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ABSTRACT This paper presents a method by which to design linear quadratic (LQ) static output feed-
back (SOF) controllers with a 2-DOF quarter-car model for an active suspension system. Generally, it is
challenging to implement linear quadratic regulator (LQR), designed with a full-car model, in actual vehicles
because doing so requires 14 state variables to be preciselymeasured. For this reason, LQR has been designed
with a quarter-car model and then applied to a full-car model. Although this requires far fewer state variables,
some of them are still difficult to measure. Thus, it is necessary to design a LQ SOF controller which uses
available sensor signals that are relatively easily measured in real vehicles. In this paper, a LQ SOF controller
is designed with a quarter-car model and applied to a full-car model for ride comfort. To design the controller,
an optimization problem is formulated and solved by a heuristic optimization method. A frequency domain
analysis and a simulation with a simulation package show that the proposed LQ SOF controllers effectively
improve the ride comfort with an active suspension system.

INDEX TERMS Active suspension control, static output feedback control, 2-DOF quarter-car model, 7-DOF
full-car model, linear quadratic regulator.

I. INTRODUCTION
Generally, it is known that there are two objectives when
designing a suspension system of an actual vehicle: ride com-
fort and road adhesion. There are also typical three measures
or performance indices when evaluating these objectives:
vertical acceleration, the suspension stroke and tire deflec-
tion [1]. Ride comfort is evaluated with vertical acceleration
and the roll and pitch angles of the sprungmass of the vehicle.
According to ISO2631-1, pertaining to the sensitivity of the
human body to vibrations, it is necessary to reduce vertical
acceleration at frequencies within the range of 4 to 10Hz,
and to do the roll and pitch angles of the sprung mass at
frequencies within the range of 0.5 to 2Hz for the purpose
of improving the ride comfort [2], [3]. Road adhesion or
road holding is evaluated by assessing the suspension stroke
and tire deflection. The smaller the suspension stroke and
the larger the tire deflection are, the better the road adhe-
sion becomes. Generally, it is known that there is trade-
off between ride comfort and road adhesion [1], [4], [5].
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For example, the suspension stroke increases and the tire
deflection decreases smaller if the suspension is softly tuned.
As a result, the ride comfort is improved and road adhesion
deteriorates [4].

The active suspension system can improve ride comfort
by reducing the road-induced vertical acceleration of the
sprung mass with a number of actuators. In other words,
the role of an active suspension system is to attenuate the
effect of the road profile or the road-induced vibration on the
sprung mass by means of some actuators. In relations to this,
an active suspension controller can be used for disturbance
attenuation or vibration isolation. To date, numerous papers
on the design of controllers for active suspension systems
have been published [6]–[21]. In view of the dynamic mod-
els used for controller design purpose, the 2-DOF quarter-
car, 4-DOF half-car, and 7-DOF full-car models have been
used. Among them, the 2-DOF quarter-car model is most
frequently used [4], [6]–[17].With regard to controller design
methodologies, the linear optimal control, nonlinear control,
and adaptive control theories have been adopted. Since 2010,
H∞ control has been the most widely used methodology for
suspension control [7], [8], [13]–[15], [19]. Regarding the
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actuators used to generate active force, hydraulic actuators
and electric motors have been applied [9], [10], [14], [15],
[17], [19], [21]. Comprehensive surveys of active suspension
control methods, including those related to dynamic mod-
els, controller designs, and actuators, can be found in the
literature [1], [4], [22]–[26].

Among several controller design methodologies proposed
for active suspension control, the linear quadratic regula-
tor (LQR) has been adopted because it can provide a system-
atic way to design a full-state feedback controller for active
suspension by tuning the weights of performance measures
such as the ride comfort and road adhesion [1], [4], [27]. The
LQR has been designed with state-space equations derived
from the 2-DOF quarter-car, 4-DOF half-car and 7-DOF full-
car models. As mentioned earlier, the most frequently used
model in designs of a controller for an active suspension
system is the 2-DOF quarter-car model. On the other hand,
the 7-DOF full-car model is most relevant to actual vehicles
because it describes the vertical, roll and pitch motions of a
single sprung mass and the vertical motions of four unsprung
masses [23]. However, a controller designed with the quarter-
car model has not been applied to the full-car case except
in one study [27]. An active suspension controller has also
been designed with the full-car model in case the designed
controller is to be applied to actual vehicles [20], [21], [27].

If 2-DOF quarter-car, 4-DOF half-car and 7-DOF full-car
models are used to design a LQR for an active suspension
system, four, eight and fourteen state variables, respectively,
must be precisely measured for full-state feedback control.
However, most state variables in these models cannot be
measured or are difficult to measure using sensors in real
vehicles. To cope with this problem, a state observer or
estimator has been designed with these models. Generally,
a Kalman filter has been adopted as a state observer for
a full-state feedback controller or LQR. To date for active
suspension control, the combination of Kalman filter and a
LQR, i.e., the linear quadratic Gaussian (LQG), has been
studied extensively [27]–[30].

Generally, it is not easy to implement a LQR designed with
the full-car model for active suspension control in an actual
vehicle given the numerous state variables and control inputs.
For example, there are one, two, and four control inputs
for the quarter-car, half-car and full-car models, respectively.
Therefore, the dimensions of the gain matrices of LQRs
for the quarter-car, half-car and full-car models are 1 × 4,
2 × 8 and 4 × 14, respectively. For this reason, it is chal-
lenging to implement a LQR designed with the full-car model
on actual vehicles or in vehicle simulation packages such as
CarSim or CarMaker. Accordingly, it is necessary to design
a controller with a simpler structure that requires fewer ele-
ments in the gain matrix.

