a uniform random filter, a Gaussian filter, a low-
pass filter, and a high-pass filter with vector size N varying
from 4 to 100. Using randomly generated samples of an input
vector x of size 400, we compute the average absolute error
of the approximate convolution using the equation below:

conv_error =
|h ∗ x− approx(h ∗ x)|

h ∗ x
, (32)

where h ∗ x is the precise convolution and approx(h ∗ x) is
its approximation using the proposed method.

Fig. 11 shows the plot of the average absolute errors for
various filter types, with the filter size varying from 4 to
100. In this plot, for each filter size, we average the percent

FIGURE 11. The average error with a random representative impulse
response with any dimension when compared to the exact convolution.

FIGURE 12. Output signals from the low-pass filter using the proposed
approximated convolution compared with those using the exact
convolution.

error using 200 samples of h, each of which is evaluated with
1000 samples of x. The plot shows a very good result, as the
average error of the proposed method is approximately 5%
for specific filter types of size greater than 20. Moreover, the
larger the size is, the smaller the error. For the random filter
type, the error is larger than that for a specific type due its
randomness. Hence, using this as an upper bound of error,
the proposed approximation achieves less than 5% error for
any filter of size greater than 50.

To evaluate the effect of the approximation on the quality
of the output signal, we feed a sinusoidal signal with the
fundamental frequency and its third harmonic and a sawtooth
with the 3rd harmonic sinusoidal signal to a Chebyshev low-
pass filter with the order of 20. Fig. 12 shows the output sig-
nals from the filter obtained using the proposed approximated
convolution compared with those using the actual convolu-
tion. Although the results reveal some local distortions of the
approximated output from its precise version, the maximum
errors are 17% and 14%, while the average errors are less
than 4.5% and less than 3.7% for the sinusoidal and sawtooth
signals, respectively.

Furthermore, we also evaluate and report the accu-
racy in Table 3 among the various types of approximate

33432 VOLUME 10, 2022

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

TABLE 3. The convolution error of the approximate convolution among
various designs.

FIGURE 13. Example images from exact (left) and approximate (right)
convolutions with Gaussian filter.

FIGURE 14. Example images from exact (left) and approximate (right)
convolutions with Laplacian of Gaussian filter. The colors are inverted
from black to white and white to black for visual clarity.

multiplication on the same comparable test case. Evaluation
metrics include the error rate (ER), the normalized mean
error distance (NMED) and the percentage of mean relative
error distance (MRED) [42]–[45]. The ER is the rate of
h ∗ x − approx(h ∗ x) 6= 0. The NMED is the average
of |h ∗ x− approx(h ∗ x)| divided by (2n − 1)2. The lower
these evaluation metrics, the more accurate the approxima-
tion method. From the table, the proposed method performs
just above average among the other types for both NMED
and MRED. This is to confirm that the proposed method is
suitable for convolution tasks.

Next, we quantify the effect of approximate 2D convo-
lution on image filtering, using the following procedure.
We apply two types of filters to images in the benchmark
datasets. The two types of filters are the Gaussian filter, which
represents a low-pass filter, and the Laplacian-of-Gaussian

TABLE 4. The PSNR between exact and approximate filtered images.

filter, which represents a high-pass filter. The benchmark
datasets are the MNIST [46], CIFAR [47], and InDoor Scene
[48] datasets. Each type of filter is applied twice—first, using
an exact 2D convolution and, second, using the approximate
2D convolution proposed by the paper— to each bench-
mark image. We use the peak signal-to-noise ratio (PSNR)
to measure the difference between a filtered image from
an exact convolution and the counterpart from an approx-
imate 2D convolution, where PSNR = 20 log(255) −
10 log(the mean square error) dB. The PSNR of at least 20 dB
[49] generally indicates a reasonable agreement between the
exact and the approximate filtered images.

