
Received January 25, 2022, accepted March 1, 2022, date of publication March 8, 2022, date of current version March 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3157290

Identifying Difficulties of Software Modeling
Through Class Diagrams: A Long-Term
Comparative Analysis
PAMELA FLORES , MAYRA ALVAREZ, AND JENNY TORRES
Department of Informatics and Computer Science, Escuela Politécnica Nacional, Quito 170517, Ecuador

Corresponding author: Pamela Flores (pamela.flores@epn.edu.ec)

This work was supported by the Escuela Politécnica Nacional del Ecuador through the research project under Grant PIS-19-11.

ABSTRACT Software modeling is a creative activity in which software components and their relationships
are identified based on customer requirements. Based on the literature, object-oriented software modeling
is based on four fundamental pillars which are abstraction, encapsulation, decomposition, and inheritance.
However, despite the existence of guidelines and recommendations for implementing the object-oriented
approach, novice software designers do not make good design decisions, leading to inefficient designs that
cannot be modifiable, understandable, or user-friendly distribute at the development level. The literature
reveals that the most common difficulties faced by software designers is a lack of understanding and
confusion of concepts related to the object-oriented approach, as well as difficulties in creating Unified
Modeling Language diagrams, especially class diagrams. The work presented in this article uses a qualitative
and quantitative approach to determine, in a group of university students, what are the most recurrent
difficulties and their persistence during the time. The qualitative case study is the method that allowed
to generate the documents: diagnostic and evaluation tests. Additionally, a thematic analysis was used to
identify, analyze and report patterns within the data. In order to know the occurrences of the problems
in the case study, as part of our quantitative approach, a comparative study was applied to compare the
results obtained between the diagnostic and evaluation tests and thus establish the similarities and differences
among the cases observed, through the hierarchical clustering technique. The findings of this study show us
16 difficulties identified after the qualitative analysis, while the quantitative analysis shows us the number
of occurrences and their persistence over time. The difficulties reported in both analyzes focus on these
three difficulties: a) Definition of attributes that could be a class, b) Classes with inadequate or insufficient
behavior and, c) Incorrect use of multiplicity between classes. Each of these difficulties is analyzed in depth
in this study.

INDEX TERMS Computer science, computer science education, object oriented modeling, software design,
software engineering, systems engineering education.

I. INTRODUCTION
Software engineering (SE) is a branch of computer science
that studies the creation of reliable and quality software
based, on engineering methods and techniques [1]. In other
words, the SE is the practical application of scientific knowl-
edge to the design and construction of programmes and to
the associated documentation required to develop, operate
and maintain these programs [2]. SE processes generally
consist of five structural activities: Requirements Definition,

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

System and Software Design, Unit Implementation and Test-
ing, System Integration and Testing; and Operation and
Maintenance [3].

Software design is a creative activity where the com-
ponents of the software and their relationships are iden-
tified, based on customer requirements. Software design,
particularly the object-oriented approach, is based on four
principles: abstraction, encapsulation, decomposition and
inheritance [4], [5]. This approach is one of the most used
to represent the problem domain and involves the design
of classes and the relationships between those classes. Such
classes define both the objects in the system and their

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 28895

https://orcid.org/0000-0002-4536-2780
https://orcid.org/0000-0002-8920-1225
https://orcid.org/0000-0002-3685-3879


P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

interactions [3]; the standardized language to express such a
scenario is through Unified Language Modeling (UML).

Software design is the only way to accurately material-
ize customer requirements, and actually there are guidelines
and recommendations [5], [6] for object-oriented software
design that designers, generally beginners, fail to implement
in practice. As a result, designers have great difficulty in
finding good decisions, which leads to the violation of the
principles of the object-oriented approach, which results in
low-quality designs [7]–[9]. In the literature we find that the
most common difficulties faced by software designers are:
• Lack of understanding of object-oriented concepts
[10]–[13].

• Confusion between concepts related to object/class,
class/collection and concepts involving modeling [9].

• Confusion in the association of class/object, attribute/
method and class/subclass related to inheritance con-
cepts [14].