In this paper, 2-DOF quarter-car and 7-DOF full-car mod-
els are adopted in the design of a controller for an active
suspension system. A LQR is designed with the quarter-
car model instead of the full-car case because there are far

fewer state variables and control inputs in the quarter-car
model than in the full-car model. To avoid measuring the state
variables for the LQR, the LQSOF controller is designedwith
available sensor signals [31], [32]. Generally, there are far
fewer available sensor signals used for LQ SOF controllers
than those for state variables for the LQR. Therefore, it is
much easier to implement a LQ SOF controller in an actual
vehicle compared to a LQR. To find the gain matrix of the
LQ SOF controller, an optimization problem is formulated.
Because there are no guaranteed methods by which to find a
stabilizing or optimal controller for LQ SOF control, a heuris-
tic optimization method is applied to find an optimal gain
matrix in this case. Then, the LQ SOF controller designed
with the quarter-car model is directly applied to the full-
car model consider the fact that each corner of the full-car
model can be regarded as the quarter model [27]. It can be
expected that this controller has little effects on the roll and
pitch angles of the sprung mass because it cannot use the roll
and pitch angles or the rates for feedback due to the quarter-
car model. To cope with this problem, the LQ SOF controller
is designed with the full-car model and extra sensor signals,
i.e., roll and pitch rates for feedback. Instead of using extra
sensor signals for feedback, the terms related to the roll and
pitch angles or rates can be added into LQ objective functions.
To assess the effectiveness of the proposed controllers for
active suspension control, a frequency-domain analysis and a
simulation with the vehicle simulation package CarMaker are
conducted. The designed LQ SOF controllers are compared
through the analysis and simulation in terms of the ride
comfort.

The main contributions of this paper are summarized
below:

1) For active suspension control, LQ SOF controllers with
far fewer gain elements are designed with the quarter-
car model and applied to the full-car model.

2) To find the optimum gain matrices of the LQ SOF
controllers, an optimization problem is formulated and
solved by a heuristic optimization method.

3) To improve the control performance for roll and pitch
motions of the sprung mass, LQ SOF controllers are
designed with roll and pitch rate signals given in the
full-car model.

This paper consists of four sections. In Section II, state-
space equations are derived from 2-DOF quarter-car and
7-DOF full-car models. Based on these models, the LQR
and LQ SOF controllers for active suspension are designed.
In Section III, frequency-domain analyses and simulations
with a vehicle simulation package for the designed controllers
are conducted. The conclusions are given in Section IV.

II. CONTROLLER DESIGN FOR ACTIVE SUSPENSION
A. LQR DESIGN WITH A QUARTER-CAR MODEL
Fig. 1 shows a 2-DOF quarter-car model. This model
describes the vertical motions of the sprung and unsprung
masses,ms andmu, respectively. The dynamic variables are zs
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FIGURE 1. 2-DOF quarter-car model.

and zu, which are correspondingly the vertical displacements
of the sprung and unsprung masses. The control input or
active force u generated by an actuator is located between
the sprung and unsprung masses. The disturbance is the road
profile, zr .

With the suspension stroke and its rate, the suspension
force f between the sprung and unsprungmasses is calculated
as (1). With the suspension force f , the equations of motion
of the sprung and unsprung masses are derived as (2). The
vector of state variables of the quarter-car model is defined
as (3). With these definitions, the state-space equation for the
quarter-car model is derived as (4). The detailed procedure of
the derivation on the matrices Aq, B1q and B2q can be found
in the literature [27].

f = −ks (zs − zu)− bs (żs − żu)+ u (1){
mqz̈s = f
muz̈u = −f − kt (zu − zr )

(2)

xq =
[
zs zu żs żu

]T (3)
ẋq = Aqxq + B1qzr + B2qu (4)

With the state variables in the quarter-car model, the LQ
objective function for the active suspension system is defined
as (5). The weight ρi emphasizes the corresponding term
in (5). Several methods have been proposed for determining
these weights [33]–[37]. In this paper, Bryson’s rule (6) is
adopted to select the weights [33]. In (6), η is the maximum
allowable value for the corresponding term. For ride comfort,
the value of η1 for the vertical acceleration of the sprung
mass should be set to a lower value while holding the other
values of ηi constant. On the other hand, for road adhesion or
cornering, the values of η2 and η3, respectively, on the sus-
pension stroke and tire deflection should be higher. From (5),
the weighting matrices are derived asQq, Nq and Rq. LQR is
a controller with the form of full-state feedback, (7), which
minimizes Jq. The controller gain matrix Kq is calculated
fromRiccati equationwithAq,B2q,Qq,Nq andRq. As shown
in (7), there are four elements in the gain matrix identical to
the number of state variables, as given in (3). We denote this
controller Kq as LQRq.

Jq =

∞∫
0

{
ρ1z̈2s + ρ2 (zs − zu)

2
+ ρ3z2u + ρ4u

2
}
dt

=

∞∫
0

{[
xq
u

]T [Qq Nq

NT
q Rq

] [
xq
u

]}
dt (5)

ρi = 1/η2i , i = 1, 2, 3, 4 (6)

uq = −Kqxq = −
[
k1 k2 k3 k4

]
xq (7)

B. LQR DESIGN WITH A FULL-CAR MODEL
Fig. 2 shows a 7-DOF full-car model, which describes the
vertical, roll and pitch motions of the sprung mass, and the
vertical motions of four unsprungmasses. As shown in Fig. 2,
the front left, front right, rear left and rear right corners are
numbered as ¬, ­, ® and ¯, respectively. Dynamic variables
in the model are zc, ϕ, θ , zu1, zu2, zu3, zu4, where the first
three are the vertical displacement, the roll angle and the pitch
angle of the sprung mass, and the last four are the vertical
displacements of the unsprung masses, respectively. In the
model, the road profiles, zr1, zr2, zr3 and zr4, are four external
disturbances acting on the unsprungmass. The control inputs,
u1, u2, u3 and u4, at each suspension are generated by an
actuator located between the sprung and unsprung masses.

FIGURE 2. 7-DOF full-car model.