Table 4 shows the average PSNR of each dataset with
respect to each filter type. The PSNRs are reasonably large,
indicating an agreement between the exact and the approx-
imate convolutions. For a given dataset, the PSNR due to
the Gaussian filter is larger than the PSNR due to the
Laplacian-of-Gaussian filter. When using the approximate
2D convolution, the Gaussian filter produces images of better
quality than the Laplacian-of-Gaussian filter does. Figs. 13
and 14 show examples of filtered images from the exact and
approximate 2D convolutions, for the Gaussian filter and the
Laplacian-of-Gaussian filter, respectively. In each figure, the
PSNR between the exact-convolution and the approximate-
convolution images is approximately 25 dB. Visually, the
two images in each figure are indistinguishable by eye. The
proposed method of approximate 2D convolution attains a
reasonable level of accuracy.

We further evaluate performance of the approximate
2D convolution in a neural network. As explained in
Section V-C2, we modify the convolutional layer, replacing
the exact 2D convolution with the proposed geometry-based
approximate convolution. For illustration, the datasets are the
ImageNet and MNIST datasets. Table 5 summarizes classifi-
cation accuracy of the proposed method, compared with the
exact convolution.

From the table, classification accuracy of the approximate
convolution is smaller than that of the exact convolution,
as expected. The difference in classification accuracies of
the exact and approximate 2D convolutions is between 5 to
15 percentage points for the MNIST dataset and between 15
to 40 percentage points for the ImageNet dataset. The loss in
classification accuracy depends the number of convolutional
layers that are being approximated. The MNIST dataset has
only 10 classes, which simplify the tasks of training the
AlexCNN model and of classifying a sample. On the other
hand, the ImageNet dataset has thousands of classes, which
are more complex to classify, hence reducing the classifica-
tion accuracy when the convolution is approximated. A loss

VOLUME 10, 2022 33433

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

TABLE 5. Classification accuracy of the proposed method compared with
the exact computation for the AlexNet CNN model.

in classification accuracy is offset by a gain from simple
hardware and efficient power consumption, as discussed in
the next section.

B. ON PERFORMANCE
In this section, we evaluate the number of basic operations,
including addition, multiplication, and square root, needed
in the proposed convolution implementation, compared with
the conventional convolution and other implementations. Fur-
thermore, we evaluate the throughput, which is the amount
of output in a given period. To be specific, the complexity
comes from the convolution computation only because the
complexity of the preprocessing step is fixed for the given,
fixed impulse response and diminished in a long run as the
sizeN of the streaming input is large. Another reason to safely
omit the complexity of the preprocessing is that preprocessing
can be computed before the convolution implementation.

Recall that N and M denote the sizes of vectors h and x,
respectively. For the proposed method, to compute M points
of h ∗ x, there are three parts of the computation as follows:

(1) For the computation of |x|2, the proposed method needs
N multiplications and N − 1 additions for computing
|x1|2 =

∑N
j=1 x

2
j . Then, for k = 2, 3, . . . ,M , only one

multiplication and 2 additions are needed for each |xk |2.
In total, the proposed method needs N +M multiplica-
tions and N + 2M − 3 additions for computing |x|2 in
all M points of h ∗ x.

(2) For the computation of cos θk , k = 1, 2, . . . ,M , the
proposedmethod eliminates themultiplications by using
xbin, the binarized xk . Furthermore, we reduce the num-
ber of additions in computing xbin · h with a specific
circuit, as described in Section V-B. With the direct
implementation, xbin · h needs NavgM additions, where
Navg is the average number of nonzero bits in xbin.
However, with the proposed hardware implementation,
the number of additions is a constant, which is equal
to the number of bits of the data representation. This
reduction is traded off with two additional circuits:
(1) a circuit for generating xbin (Fig. 6) and (2) a circuit
for determining the total weight of each bit (Fig. 7).

(3) Since the proposed method computes the square of yk
based on the computation of |h|2|xk |2 cos θk , it needs
2M multiplications and M square root operations in
total.

In total, for each computation of h ∗ x, the proposed method
needs N + (2 + w)M additions (w is the number of bits

TABLE 6. Number of basic operations of proposed convolution procedure
comparing with conventional convolution and other approximation
procedure.

representing hj), N + 3M multiplications, andM square root
operations.