• Difficulties in creating UML diagrams, syntax and nota-
tion errors; errors related to attributes, association and
classes [14], [15].

• Difficulty in organizing the information in the diagrams
and in using correctly the generalization-specialization
type association [16].

• Incorrect mapping of the problem concept, misuse of
inheritance, relationships and function names [17].

• Lack of creation of classes for relevant aspects of the
application [10].

The work presented in this article uses a qualitative and
quantitative approach to determine in a group of university
students, what are the most recurrent difficulties and their
persistence during the time. The qualitative case study is
the method that allowed to generate the documents: diag-
nostic and evaluation tests. Additionally, a thematic analysis
was used to identify, analyze and report patterns within the
data. In order to know the occurrences of the problems in
the students of the case study, as part of our quantitative
approach, a comparative study was applied to compare the
results obtained between the diagnostic and evaluation tests
and thus establish the similarities and differences among the
cases observed, through the hierarchical clustering technique.

The findings of this study show us 16 difficulties identified
after the qualitative analysis, while the quantitative analysis
shows us the number of occurrences and their persistence
over time. The difficulties reported in both analyzes focus on
these three difficulties: a) Definition of attributes that could
be a class, b) Classes with inadequate or insufficient behavior
and, c) Incorrect use of multiplicity between classes; each of
these is analyzed in depth in this study.

The results of this study are very helpful when identifying
the importance of software design and the most common
problems that arise from the object-oriented approach. How-
ever, few references study the persistence of difficulties and
misconceptions of students. Our study focuses on discovering
perceptions of students in the long term, when designing
software, based on exercises that make it possible to analyze

perceptions of students of object-oriented approach concepts
and their difficulties. The results will allow the reflection of
those who study the object-oriented approach and its influ-
ence on educators who focus on teaching object-oriented
software design.

The rest of the article is structured as follows. Section II
shows several related works found in the literature and the
contribution that our work has in this regard. Section III
presents the research methodology. Section IV shows the
development of the qualitative study. Section V displays the
development of the quantitative study. Section VI presents
the results of the study and Section VII presents a discussion
explaining the advices that emerge from it and the threats of
reliability. Finally, Section VIII dconcludes the paper.

II. RELATED WORK
In the literature we have found works related to how
students implement software design concepts under the
object-oriented approach, considering both qualitative and
quantitative perspectives. Several of these works show the
difficulties of students in software design and programming.

Some works in the state of the art study how students
conceive fundamental concepts of object-classes, modeling
and object-oriented programming (OOP) through longitudi-
nal studies with a mixed approach. The researcher Xinogalos,
based on a literature review and taking as a model the stud-
ies of Eckerdal and Thune [18], [19] compares conceptions
about objects and classes from the literature with data from
written exams that include open-ended questions applied to a
group of students. In this study, the authors identify that the
most referenced misconceptions are the confusion between
object/class, class/collection and concepts involving model-
ing, the latter because students perceive class as an abstraction
of some type of object/entity in the domain of the problem [9].
Through the exploration of mental models and evaluation of
tests taken by students, the authors identify that the most
problematic areas are related to the association between
class/object, attribute/method and class/subclass including
inheritance concepts, in addition to syntactic errors [14].

There are a couple of studies [20], [21], where the authors
state that there is a relationship between the performance of
students obtained in tests related to software design ques-
tions and produce a more reliable program code. In [20], the
author studies the relationship between the ability to create
a design with the ability to program from the analysis of
UML diagrams versus source code. Based on the review of
the literature and the analysis of the work presented by the
students, the author expresses that the students have diffi-
culties to close the gap between the problem descriptions
and the code, however, the author is not explicit in defining
which are the problem student face when transferring dia-
grams to code. In [21], through a planned quantitative method
and correlation analysis, the authors conclude that students
improved their programming performance thanks to their pre-
vious designs. In addition, in the same study, the researches
based on test results and object-oriented metrics parameters

28896 VOLUME 10, 2022



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

conduct an empirical study using the hierarchical clustering
technique to compare design quality of students and their
performance in terms of correctness. For this purpose, they
analyze the diagrams made by the students at the beginning
of the course and the corrections they do to those diagrams at
the end of the course.