As given in (1), the suspension forces in the full-car model
are derived as (8). In (8), ui is the control input or active
force applied to the i-th suspension. With the definitions of
the suspension forces, the equations of motions for the sprung
and unsprung masses are given in (9) and (10), respectively.
The equations of motion of the sprung mass, (9), can be rep-
resented as the vector-matrix form, (11). In (11), the matrix
G represents the geometric relationship between the forces
and moments acting on the sprung mass and the suspension
forces.

fi = −ksi (zsi − zui)− bsi (żsi − żui)+ ui,

i = 1, 2, 3, 4 (8)
msz̈c = f1 + f2 + f3 + f4
Ix φ̈ = tf · f1 − tf · f2 + tr · f3 − tr · f4
Iyθ̈ = −lf · (f1 + f2)+ lr · (f3 + f4)

(9)

muiz̈ui = −fi + kti (zui − zri) , i = 1, 2, 3, 4 (10)
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FIGURE 3. Roll and pitch motions of the sprung mass. (a) Roll motion
(b) Pitch motion.

msz̈cIx φ̈
Iyθ̈

 =
 1 1 1 1

tf −tf tr −tr
−lf −lf lr lr


︸ ︷︷ ︸

G


f1
f2
f3
f4



= G


f1
f2
f3
f4

 (11)

Fig. 3 shows the roll and pitch motions of the sprung mass.
From the geometry given in Fig. 3, the vertical displacements
of the sprung mass, i.e., zs1, zs2, zs3 and zs4, at each corner
are calculated as (12) in a geometrical manner under the
assumption that the sprung mass is a rigid body. Under the
condition that the absolute values of the roll and pitch angles
are less than 10 deg, the sine functions in (12) are linearized
as sin θ ' θ and sinφ ' φ. As a result, (12) can be converted
to the vector-matrix form of (13). In (13), the matrix G is
identical to that of (11), which represents the geometrical
relationship between the vertical displacements and the roll
and pitch angles of the sprung mass.

zs1 = zc + tf · sinφ − lf · sin θ
zs2 = zc − tf · sinφ − lf · sin θ
zs3 = zc + tf · sinφ + lr · sin θ
zs4 = zc − tf · sinφ + lr · sin θ

(12)


zs1
zs2
zs3
zs4

 =

1 tf −lf
1 −tf −lf
1 tr lr
1 −tr lr


︸ ︷︷ ︸

GT

 zcφ
θ



= GT

 zcφ
θ

 (13)

The vectors of state variables, disturbances and control
inputs are defined as (14). With these definitions, (13) is rep-
resented as (15). The vector of state variables for the full-car
model is defined as (16). With this definition, the state-space

equation for the 7-DOF full-car model is obtained as (17). (4).
The detailed procedure by which of the matrices Af , B1f and
B2f are derived can be found in the earlier study [27].

zs ,
[
zs1 zs2 zs3 zs4

]T
,

zu ,
[
zu1 zu2 zu3 zu4

]T
zr ,

[
zr1 zr2 zr3 zr4

]T
p ,

[
zc φ θ

]T
, q ,

[
p
zu

]
,

uf ,
[
u1 u2 u3 u4

]T
, wf = zr

(14)

zs = GTp (15)

xf ,

[
q
q̇

]
(16)

ẋf = Af xf +B1f wf +B2f uf (17)

With the state variables in the full-car model, the LQ
objective function for active suspension control is defined
as (18). This LQ objective function is quite general in that it
has all of the terms regarding ride comfort and road adhesion.
According to Bryson’s rule, the weights of (18) are set to ρi =
1/η2i , as given in (5). For ride comfort, the weights ρ1, ρ7, and
ρ9 on the vertical, roll and pitch angles should be set to higher
values while holding the other values constant. In contrast,
for road adhesion, the weights ρ2 and ρ3 on the suspension
stroke and the tire deflection should be set to higher values
while holding the other values constant. As shown in (18),
the first four terms are identical to those of (5). Therefore, the
LQR for the full-car model can be designed such that it has
performance equivalent to that of the quarter-car model. The
LQR for the full-car model is a controller with the form of
full-state feedback, (19), which minimizes Jf . The controller
gain matrix Kf is calculated from the Riccati equation with
Af , B2f , Qf , Nf and Rf . Here, we denote this controller Kf
as LQRf1.

Jf =

∞∫
0



ρ1z̈2c + ρ2
4∑
i=1

(zsi − zui)2 + ρ3
4∑
i=1

z2ui

+ρ4

4∑
i=1

u2i + ρ5φ̈
2
+ ρ6θ̈

2
+ ρ7φ

2
+ ρ8φ̇

2

+ρ9θ
2
+ ρ10θ̇

2


dt

=

∞∫
0

{[
xf
uf

]T [Qf Nf

NT
f Rf

] [
xf
uf

]}
dt (18)

uf = −Kf xf = −Kf

[
q
q̇

]
(19)

As mentioned earlier, the LQ objective function, (18),
becomes (20) by setting ρ5 ∼ ρ10 to zero. This function has
a form identical to that of (5). The controller gain matrix Kf
in (19) is calculated from the Riccati equation with Af , B2f ,
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Qfq, Nfq and Rfq. We denote this controller as LQRf2.

Jfq =

∞∫
0


ρ1

4∑
i=1

z̈2si + ρ2
4∑
i=1

(zsi − zui)2

+ρ3

4∑
i=1

z2ui + ρ4
4∑
i=1

u2i

 dt

=

∞∫
0

{[
xf
uf

]T [Qfq Nfq

NT
fq Rfq

] [
xf
uf

]}
dt (20)

In (20), there are no terms on the roll and pitch angles.
Accordingly, to emphasize the roll and pitch angles of the
sprung mass, the LQ objective function (20) is modified
into (21) by setting ρ5, ρ6, ρ8 and ρ10 in (18) to zero. The
controller gain matrixKf is calculated from the Riccati equa-
tion with Af , B2f ,Qfr , Nfr and Rfr . We denote this controller
as LQRf3.

Jfr =

∞∫
0


ρ1z̈2c + ρ2

4∑
i=1

(zsi − zui)2 + ρ3
4∑
i=1

z2ui

+ρ4

4∑
i=1

u2i + ρ7φ
2
+ ρ9θ

2

 dt

=

∞∫
0

{[
xf
uf

]T [Qfr Nfr

NT
fr Rfr

] [
xf
uf

]}
dt (21)

The LQR provides a systematic way to design an active
suspension controller. LQRf1, LQRf2 and LQRf3 are full-
state feedback controllers with identical control structures,
(19), and different LQ objective functions, (18), (20) and (21),
respectively. As shown in (14), (16) and (19), there are four-
teen and four state variables and control inputs for the full-
car model, respectively. Therefore, the dimension of the gain
matrix Kf of the LQR is 4× 14, which is too complex to be
implemented in an actual vehicle.Moreover, to implement the
controller in an existing vehicle, it is necessary to measure
or estimate all state variables in xf precisely. However, it
is difficult to measure those variables by sensors in real
vehicles. For this reason, it is necessary to design a controller
which requires fewer state variables and that uses available
sensor signals so as to implement the controller in an actual
vehicle more feasibly.