Table 6 also compares the number of basic operations of
the proposed method with those of the conventional convo-
lution procedure with constant multiplication enhancement,
conventional convolution with approximate multiplication,
and the Fastfood approximation method [18]. Given N , the
size of vector x, and M , the size of vector x, the proposed
method provides linear growth of2(N+M) for both addition
and multiplication compared with 2(MN) of the conven-
tional and 2(M log2M) of Fastfood approximations, FFT
and Winograd. The convolution with constant multiplication
enhancement has only polynomial growth in addition, which
is2(MN), and the convolution with approximate multiplica-
tion has the same results as the conventional method because
it has the same operation. However, the proposed method
needs additional square root computations with the growth
of 2(M).

The proposed method and the Winograd convolution have
the same number of the multiplication operations, asymptot-
ically. However, the number of addition operations is smaller
in the proposed method. The number of multiplication oper-
ations for the Winograd convolution can be reduced to M +
N−1 by storing the transformmatrix in memory, an approach
that could cause a memory issue in the embedded system.
In our design, we store three more values of parameters
than the conventional method does, leading to less memory
consumption than the Winograd. At the same level of time
complexity, our method is easier and simpler to implement
than the Winograd convolution.

In addition to time complexity, we evaluate the throughput
of the core. Firstly, the throughput and latency of 1D and
2D convolutions are investigated. The throughput depends

33434 VOLUME 10, 2022

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

TABLE 7. The power consumption of the FPGA implementations in mW of the proposed and conventional methods.

TABLE 8. The resource utilization of the proposed method and the conventional method.

TABLE 9. Experimental results of approximate convolution when
synthesized with 45 nm standard CMOS cells.

on the system clock, which is one sample per clock in our
hardware architecture and other computational designs. The
latency depends on the size of vector h, which generates each
sample of the output y according to Eq. (2). From Eq. (2),
the hardware needs to wait until the current data xk were
completely streamed before it can stream the new window
of data xk+1. Therefore, the throughputs of the proposed
method and the conventional method are equal to one sample
per clock. The latencies of the proposed method and the
conventional method are equal to the system clock interval
multiplied by the size of vector h. The proposed method is on
par with the conventional method in terms of the throughput
and latency.

Furthermore, we investigate the effect of our proposed
method on the execution time of a CNN. The total execution

time, TCNN, of the complete CNN is given by

TCNN =
nCL∑
i=1

TCLi︸ ︷︷ ︸
TCL

+

nFL∑
i=1

TFLi + TMEM. (33)

Here, TCL,i is the execution time of the ith convolutional
layer, nCL is the total number of convolutional layers, TFL,i
is the execution time of the ith fully connected layer, nFL
is the total number of fully connected layers, and TMEM is
the memory loading time for loading an image or the results
from the previous layer. To quantify an effect of approximate
convolution, we consider only the total execution time of the
convolutional layers, TCL, in our proposed method.
The number CY of cycles for each convolutional layer is

determined by the number of 2D convolutions:

CY =
nConv× Is× Ks

m× p× s
, (34)

where nConv is a product between the number k of kernels
and the number l of channels, i.e., nConv = k × l. In the
above equation, Is is the size of input, s is the stride, Ks is
the size of kernel, m is the number of 1-dimensional engines,
and p is the number of 2-dimensional engines in the core. The
total execution time of the convolutional layers equals

TCL =
CY

clk freq
+ mem time, (35)

which is a sum of the convolution execution time and the
memory consumption time.

To compare the execution times of the CNN, the conven-
tional, exact convolutions are also implemented on the same
hardware architecture. The differences between the exact and
approximate convolutions appears in the stride configuration.
Our proposed method stalls on the number of strides, multi-
plied with the system clock to acquire the input. In contrast,
the conventional convolution does not stall, leading to perfor-
mance degradation. According to Eq. (34), our method has
a constant value of stride equal to one, but the conventional
method follows the CNN architecture.

VOLUME 10, 2022 33435

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

FIGURE 15. Complexity and performance comparison between the proposed method and the conventional method, measured by (a) the
number of operations and (b) the number of images per second.