Several researchers conceive the use of UML notation and
modeling skills as tools for success in software design, and
they study the difficulties presented by students in creating
UML diagrams. In [15] the authors conduct a study to deter-
mine the typical mistakes students make when creating class
diagrams, through error analysis and quantitative approach.
The authors consider the results of the final tests performed
by the students, consisting of the creation of diagrams, to cat-
egorize four errors: a) syntactic errors including notation
errors, b) attribute-related errors, c) association-related error
and, d) class-related errors. In [17] the authors rely on a
literature review and their experience as teachers by suggest-
ing that for many students the visualization of objects is not
always obvious and that common errors in modeling include:
incorrect mapping of the concept of the problem, misuse of
inheritance, misuse of relationships and misuse of function
names. The researchers propose a problem-based interactive
exercise, consisting of a game called Chitty-Chitty Bang-
Bang (CCBB) for a better understanding of object-oriented
concepts, obtaining beneficial results in average students and,
particularly in below-average students, but little effect on
brighter students. In [22] the authors study the difficulties that
students face while learning to model UML diagrams, such
as: difficulty in understanding the syntax and semantics of
the diagram, difficulty in organizing information in diagrams,
difficulty in correctly using the generalization-specialization
type association. In order to overcome these difficulties, the
authors propose to explore pedagogical methods such as:
problem-based learning (PBL) and learning from erroneous
examples (ErrEx), so that students are actively involved in
the learning process. These three papers found that errors
of syntax and semantics, inheritance and association, are the
most common among beginners.

The previous research to this study [10], focuses on the
exploration of object-oriented software design decisions that
students make and their possible causes, through a qualita-
tive study. Through a thematic analysis applied to diagnostic
and evaluation tests, presented by students, which consist of
developing 3 exercises that involve concepts of the object-
oriented approach. Researchers identify that the most com-
mon errors are related with creating/not creating classes and
objects, class behavior, class names, and confusion between
subclass/superclass. This reflects a lack of abstraction in stu-
dents, manifesting an excessive simplification of problems.
As to the possible causes, the authors mention: strict copy
of reality, influence of the structured approach, simplistic
general description and lack of understanding of concepts of
the object-oriented approach.

The contribution of this work lies in studying the difficul-
ties that students face in the design of software under the

object-oriented approach and in addition the persistence of
these difficulties in the long term after academic instruction.
The results of this study will allow the reflection of those who
study the object-oriented approach and its influence on the
learning of object-oriented software design.

III. RESEARCH METHODOLOGY
This section shows the research questions, the chosen
methodology, and the details of the selected case study.

A. RESEARCH QUESTIONS
This research was conducted through two research questions:

•

?

What are the difficulties that students present when
designing using class diagrams?

•

?

From the difficulties previously found, what are the
most frequent difficulties that students present when
designing using class diagrams during the academic
period?

This study requires a qualitative and quantitative data
analysis perspective. On the one hand, qualitative research
includes all non-numerical data. According to [23], qualita-
tive research consists of extracting descriptions from obser-
vations taken from interviews, narrations, recordings, audio
transcripts, written records of all kinds, among others. These
data are generated by case studies, action-research and
ethnography. In cite [24], the objective of qualitative research
is understanding and focuses on the investigation of facts,
as well as the interpretation of events.

In particular, a qualitative case study is defined as a holistic
and intensive description and analysis of a single instance,
phenomenon or social unit [25]. In our work the qualitative
case study, is the method that allowed to generate the doc-
uments, which consist of the evaluation tests. In addition,
a thematic analysis was used to identify, analyze and report
patterns within the data [26].

On the other hand, quantitative research includes numer-
ical data that try to determine the association or correlation
between variables, the generalization and objectification of
the results. After the study of the association or correlation,
it aims, in turn, to make causal inference that explains why
things happen or not, in a certain way [27].