C. LQ SOF CONTROLLER DESIGN WITH THE
QUARTER-CAR MODEL
When implementing the LQR designed with the quarter-car
model in an actual vehicle, it is difficult to measure the state
variables of (3). For example, it is not easy to measure the
vertical displacements of the sprung and unsprungmasses and
the suspension stroke if using a sensor. To copewith this prob-
lem, SOF is adopted. SOF uses available sensor signals for
feedback control [38], [39]. SOF has been adopted for active
suspension control [40], [41]. For the quarter-car model, the
typical available sensor signals are the vertical acceleration

of the sprung mass and the suspension stroke. These signals
have been used for semi-active suspension control [42]–[46].
The suspension stroke is measured by displacement sensors
such as the laser displacement type or with a linear variable
differential transformer (LVDT) [43]. The suspension stroke
rate can be obtained by differentiating the suspension stroke
with a filter [44]. For the full-car model, the roll and pitch
rates of the sprung mass can easily be measured by an inertial
measurement unit (IMU). Thus, it is assumed that the vertical
acceleration and the roll and pitch angles of the sprung mass
and the suspension stroke and the corresponding rate can be
measured by sensors and can be made available for feedback
control. In the quarter-car model, the vertical acceleration, the
suspension stroke and the corresponding rate are available for
feedback control.

The SOF controller has the form of (22). Because there
are three sensor measurements available for feedback control,
three output matrices can be defined as yq1, yq2 and yq3 as
given in (23), (24), and (25) from the definitions of the state
vector (3) and the state-space equation (4). In (23) and (24),
Aq,3 and B2q,3 represent the third rows of the matrices Aq
and B2q, respectively. As shown in (23), (24), and (25), the
sensor outputs have two elements. Therefore, there are also
two elements in the gain matrix,KSOF , whileKq of the LQR
has four elements. By replacing yq in (22) with yq1, yq2 and
yq3, the control inputs uq1, uq2 and uq3 are obtained as (26).
After some algebraic manipulation, the control inputs uq1, uq2
and uq3 are obtained as the full-state feedback form of (27).
From (27), the full-state feedback gain matrices of uq1, uq2
and uq3, i.e., Vq1, Vq2 and Vq3, are obtained as (28).

u = KSOFyq (22)

yq1 =
[

z̈s
zs − zu

]
=

[
Aq,3

1 −1 0 0

]
xq +

[
B2q,3
0

]
u

= Cs1xq + Dsu (23)

yq2 =
[

z̈s
żs − żu

]
=

[
Aq,3

0 0 1 −1

]
xq +

[
B2q,3
0

]
u

= Cs2xq + Dsu (24)

yq3 =
[
zs − zu
żs − żu

]
=

[
1 −1 0 0
0 0 1 −1

]
xq = Cs3xq

(25)
uq1 = KSOF1yq1 = KSOF1Cs1xq+KSOF1Dsuq1
uq2 = KSOF2yq2 = KSOF2Cs2xq+KSOF2Dsuq2
uq3 = KSOF3yq3 = KSOF3Cs3xq

(26)
uq1 = (I−KSOF1Ds)

−1KSOF1Cs1xq = Vq1xq
uq2 = (I−KSOF2Ds)

−1KSOF2Cs2xq = Vq2xq
uq3 = KSOF3Cs3xq = Vq3 xq

(27)
Vq1 , (I−KSOF1Ds)

−1KSOF1Cs1

Vq2 , (I−KSOF2Ds)
−1KSOF2Cs2

Vq3 , KSOF3Cs3

(28)
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With the full-state feedback form of (27) and (28), the LQ
SOF controller design problem is formulated as an optimiza-
tion problem, as given in (29). The optimization problem is
to find KSOF which minimizes the LQ objective function Jq.
In (29), two elements ofKSOF are the optimization variables.
If two elements are assumed to have arbitrary values, then
the SOF controller gain KSOF and its corresponding full-
state feedback controller gain Vq are obtained as (28). For
stable Vq, the solution Pq of the Lyapunov equation in (29)
is obtained. The value of the LQ objective function Jq is
calculated as trace(Pq). It is known that there are no methods
that guarantee the finding of a global optimum or stable
initial solution for LQ SOF control because the optimization
problem is non-convex and the controller gain matrix Vq is
structured [38], [39].

min
KSOF

Jq =
1
2
trace

(
Pq
)

s.t.


Pq = PTq > 0
max

(
Re
[
Aq + B2qVq

])
< 0(

Aq + B2qVq
)T Pq + Pq

(
Aq + B2qVq

)
+Qq+V

T
qN

T
q + NqVq + VT

qRq Vq = 0

(29)

Generally, to solve non-convex and non-linear optimiza-
tion problems, heuristic optimizationmethods such as genetic
algorithm (GA), the evolutionary strategy (ES) and particle
swarm optimization (PSO) have been proposed [47], [48].
Most heuristic optimization methods have the procedure of
initialization, evaluation, selection and reproduction, as given
in Fig. 4. Different from gradient-based search methods,
heuristic optimization methods have multiple solutions. The
group of these solutions is called a population, which is
denoted as P(k) in Fig. 4. In heuristic optimization methods,
the iteration is referred to with the term generation. In Fig. 4,
k is the iteration or generation index. After generating random
initial solutions, the objective function is evaluated for each
solution in the population. Based on the objective function
values, some of solutions are selected for use in the next gen-
eration. Selection is done in such a way that better solutions
will survive through generation. New solutions are generated
by reproduction. Typical reproduction operators are crossover
and mutation in the GA. This procedure is iterated by a pre-
determined number. Because heuristic optimization methods
have multiple solutions, it is easy to escape from local optima
although a global optimum cannot be guaranteed. To have
the search direction move to a wider or narrower feasible
region, reproduction operators are used. For the reasons, it is
known that heuristic optimization methods are quite effective
when used to solve non-convex and non-linear optimization
problems.

In this paper, to find the optimum gain KSOF , the heuristic
optimization method, CMA-ES, is applied [49]. CMA-ES,
an evolutionary strategy with a covariance matrix adaptation
mechanism, is effective when used to solve non-convex and
non-linear optimization problems. When applying CMA-ES,
there are no bound constraints on the optimization variables.