Fig. 15a shows the complexity reduction of the proposed
method compared with the conventional method. The pro-
posed method can reduce the complexity of the conventional
method by 70% and 18% approximately in the first two
layers, highlighted blue in the figure, respectively. In the last
three layers, the complexity increases 18% approximately.
Overall, the proposed method reduces the total complexity
of the conventional method by 22% approximately.

We further test the proposed architecture on a classic
benchmark CNN, the AlexNet, and measure how many
images the proposed architecture can produce in one second,
compared to the conventional convolution. TheAlexNet takes
227 × 227-pixel2 images as input. In the test, the size of
kernels, channels, and input for each convolution layers are
standard and follow the specifications of the AlexNet CNN
model. The maximum size of kernel in AlexNet is 11 × 11.
Hence, the choice of m = 15 simplifies the distribution of the
data to the core and is suitable in the proposed architecture.

Fig. 15b shows the number of images processed in one
second for the conventional and proposed methods. The
conventional method processes approximately 10–15% more
number of images in one second than the proposed method
does. A decrease in speed, measured by images/second, in the
proposed method is a trade off for better power consumption
and complexity. The decrease in speed is caused by a change
in the input structure, namely the stride size, as described in
the next section.

C. ON RESOURCES
In this section, we evaluate the cost of achieving the perfor-
mance level in terms of the operation counts described in the
previous section. As the proposed convolution procedure has
been targeted as a hardware implementation on either a pro-
grammable hardware chip, an FPGA chip, or an ASIC chip,
the cost is measured in terms of area and power. The FPGA
and ASIC chips in our evaluation have the clock frequency

of 100 MHz. For the FPGA implementation, we tested the
hardware implementation described in Section V on the Zynq
7z010 FPGA fabric [50]. After verifying the correction of the
implementation, we measured its power consumption using
the tools provided with the development kit and recorded
the implementation’s area in terms of resource utilization,
as shown in Tables 7 and 8, respectively.

For the power consumption issue, the results show that for a
large practical filter size, the proposed method can reduce the
total power consumption by approximately 20% compared
with that of the conventional method. Because the proposed
hardware architecture is designed to handle any sizeN of h by
arranging the computation in multiple blocks of 20, the power
needed to operate the proposed hardware is approximately
the same for any filter size N ≥ 20. However, the energy
consumption will grow with respect to the vector sizes N and
M . For the proposed implementation, this growth of energy is
linear, following the growth of the operation counts discussed
in the previous section.

For resource utilization, the implementations are coded
in HDL and synthesized by the Xilinx Synthesis Tool that
comes with Vivado 2021.2. The results show that the pro-
posed hardware utilizes more hardware resources than other
implementations. These results are as expected due to the
tradeoff we make to reduce the power consumption.

However, in ASIC, we can design the proposed hardware
architecture with significantly less area because all circuits
are specific, while in FPGA, all resources are prebuilt so that
they can be programmed. To illustrate this point, we syn-
thesize our proposed method and the conventional version
targeting an open-source 45-nm [51] (FreePDK45) PDK stan-
dard cell using Synopsys DC compiler for the purpose of
evaluating the area and power consumption of the proposed
hardware in ASIC, as shown in Table 9.

According to Table 9, for the power measurement, the
proposed method operates at 602.16 µW compared with the

33436 VOLUME 10, 2022

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

FIGURE 16. The power and area comparison between the proposed and the conventional methods on the 2D convolution.

FIGURE 17. The comparison between the proposed and the existing methods.

803.76 µW spent by the conventional counterpart, which is
an approximately 25% difference. For the area, the ASIC
synthesis results show that the proposed hardware footprint
(5337µm2) is approximately 86% the size of that of the
conventional method (6157µm2), which means our proposed
method needs approximately 14% less area. These results
show that we can achieve a lower cost in terms of hard-
ware cost, area and power consumption in ASIC. This is
possibly because the proposed hardware, which requires spe-
cific circuits in the estimation of cos θk , is more suitable
for specific circuit implementations in ASIC than the pro-
grammable hardware in FPGA. Comparing to other approx-
imate methods, the proposed method consumes less power,
approximately 10%–15% less, while utilizes more area with
the same accuracy, which is the result of operation reduction.
In addition, the proposed hardware is designed using the
pipeline technique, which allows the streaming of results in
every clock cycle.