In order to know the occurrences of the problems in case
studies, as part of our quantitative approach, a comparative
study was applied, to compare the results obtained in the
diagnostic test applied to the students at the beginning of the
academic period and the evaluation test applied at the end
of the course. The comparison aims to understand unknown
things from known, with the possibility of explaining and
interpreting them; and also aims to systematize the informa-
tion distinguishing the differences with similar cases [28].

B. RESEARCH METHOD
In this study, we have applied an instance of qualitative case
study research called thematic analysis, which is defined as
a research method that allow to identify, analyze, organize,

VOLUME 10, 2022 28897



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

describe and report topics that are within a set of data. The
thematic analysis allowed the identification, analysis and
reporting patterns within the data [22]. In addition, to know
the occurrence of problems in students, it was necessary to
make use of a quantitative analysis. Most quantitative data
analysis involves a process of abstraction that starts from
the research of qualitative data that have been previously
analyzed and that is important for the research topic [29].

1) SETTING
The case study was conducted with a group of students from
a University of the Faculty of Informatics. Details are shown
below:

2) SUBJECT
The subject is Modeling and Software Design, required sub-
ject of the fifth semester in the Faculty of Informatics,
this subject is taught for 4 hours a week for 16 weeks.
Students taking this subject must have previously studied
the subjects of Database Management, Programming I and
Programming II; and have as a co-requirement the subject
of Software Engineering I. The content of Programming II
focuses on the teaching of object-oriented programming lan-
guages, which means that students already have prior knowl-
edge about the concepts of this approach at the programming
level.

3) LECTURE STRUCTURE
The content of the subject during the 16weeks of the semester
is shown below:

• Software Design and Process Models
• Software Development Paradigms
• Classes Vs. Objects
• Coupling and Cohesion
• Inheritance
• UML Diagrams
• Decomposition in Software Design
• Abstraction in Software Design
• Principle of Concealment of Information
• Observer Pattern
• Façade and MVC Patterns
• Decorator and Factory Patterns
• Status Pattern
• Chain of Responsibility Pattern

4) PARTICIPANTS
The group of students in this subject initially consisted of
26 students. However, the evaluated results were 22 since four
students were discarded for the study, three of the discarded
students repeated the subject and another student left the
course, therefore, in the comparative statistics was not taken
into account.

5) TEST
The diagnostic test was performed in the second week after
the UML Diagram topic and it was composed of three

exercises. The exercises presented to the students for this
case study were chosen because they allow to apply the
concepts learned in UML topic. While the evaluation test
was presented at the end of the academic period. The first
exercise called ‘‘Betting’’ involves the use of inheritance and
the decomposition of the problem. The second exercise called
‘‘Circle’’ is related to graphic objects that allows to know the
way in which the students conceive the problem and finally
the exercise called ‘‘Hotel’’ is a transactional exercise whose
characteristics allow us to know the understanding of the
objects in an exercise that could be solved in a structured way.
The statement of each exercise is shown:

• Exercise Betting
It is required tomake an application for the sports betting
service, where a user must register for the bets. Bets can
be received by transfer or by card. The system supports
different types of bets, for example: Single bet (which
team wins), special bet (which minute scores the first
goal) and others.

• Exercise Circle
This application consists on drawing a small circle inside
a larger circle. The smaller circle can move inside the
larger circle, without getting out of it.

• Exercise Hotel
This application is responsible for booking rooms in a
hotel. It is necessary to take into account the booking
dates and the verification of room availability.

IV. QUALITATIVE CASE STUDY
The qualitative approach bases the analysis on the result of
the software design exercises performed by the students. The
thematic analysis process was based on the model proposed
by Seidel [30], which consists of the following stages:

• Data Collection
• Data Encoding
• Data Refinement
• Grouping of Qualitative Data

A. DATA COLLECTION
Two sets of qualitative data (diagnostic and evaluation
test) were collected for this study. The data collected were
obtained based on the 3 design exercises already described
in Subsection III-B5 and an interview was applied to the
students who were part of a diagnostic test carried out on
26 students at the beginning of the academic period, this
corresponds to the first data set published in a previous work
(accepted for publication).