FIGURE 4. Procedure of heuristic optimization methods.

Here, we denote three LQ SOF controllers, KSOF1, KSOF2
andKSOF3, which are obtained by solving (29), as LQSOFq1,
LQSOFq2 and LQSOFq3, respectively.

Among the three LQ SOF controllers, KSOF1, KSOF2 and
KSOF3, the last is expected to show the best performance
in terms of the suspension force, (1). The SOF controller
with KSOF3 is represented as (30). By replacing u in (1) with
uq3, the suspension force becomes (31). If q1 and q2 are set
exactly to ks and bs respectively, the suspension force will
be zero. This means that no forces can be transmitted to the
sprung mass through the suspension. As a result, the vertical
acceleration will be always zero regardless of the type of road
profile. However, this is impossible in actual vehicles because
ks and bs are not linear and time-varying.

uq3 = KSOF3yq3 =
[
q1 q2

] [ zs − zu
żs − żu

]
= q1 (zs − zu)+ q2 (żs − żu) (30)

f = −ks(zs − zu)− bs(żs − żu)+ uq3
= (q1 − ks) (zs − zu)+ (q2 − bs) (żs − żu) (31)

D. HOW TO CONVERT CONTROLLERS FOR QUARTER-CAR
MODEL TO FULL-CAR ONES
As shown in Fig. 2, it can be regarded that the full-car model
consists of four quarter-car ones. The vertical displacements
of the sprung and unsprung masses, zsi and zui, at each corner
in the full-car model are identical to those of the quarter-car
model. Thus, the LQR designed with the quarter-car model
can be directly applied to derive the LQR for the full-car
model. This subsection explains how to convert the LQR for
quarter-car model to a full-state feedback controller for the
full-car model.

To represent the state vector of (3) with the state variables
of (16), the state vector at each corner, xqi, is defined as (32)
with certain state variables in the full-car model. By multi-
plying Kq and xqi together as in LQRq, i.e., (7), the control
input at each corner is calculated as (33). With Kq in (7)
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and the vectors defined in (14), the vector of control inputs
for the full-car model, uf , is calculated as (34). This has
a form identical to that of (33), which is the control input
for the quarter-car model. Here, (34) is converted to (35)
with (15). The four vectors in (35) can be derived from the
state vector of the full-car model, xf , with the output matrices
defined in (36). In (36), I and 0 represent the identity and
zero matrices, respectively. With these definitions in (36),
the vector of the control inputs for the full-car model is
represented as (37) [27]. In (37), the gain matrix H has a
special structure. Hence, it differs from the gain matrix of
LQR, Kf . Moreover, there are four distinct elements in H
because those are given fromKq, i.e., the gain matrix of LQR
for the quarter-car model. This is relatively few compared to
those of Kf . Here, we denote the controller H as LQRfq.

xqi =
[
zsi zui żsi żui

]T
, i = 1, 2, 3, 4 (32)

ui = −Kqxqi
= − (k1zsi + k2zui + k3żsi + k4żui), i = 1, 2, 3, 4

(33)

uf = −k1zs − k2zu − k3żs − k4żu (34)

uf = −k1GTp− k2zu − k3GT ṗ− k4żu (35)

p = C1xf , C1 ,
[
I3×3 03×11

]
ṗ = C2xf , C2 ,

[
03×7 I3×3 03×4

]
zu = C3xf , C3 ,

[
04×3 I4×4 04×7

]
żu = C4xf , C4 ,

[
04×10 I4×4

]
(36)

uf = −k1GTC1xf − k2 C3xf − k3GTC2 xf − k4C4xf

= −

(
k1GTC1 + k2C3 + k3GTC2 + k4C4

)
xf

= −Hxf (37)

Approximating the method of (37), a full-state feedback
controller for the full-car model can be derived from the LQ
SOF controllers designed with the quarter-car model, i.e.,
KSOF1, KSOF2 andKSOF3 in (26). For example, the sensor
output yq3 given in (25) for the quarter-car model can be
represented as (38) for the full-car model. With (38), the LQ
SOF controller for the full-car model,KSOF4, is given as (39).
The dimension of KSOF4 is 4 × 8 because that of yf 4 is 8.
Let define KSOF3 as the vector of two gain elements, q1 and
q2, as shown in (40). From this definition, KSOF4 is derived
as (41) with elements identical to those ofKSOF3. Hence, only
two elements of KSOF3 are needed when deriving the full-
state feedback controller for the full-car model, KSOF4. With
the definition of (40), the full-state feedback controller gain
Vq3 is obtained as (42). In the same manner, Kf 4 in (39) is
derived as (43). Another way to derive Kf 4 is to use the LQ
SOF controller,Vq3, obtained in (42). The full-state feedback
controller F is derived as (44) from Vq3 of (42) identically
to (37). It is natural thatKf 4 of (39) and F of (44) are identical

to each other. We refer to the controller Kf 4 as LQSOFfq4.

yf 4 =
[
zs − zu
żs − żu

]
=

[
GT

−I4×4 04×3 04×4
04×3 04×4 GT

−I4×4

]
xf

= Cf 4xf (38)

uf 4 = KSOF4yf 4 = KSOF4 Cf 4xf = Kf 4xf (39)

KSOF3 =
[
q1 q2

]
(40)

KSOF4 =
[
q1I4×4 q2I4×4

]
(41)

Vq3 = KSOF3Cs3 =
[
q1 q2

] [ 1 −1 0 0
0 0 1 −1

]
=
[
q1 −q1 q2 −q2

]
(42)

Kf 4 =
[
q1I4×4 q2I4×4

]
×

[
GT

−I4×4 04×3 04×4
04×3 04×4 GT

−I4×4

]
=
[
q1GT

−q1I4×4 q2GT
−q2I4×4

]
(43)

uf 4 =
(
q1GTC1 − q1C3 + q2GTC2 − q2C4

)
xf = Fxf

(44)

In (41), the LQ SOF controller for the full-car model,
KSOF4, is derived from KSOF3 of the quarter-car model.
Another way to design the LQ SOF controller for the full-
car model is directly to optimize the controller of (45), which
is identical to (41). As shown in (45), there are two decision
variables, q1 and q2, in the optimization problem. We denote
this controller as KSOF5, as shown in (45). The optimization
problem with the LQ objective function (20) is formulated
as (47). To solve the optimization problem, the heuristic
optimization method, CMA-ES, is applied [49]. With the
optimized KSOF5, the full-state feedback controller for the
full-car model is obtained as (46). We refer to the controller
Kf 5 as LQSOFfq5.