Next, we measure the resource and power utilization for
specific applications. All designs are synthesized under the
same environment, which is the Synopsys DC compiler with

TABLE 10. Experiment of CNN execution with AlexNet model based on
the conventional and proposed convolution methods.

a 45nm FreePDK. Firstly, we begin with the 2D hardware
GC2. Its utilization is determined by the number of GC units
and the number of FIFOs used to buffer each row of the input
image. The number of FIFOs in the proposedmethod depends
on the size of the image filter, in order to simplify the process
of data scheduling. We test the proposed method with differ-
ence filter sizes, while keeping the input image size fixed at
227× 227-pixel2, which is the same image size in our CNN
evaluation. The result is shown in Fig. 16. From the figure, our
proposed method reduces the area and power consumption
of the conventional method by approximately 5% and 25%,
respectively. Finally, we measure the utilization and power
consumption of the CNN engine. The AlexNet CNN model
is used for testing the architecture, with m = 15 and p = 10.

VOLUME 10, 2022 33437

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

The result is shown in Table 10. The proposed design has a
smaller area and consumes less power than the conventional
method. Power consumption of the proposed method is 13%
lower than the conventional method. The proposed method
outperforms the conventional method in terms of the area and
power consumption.

For three different matrices, the power-accuracy and area-
accuracy tradeoff graphs in Fig. 17a and Fig. 17b show that
the proposed design has a good tradeoff for both area and
power. For the area-accuracy tradeoff, there are some designs
that use less area and gain more accuracy. Nevertheless, our
design is above average among the designs. Additionally, our
proposed method has the best tradeoff for power consump-
tion among the various approximate multipliers. Moreover,
for applications in image filtering and neural networks, the
accuracy of the proposed method is acceptable. Our proposed
method can reduce the number of operations while trading off
accuracy and throughput with the power consumption. Oper-
ation reductions directly affect power consumption. These
characteristics make our proposed method a favorable choice
for an energy-efficient design.

VII. CONCLUSION
In this article, the implementation of convolution compu-
tation to achieve less power consumption with the limited
resources of embedded applications along with better per-
formance is proposed. Trading off the computation accuracy,
we propose an approximate convolution procedure based on
the geometric interpretation of the dot product by approx-
imation of cos θ . All state-of-the-art convolution methods,
approximate convolution methods, and the proposed method
are implemented on FPGA and the 45 nm FreePDK CMOS
process with Vivado 2021.2 and Synopsys DC compiler to
investigate the area and power utilization. The experimental
results indicate that our design has a 25% power reduction
and area reduction compared with exact convolution and an
approximately 10%–15% power optimization compared with
other approximate methods. We also verify that our method
supports 2D convolutions and has an acceptable classification
accuracy for CNN models, where we take the AlexNet CNN
model as a benchmark example. We also quantify the time
complexity of the proposed method. The proposed approx-
imate convolution and the corresponding hardware architec-
ture have applications to inference and signal processing tasks
that tolerate some errors in the convolution and require low
power consumption.

ACKNOWLEDGMENT
The authors would like to thank Silicon Craft Technology
Public Company Ltd. and Synopsys for the Synopsys DC
Compiler’s license.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., vol. 25. Red Hook, NY, USA: Curran Associates,
2012.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2009, pp. 248–255.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[4] D. H. Wolper and W. G. Macready, ‘‘No free lunch theorems for optimiza-
tion,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997.

[5] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, ‘‘Benchmark analysis
of representative deep neural network architectures,’’ IEEE Access, vol. 6,
pp. 64270–64277, 2018.

[6] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[7] W. Dargie, ‘‘A stochastic model for estimating the power consumption
of a processor,’’ IEEE Trans. Comput., vol. 64, no. 5, pp. 1311–1322,
May 2015.