KSOF5 =
[
q1I4×4 q2I4×4

]
(45)

uf 5 = KSOF5yf 4 = KSOF5 Cf 4xf = Kf 5xf (46)

min
q1,q2

Jff =
1
2
trace

(
Pf
)

s.t.


Pf = PTf > 0
max

(
Re
[
Af + B2fKf 5

])
< 0(

Af + B2fKf 5
)T Pf + Pf

(
Af + B2fKf 5

)
+Qfq+K

T
f 5N

T
fq + NfqKf 5 +KT

f 5Rfq Kf 5 = 0

(47)

The controller LQSOFfq5 is designed with the LQ objec-
tive function, (20). In (20), there are no terms on the roll and
pitch angles. Therefore, it is expected that LQSOFfq5 has
little capability to control the roll and pitch motions of the
sprung mass. To control these motions, the controller with
the form of KSOF5 in (45) is designed with the LQ objective
function, (21). The optimization problem needed to find the
controller is identical to (47) except that Qfq, Nfq and Rfq are
replaced with Qfr , Nfr and Rfr as given in (21), respectively.
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Let the controller obtained by solving this optimization be
denoted as LQSOFfr5.

E. LQ SOF CONTROLLER DESIGN WITH FULL-CAR MODEL
If there are identical state variables in the quarter- and full-car
models, the controllers obtained from the quarter-car model
can be used for the full-car case, as described in the previous
subsection. However, this is not possible if the state variables
are not common between these models. For instance, the
vertical displacement, the roll angle and the pitch angle of the
sprung mass cannot be obtained from the quarter-car model.
Therefore, it is necessary to design a SOF controller with
these sensor outputs defined in the full-car model.

As mentioned in subsection II.C, it is assumed that the roll
and pitch rates, the suspension stroke and the corresponding
rate can be measured with sensors. Thus, the output matrix is
defined as (49). In (49), the row vectors,8 and2, are defined
in (48). With the outputs, the LQ SOF controller, KSOF6, for
the full-car model is defined as (50). The dimension ofKSOF6
is 4 × 10 because the number of outputs is 10. Accordingly,
the LQ SOF controller, KSOF6, has the form of (51). From
the geometry of the sprungmass, the roll motion is symmetric
with respect to the X axis and the pitch motion is proportional
to the ratio of the lengths from the center of gravity to the
front and rear axles. For this reason, a single gain is needed
for the roll motion, and two gains are needed for the pitch
motion. Given these facts,KSOF6 in (51) is converted to (52).
As shown in (52), there are five elements of KSOF6 is 5.
To find the optimum KSOF6, the optimization problem is
formulated as (53). To solve the optimization problem, the
heuristic optimization method, CMA-ES, is applied [49].
We refer to the controller Kf 6 as LQSOFfq6. In (53), Qfq,
Nfq and Rfq represent the weighting matrices derived from
the LQ objective function (20).

8 ,
[
0 1 0

]
, 2 ,

[
0 0 1

]
(48)

yf 6 =


φ̇

θ̇

zs − zu
żs − żu



=


01×3 01×4 8 01×4
01×3 01×4 2 01×4
GT

−I4×4 04×3 04×4
04×3 04×4 GT

−I4×4

 xf

= Cf 6xf (49)

uf 6 = KSOF6yf 6 = KSOF6 Cf 6xf = Kf 6xf (50)

KSOF6 =


h1
h2
h3
h4

h5
h6
h7
h8

h9I4×4 h10I4×4

 (51)

KSOF6 =


−h1
h1
−h1
h1

h2
h2
h3
h3

h4I4×4 h5I4×4

 (52)

min
KSOF6

Jff =
1
2
trace

(
Pf
)

s.t.


Pf = PTf > 0
max

(
Re
[
Af + B2fKf 6

])
< 0(

Af + B2fKf 6
)T Pf + Pf

(
Af + B2fKf 6

)
+Qfq+K

T
f 6N

T
fq + NfqKf 6 +KT

f 6Rfq Kf 6 = 0

(53)

Although LQSOFfq6 uses the roll and pitch rates for feed-
back, the LQ objective function (20) used when designing it
has no terms on the roll and pitch angles. Hence, it is expected
that the control performance for the roll and pitchmotions can
be improved if the roll and pitch angles are added to the LQ
objective function as in (21). For this purpose, the controller
with the form of KSOF6 in (52) is designed with the LQ
objective function, (21). The optimization problem needed to
find the controller is identical to (53) except thatQfq,Nfq and
Rfq are replaced with Qfr , Nfr and Rfr in (21), respectively.
Let the controller obtained by solving this optimization be
denoted as LQSOFfr6.

III. FREQUENCY DOMAIN ANALYSIS AND SIMULATION
In this section, a frequency-domain analysis and a simulation
are conducted to assess the performance of the designed LQ
SOF controllers. Through the frequency-domain analysis and
simulation, the designed SOF controllers are compared to one
another.

Table 1 shows the parameter descriptions and the corre-
sponding values of the 2-DOF quarter-car and 7-DOF full-
car models, as referenced from Demo_Lexus_NX300h given
in CarMaker. The weights in the LQ objective functions, (5),
(18), (20) and (21), are calculated using (6) with the maxi-
mum allowable values given in Table 2. The set of weights
given in Table 2 emphasizes ride comfort, i.e., a reduction of
the vertical acceleration of the sprung mass. In consequence,
road adhesion is degraded. In this paper, it is assumed that
the actuator has an infinite bandwidth during the generation
of the active control force. Table 3 shows the controller gain
matrices of the designed controllers.

A. FREQUENCY RESPONSE ANALYSIS WITH
QUARTER-CAR AND FULL-CAR MODELS
The first type of frequency-domain analysis is done with
the quarter-car model for LQRq, LQSOFq1, LQSOFq2 and
LQSOFq3. Fig. 5 shows the frequency responses of each
output from the road profile zr with the quarter-car model for
each controller.

As shown in Fig. 5-(a), LQSOFq3 shows the best per-
formance in terms of ride comfort among the LQ SOF
controllers, as given in (26). Looking at this another way,
LQSOFq3 shows performance nearly similar to that of
LQRq within the frequency range of 4 to 10Hz. More-
over, LQSOFq3 shows the best performance in terms of
road adhesion, as shown in Fig. 5-(d). This is expected
from (31). On the other hand, the height of the sprung
mass with LQSOFq3 is worse than that with the passive
suspension system below 0.6Hz, as shown in Fig. 5-(b).
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TABLE 1. Parameter descriptions and the corresponding values of the
2-DOF quarter-car and 7-DOF full-car models.

TABLE 2. Maximum allowable values in LQ objective function.

TABLE 3. Controller gain matrices of each controller.

Accordingly, LQSOFq3 can worsen the ride comfort com-
pared to that by the passive suspension system with a low-
frequency road profile. LQSOFq1 and LQSOFq2 use the
vertical acceleration for the SOF controller. Both outperform
the passive suspension system. However, it is not satisfactory
over LQRq or LQSOFq3. Thus, it is recommended that the
vertical acceleration not be used for the LQ SOF controller
when trying to enhance the ride comfort. From these results,
it can be concluded that the LQ SOF controller designed with
the suspension stroke and the corresponding rate shows the
best performance in terms of ride comfort.

FIGURE 5. Frequency responses from the road profile zr to each output
with the quarter-car model for LQR and LQ SOF controllers.

The second type of frequency-domain analysis is donewith
the full-car model for LQRfq, LQSOFfq4, LQSOFfq5 and
LQSOFfq6. Fig. 6 shows the frequency responses of each
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FIGURE 6. Frequency responses from the road profile zr1 to each output for controllers with the full-car model.

output from the road profile zr1 with the full-car model for
each controller. In previous research, it was demonstrated that
LQRfq, derived fromLQRq, can give performance equivalent
to that by LQRf2 with regard to improving the ride com-
fort [12]. Therefore, LQRq can be used as a reference when
comparing the LQ SOF controllers.

As shown in Fig. 6, the LQ SOF controllers show per-
formance similar to that of LQRfq in terms of ride com-
fort within the frequency range of 4 to 10Hz, which is

equivalent to the relationship between LQRq and LQSOFq3
as given in Fig. 5. This stems from the fact that LQRfq and
LQSOFfq3 for the full-car model are based on LQRq and
LQSOFq3 of the quarter-car model, respectively. As shown
in Figs. 6-(b) and -(c), the roll and pitch angles of LQSOFfq4
and LQSOFfq5 become worse than those of LQSOFfq6
for the frequency range below 1Hz. This indicates that the
ride comfort along the horizon direction is degraded by
those controllers. Compared to LQSOFfq4 and LQSOFfq5,
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FIGURE 7. Frequency responses from the road profile zr1 to each output
for controllers with the full-car model.

LQSOFfq6 shows better performance with regard to con-
trolling the roll and pitch motions because the roll and
pitch rates are used for feedback. On the other hand, the
suspension strokes and the tire deflections of the LQ SOF
controllers are nearly identical to one another, as shown in
Figs. 6-(d) and -(e). It should also be noted that LQRfq shows
the best performance when used to control the roll and pitch
motions of the sprung mass, as shown in Figs. 6-(b) and (c),
despite the fact that there are no terms on the roll and pitch
angles in the LQ objective function of LQRq, (5).

FIGURE 8. Single bump profile.

From these results, it is demonstrated that LQSOFfq6 with
the roll and pitch rates shows the best performance among
the LQ SOF controllers in terms of ride comfort along the
horizontal direction. Moreover, it is better to use the roll and
pitch rates for the LQ SOF controllers.

To check the effects of the roll and pitch angles in the LQ
objective function and the roll and pitch rates in the feedback
controller on the control performance, frequency responses
are drawn with the full-car model for LQSOFfq5, LQSOFfr5,
LQSOFfq6 and LQSOFfr6. LQRfq is used as a reference.
Fig. 7 shows the frequency responses from the road profile zr1
to each output for those controllers. In contrast to Fig. 6, the
suspension stroke and tire deflection are not presented given
the similarity to those in Fig. 6.

As shown in Fig. 7, there are few differences between
LQSOFfq5 and LQSOFfr5, and between LQSOFfq6 and
LQSOFfr6. These results mean that there are scant effects
when adding new terms such as the roll and pitch angles to
the LQ objective function and that it is effective to use the roll
and pitch rates as signals for feedback. In other words, there
are few differences between the LQ objective functions, (20)
and (21), if the controller structure is identical or the signals
used for feedback are identical. Moreover, if additional sig-
nals such as the roll and pitch rates given in (49) are used
for feedback control, it has a positive effect on the control
performance, as shown in Figs. 7-(b) and -(c). However, it has
a side effect in that the vertical accelerations of LQSOFfq6
and LQSOFfr6 deteriorate in the low frequency range below
1Hz, as given in Fig. 7-(a). This stems from the fact that two
new terms are added to the LQ objective function, (20).

B. SIMULATION ON CARMAKER
The simulation is conducted on the vehicle simulation pack-
age IPG CarMaker for the designed controllers under dis-
turbances of single and sine-sweep bump profiles. Two sets
of controllers are used for the simulation. The first set
includes the passive system, LQRq, LQSOFq1, LQSOFq2
and LQSOFq3. The second set includes LQRq, LQSOFq3
and LQSOFfq6.

The vehicle model is Demo_Lexus_NX300h, given by
default in CarMaker. In this model, the spring stiffness and
damping coefficient are nonlinear. Fig. 8 shows the single
bump profile used for the simulation. The vehicle starts at

26958 VOLUME 10, 2022



Y. Jeong et al.: Design of Static Output Feedback Controllers for Active Suspension System

FIGURE 9. Simulation results obtained from CarMaker for each controller.
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FIGURE 10. Simulation results obtained from CarMaker for each controller.
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TABLE 4. Peak-to-peak values of responses for each controller at front
right corner.

TABLE 5. Root-mean-square values of responses for each controller at
front right corner.