[8] J. Han and M. Orshansky, ‘‘Approximate computing: An emerging
paradigm for energy-efficient design,’’ in Proc. IEEE Eur. Test Symp.,
May 2013, pp. 1–6.

[9] R. Nair, ‘‘Big data needs approximate computing: Technical perspective,’’
Commun. ACM, vol. 58, no. 1, p. 104, Dec. 2014, doi: 10.1145/2688072.

[10] Z. Liu, A. Yazdanbakhsh, T. Park, H. Esmaeilzadeh, and N. S. Kim,
‘‘SiMul: An algorithm-driven approximate multiplier design for machine
learning,’’ IEEE Micro, vol. 38, no. 4, pp. 50–59, Jul. 2018.

[11] C. Khongprasongsiri, W. Suwansantisuk, and P. Kumhom, ‘‘An investi-
gation of multiplication error tolerances in CNN and SIFT,’’ Proc. SPIE,
vol. 11049, pp. 714–718, Mar. 2019.

[12] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, ‘‘Towards effective low-
bitwidth convolutional neural networks,’’ 2017, arXiv:1711.00205.

[13] F. Johansson, ‘‘Faster arbitrary-precision dot product and matrix multipli-
cation,’’ 2019, arXiv:1901.04289.

[14] M. Kumm, ‘‘Optimal constant multiplication using integer linear pro-
gramming,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 5,
pp. 567–571, May 2018.

[15] F. de Dinechin, S.-I. Filip, M. Kumm, and L. Forget, ‘‘Table-based versus
shift- and-add constant multipliers for FPGAs,’’ in Proc. IEEE 26th Symp.
Comput. Arithmetic (ARITH), Kyoto, Japan, Jun. 2019, pp. 1–8. [Online].
Available: https://hal.inria.fr/hal-02147078

[16] M. Kumm, M. Hardieck, and P. Zipf, ‘‘Optimization of constant matrix
multiplication with low power and high throughput,’’ IEEE Trans. Com-
put., vol. 66, no. 12, pp. 2072–2080, Dec. 2017.

[17] R. Appuswamy, T. Nayak, J. Arthur, S. Esser, P. Merolla, J. Mckinstry,
T. Melano, M. Flickner, and D. Modha, ‘‘Structured convolution matrices
for energy-efficient deep learning,’’ 2016, arXiv:1606.02407.

[18] Q. V. Le, T. Sarlos, and A. J. Smola, ‘‘Fastfood: Approximate kernel
expansions in loglinear time,’’ 2014, arXiv:1408.3060.

[19] G. Tong and L. Huang, ‘‘Fast convolution based on Winograd minimum
filtering: Introduction and development,’’ 2021, arXiv:2111.00977.

[20] V. Y. Pan, ‘‘How bad are Vandermonde matrices?’’ SIAM J. Matrix Anal.
Appl., vol. 37, no. 2, pp. 676–694, 2016, doi: 10.1137/15M1030170.

[21] L. Meng and J. Brothers, ‘‘Efficient Winograd convolution via integer
arithmetic,’’ 2019, arXiv:1901.01965.

[22] Y. Zhao, D. Wang, and L. Wang, ‘‘Convolution accelerator designs using
fast algorithms,’’ Algorithms, vol. 12, no. 5, p. 112, May 2019. [Online].
Available: https://www.mdpi.com/1999-4893/12/5/112

[23] B. Barabasz, A. Anderson, K. M. Soodhalter, and D. Gregg, ‘‘Error anal-
ysis and improving the accuracy of Winograd convolution for deep neural
networks,’’ 2018, arXiv:1803.10986.

[24] Y. Huang, J. Shen, Z. Wang, M. Wen, and C. Zhang, ‘‘A high-efficiency
FPGA-based accelerator for convolutional neural networks using Wino-
grad algorithm,’’ J. Phys., Conf., vol. 1026, May 2018, Art. no. 012019,
doi: 10.1088/1742-6596/1026/1/012019.

[25] A. Lavin and S. Gray, ‘‘Fast algorithms for convolutional neural networks,’’
2015, arXiv:1509.09308.

[26] S. Fox, D. Boland, and P. Leong, ‘‘FPGA fastfood—A high speed sys-
tolic implementation of a large scale online kernel method,’’ in Proc.
ACM/SIGDA Int. Symp. Field-Program.Gate Arrays, NewYork, NY,USA,
Feb. 2018, pp. 279–284, doi: 10.1145/3174243.3174271.

[27] K. Du, P. Varman, and K. Mohanram, ‘‘High performance reliable variable
latency carry select addition,’’ in Proc. Design, Automat. Test Eur. Conf.
Exhib. (DATE), Mar. 2012, pp. 1257–1262.

33438 VOLUME 10, 2022

http://dx.doi.org/10.1145/2688072
http://dx.doi.org/10.1137/15M1030170
http://dx.doi.org/10.1088/1742-6596/1026/1/012019
http://dx.doi.org/10.1145/3174243.3174271

C. Khongprasongsiri et al.: Efficient, Geometry-Based Convolution

[28] H. Waris, C. Wang, and W. Liu, ‘‘High-performance approximate half and
full adder cells using nand logic gate,’’ IEICE Electron. Exp., vol. 16, no. 6,
Jan. 2019, Art. no. 20190043.

[29] V. Gupta, D.Mohapatra, A. Raghunathan, and K. Roy, ‘‘Low-power digital
signal processing using approximate adders,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137, Jan. 2013.

[30] P. Kulkarni, P. Gupta, and M. Ercegovac, ‘‘Trading accuracy for power
with an underdesigned multiplier architecture,’’ in Proc. 24th Int. Conf.
VLSI Design, Jan. 2011, pp. 346–351.

[31] C. Liu, J. Han, and F. Lombardi, ‘‘A low-power, high-performance approx-
imate multiplier with configurable partial error recovery,’’ in Design,
Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2014, pp. 1–4.

[32] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, ‘‘Design and analysis
of approximate compressors for multiplication,’’ IEEE Trans. Comput.,
vol. 64, no. 4, pp. 984–994, Apr. 2015.

[33] S. Venkatachalam and S.-B. Ko, ‘‘Design of power and area efficient
approximate multipliers,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 25, no. 5, pp. 1782–1786, May 2017.

[34] Z. Yang, J. Han, and F. Lombardi, ‘‘Approximate compressors for error-
resilient multiplier design,’’ in Proc. IEEE Int. Symp. Defect Fault Toler-
ance VLSI Nanotechnol. Syst. (DFTS), Oct. 2015, pp. 183–186.

[35] C.-H. Lin and I.-C. Lin, ‘‘High accuracy approximate multiplier with
error correction,’’ in Proc. IEEE 31st Int. Conf. Comput. Design (ICCD),
Oct. 2013, pp. 33–38.

[36] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram, ‘‘Dual-quality
4:2 compressors for utilizing in dynamic accuracy configurable multipli-
ers,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 4,
pp. 1352–1361, Apr. 2017.

[37] F. Sabetzadeh, M. H. Moaiyeri, and M. Ahmadinejad, ‘‘A majority-based
imprecise multiplier for ultra-efficient approximate image multiplication,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 66, no. 11, pp. 4200–4208,
Nov. 2019.

[38] M. Ahmadinejad, M. H. Moaiyeri, and F. Sabetzadeh, ‘‘Energy
and area efficient imprecise compressors for approximate
multiplication at nanoscale,’’ AEU Int. J. Electron. Commun.,
vol. 110, Oct. 2019, Art. no. 152859. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1434841119304923

[39] F. Ranjbar, Y. Forghani, and D. Bahrepour, ‘‘High performance 8-bit
approximate multiplier using novel 4:2 approximate compressors for fast
image processing,’’ Int. J. Integr. Eng., vol. 10, no. 1, pp. 1–20, Apr. 2018.

[40] T. Kong and S. Li, ‘‘Design and analysis of approximate 4–2 compres-
sors for high-accuracy multipliers,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 29, no. 10, pp. 1771–1781, Oct. 2021.