FIGURE 11. Sine-sweep bump.

stand-still position and accelerates at 30km/h according to the
built-in speed controller in CarMaker. The vehicle then passes
a bump. The tire-road friction coefficient is set to 0.8. There
are slight roll motions because the bump is evenly applied to
the left and right wheels. As mentioned earlier, it is assumed
that the actuator used for active suspension has an infinite
bandwidth in the generation of the control input.

Fig. 9 shows the simulation results for the first set of
LQ SOF controllers. As shown in Fig. 9, LQRq shows the
best performance in terms of ride comfort. This is expected
from the frequency response of Fig. 5. As expected from the
frequency response of Fig. 5-(a), LQSOFq3 shows the best
performance in terms of ride comfort among the LQSOF con-
trollers. As a result of the improved ride comfort, the suspen-
sion stroke increases and the tire deflection becomes smaller,
as given in Figs. 8-(c) and -(d). As shown in Fig. 9-(e), the
control inputs of LQSOFq3 are larger than those of the other
LQ SOF controllers. This causes the large suspension stroke

FIGURE 12. Frequency responses obtained from CarMaker for each
controller on the sine-sweep bump.

and the small amount of vertical acceleration. As shown
in Fig. 9-(b), there are slight differences among the pitch
angles of the three LQ SOF controllers. This is expected
from Fig. 6-(c), which means that LQSOFq3 is not capable

VOLUME 10, 2022 26961



Y. Jeong et al.: Design of Static Output Feedback Controllers for Active Suspension System

of controlling the roll and pitch motions of the sprung
mass. As expected form Fig. 6-(c), LQRq shows the best
performance for control of the pitch motion of the sprung
mass despite the fact that there is no term on the pitch angle
in the LQ objective function of LQRq, (5).

Fig. 10 shows the simulation results for the second set of
LQ SOF controllers. The difference between LQSOFq3 and
LQSOFfq6 is that the latter uses the roll and pitch rates for
feedback. The simulation results of LQRq and LQSOFq3 are
identical to those given in Fig. 9.

As shown in Fig. 10-(a), the three controllers show good
performance in terms of ride comfort. As expected from the
frequency response presented in Fig. 6-(a), two LQ SOF
controllers shows nearly identical performance in terms of
ride comfort. As a result of the improved ride comfort, the
suspension stroke and tire deflection increase, as given in
Figs. 10-(c) and -(d). As shown in Fig. 10-(b), the pitch
angle of LQSOFfq6 is smaller than that of LQSOFq3. This
is expected from Fig. 6-(c). In other words, feedback con-
trol with the roll and pitch rates can improve the control
performance in the roll and pitch motions. As a result,
the control inputs of LQSOFfq6 are larger than those of
LQSOFq3, as shown in Fig. 10-(e). From these results,
it is recommended that the roll and pitch rates be used
for feedback control in order to control the roll and pitch
motions.

Tables 4 and 5 correspondingly show the peak-to-peak and
root-mean-square values of the responses of Figs. 9 and 10
for each controller at front left corner. In Tables 4 and 5,
SS and TD denote the suspension stroke and the tire
deflection at front left corner, respectively. As shown in
Tables 4 and 5, LQRq, LQSOFq3 and LQSOFfq6 show
smaller vertical acceleration values than LQSOFq1 and
LQSOFq2. In terms of the pitch angle, LQRq shows the best
performance although it generates the largest control input.
Compared to LQSOFq3, LQSOFfq6 gives the smaller pitch
angle because it uses the roll and pitch rates for feedback.
However, the control input of LQSOFfq6 increases as a
result than LQSOFq3 instead of reducing the pitch angle.
In summary, LQSOFfq6 shows good performance in terms
of ride comfort, i.e., vertical acceleration and the pitch angle,
comparable to LQRq. Moreover, LQSOFq3 is also a good
choice given that there are only two elements.

Fig. 11 shows the sine-sweep bump used in the CarMaker
simulation. This bump profile can generate a wide range of
frequencies. The simulation was done with the controllers
LQRq, LQSOFq3 and LQSOFfq6. Fig. 12 shows the fre-
quency responses obtained from the CarMaker simulation for
each controller on the sine-sweep bump. As shown in Fig. 12,
LQRq shows the best performance in terms of ride com-
fort. LQSOFq3 and LQSOFfq6 show nearly identical per-
formance in terms of ride comfort. As shown in Fig. 12-(b),
LQSOFfq6 shows better performance when used to control
the pitch motion of the sprung mass as compared to that by
LQSOFq3. These results are identical to those given in Fig. 10
and Tables 4 and 5.

IV. CONCLUSION
In this paper, LQ SOF controllers were designed with a
quarter-car model for an active suspension system in order
to cope with the problem of measuring the state variables
and of implementing the controllers on actual vehicles. These
controllers have only two gain elements, and these were
used for the quarter-car and full-car models. Therefore, it is
easy to implement these controllers on actual vehicles or
in vehicle simulation packages. From the definition of the
suspension force, the LQ SOF controller with the suspension
stroke and the corresponding rate was expected to show the
best performance in terms of ride comfort. To find the gains
of the LQ SOF controllers, an optimization problem was
formulated and solved by the heuristic optimization method.
The designed LQ SOF controllers were applied to a full-car
model. Another LQ SOF controller with five gain elements
was also designed with available sensor signals, i.e., roll and
pitch rates, in the full-car model in order to improve the
control performance during roll and pitch motions. To ver-
ify the performance of the designed LQ SOF controllers,
a frequency-domain analysis and a simulation with a vehi-
cle simulation package, CarMaker, were conducted. From
the analysis and simulation results, it can be concluded that
the LQ SOF controller with two gain elements showed the
best performance in terms of ride comfort. Moreover, it is
desirable to add new signals to a feedback controller to
improve the control performance under roll and pitchmotions
instead of adding new terms to the LQ objective function. The
drawbacks of the method proposed in this paper are mea-
surements on suspension stroke and limitations on actuator
performance. There are several problems in measuring the
suspension stroke due to sensor noise, sampling bandwidth
and cost, etc. An actuator used in actual vehicles has several
limitations on maximum force, bandwidth and maximum
moving velocity. Further research can include these topics.
Moreover, it can cover parameter estimation of the suspension
stiffness and damping coefficient needed to ensure that the
suspension force is zero.
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