[41] M. Garrido, P. Källström, M. Kumm, and O. Gustafsson, ‘‘CORDIC II:
A new improved CORDIC algorithm,’’ IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 63, no. 2, pp. 186–190, Feb. 2016.

[42] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, and J. Han, ‘‘A comparative
evaluation of approximate multipliers,’’ in Proc. IEEE Int. Symp. Nanosc.
Architectures (NANOARCH), Jul. 2016, pp. 191–196.

[43] D. Esposito, A. G. M. Strollo, E. Napoli, D. De Caro, and N. Petra,
‘‘Approximate multipliers based on new approximate compressors,’’ IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 12, pp. 4169–4182,
Dec. 2018.

[44] V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi, ‘‘Walking
through the energy-error Pareto frontier of approximate multipliers,’’ IEEE
Micro, vol. 38, no. 4, pp. 40–49, Jul. 2018.

[45] J. Liang, J. Han, and F. Lombardi, ‘‘New metrics for the reliability of
approximate and probabilistic adders,’’ IEEE Trans. Comput., vol. 62,
no. 9, pp. 1760–1771, Sep. 2013.

[46] L. Deng, ‘‘The MNIST database of handwritten digit images for machine
learning research [best of the web],’’ IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[47] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009. [Online]. Avail-
able: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[48] A. Quattoni and A. Torralba, ‘‘Recognizing indoor scenes,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 413–420.

[49] X. Li and J. Cai, ‘‘Robust transmission of JPEG2000 encoded images over
packet loss channels,’’ inProc. IEEE Int. Conf.Multimedia Expo, Jul. 2007,
pp. 947–950.

[50] C. Holland. (Mar. 2011). Xilinx Provides Details on ARM-Based
Devices. [Online]. Available: https://www.embedded.com/xilinx-
provides-detailson- arm-based-devices/

[51] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
‘‘FreePDK: An open-source variation-aware design kit,’’ in Proc. IEEE
Int. Conf. Microelectronic Syst. Educ., Jun. 2007, pp. 173–174.

CHANON KHONGPRASONGSIRI (Student
Member, IEEE) received the B.Eng. degree in
electronic and telecommunication engineering
from the King Mongkut’s University of Tech-
nology Thonburi, Thailand, in 2018, where he
is currently pursuing the master’s degree. His
research interests include the Internet of Things
and their applications, digital systems design and
implementation, and signal and image processing.

WATCHARAPAN SUWANSANTISUK (Member,
IEEE) received the B.S. degrees in electrical and
computer engineering, and computer science from
Carnegie Mellon University, PA, USA, in 2002,
and the M.S. and Ph.D. degrees in electrical engi-
neering from the Massachusetts Institute of Tech-
nology, in 2004 and 2012, respectively.

He is currently an Assistant Professor with
the King Mongkut’s University of Technology
Thonburi (KMUTT), Thailand. Before joining

KMUTT, he spent summers at the University of Bologna, Italy, as a Visiting
Research Scholar and at Alcatel-Lucent Bells Laboratory, NJ, USA, as a
Research Intern. His main research interests include wireless communica-
tions, synchronization, and statistical signal processing.

Dr. Suwansantisuk serves on the technical program committees for var-
ious international conferences and served as the Symposium Co-Chair for
the IEEE Global Communications Conference, in 2015. He received the
Leonard G. Abraham Prize in the field of communications systems from
the IEEE Communications Society, in 2011, jointly with Prof. M. Chiani
and Prof. M. Win; and the Best Paper Award from the IEEE RIVF Interna-
tional Conference on Computing andCommunication Technologies, in 2016,
jointly with N. Chedoloh.

PINIT KUMHOM received the B.Eng. degree in
electrical engineering from the King Mongkut’s
University of Technology Thonburi, Thailand,
in 1988, and the Ph.D. degree in electrical and
computer engineering from Drexel University, PA,
USA, in 2000. He is currently an Assistant Profes-
sor with the King Mongkut’s University of Tech-
nology Thonburi. His research interests include the
Internet of Things and their applications, digital
systems design and implementation, and signal
and image processing.

VOLUME 10, 2022 33439