At the end of the academic period an evaluation test was
applied with the same exercises, obtaining the second set of
data. In both the diagnostic and evaluation tests, the design of
each statement was requested through class diagrams.

Prior to the diagnostic test, students received instruction
on concepts related to Language Unified Modeling (UML),
so that all students have a standard language to design
the exercises. In this instruction only sequence diagrams

28898 VOLUME 10, 2022



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

and class diagrams with their respective relationships were
considered, and special attention was paid to the semantic
structure of inheritance. Finally, the concepts related to the
object-oriented approach such as object, class and message
were also updated. In addition, it is important to emphasize
that students have already received subjects where they have
previously programmed in object-oriented languages, this
means that the concepts taught in class were a reinforcement
to their knowledge of object-oriented concepts.

B. DATA ENCODING
After obtaining the results of the diagnostic and evaluation
tests conducted with the students, we proceeded to assign
codes to the collected documents. ‘‘A code in qualitative
research is most often defined as a word or short phrase
that symbolically assigns a summative, salient, essence-
capturing, and/or evocative attribute to a portion of visual
or language-based data’’ [31].
At this stage a deductive coding was carried out and the

test were coded using Atlas.ti software [32]. For this, we have
taken as a reference the problems that were previously iden-
tified in a work published by the same authors of this study
(accepted for publication), however, it is important tomention
that some of the findings shown in this study have also been
reported by other authors [33]–[36]. In the previous study ten
student’s design decisions were identified, which are shown
below:

1) Tendency to create a third class between two other
classes to associate them, instead of creating a many-
many association between them.

2) Assigning the behavior of a real-life object to the class
diagram as is, instead of using an abstraction of that
concept at the software level.

3) Lack of creation of classes for relevant aspects of the
application.

4) Designing classes with different names, but with the
same structure.

5) Designing classes without any behavior. Special inter-
est in defining classes only through their attributes.

6) Place responsibilities on classes that should not be
responsible for that behavior.

7) Creating classes that differ from their superclass or
sibling classes only by its attribute values, when the
behavior should be the same.

8) Assignment of complex behaviors as attributes.
9) Belief of students that placing an ID attribute in each

class will allow them to access all instances of that
class.

10) Definition of classes that are not concepts.

It is important to mention that in this study we did not limit
ourselves to coding only the problems mentioned above. The
experts were free to code problems that were not taken into
account in the previous study. Consequently, in the present
research we found 8 of the 10 problems previously identified
and 9 additional problems, so that the 16 problems found

TABLE 1. Example of codebook by exercise.

are explained later. At this stage a total of 365 codes were
obtained in the diagnostic test and 420 codes in the evaluation
test. The coding was performed separately by two experts,
and then applied the peer evaluation technique, in order to
guarantee the coding process.

An example of the codes established in the codebook is
shown in the Table 1.

C. DATA REFINEMENT
This is the stage where the preliminary codes obtained in the
previous stage were analyzed, matching similar codes or sep-
arating them. This stage was carried out in conjunction with
the researchers involved in the coding in order to maintain the
integrity of the coding.

D. GROUPING OF QUALITATIVE DATA
Finally, the codes generated in the Refinement stage were
grouped in section IV-C. The grouping was performed fol-
lowing the criteria of the research questions. These codes
were then abstracted into categories through a thematic analy-
sis. The details of the resulting categories and their respective
acronyms are shown below:

1) Convert attributes into classes (CLA), refers to extract
an attribute and convert it into a class. However, this
created a class that represents only data, without behav-
ior. For example when the student designs a Circle
class and a Position class, but the latter has only
attributes Xo and Yo.

2) Not considering the problem from an holistic perspec-
tive (HOL). This category is related to the fact that
students do not conceive all the aspects necessary to
solve the problem. For example, in the exercise Betting,
the student should check all aspects that influence the
resolution of the exercise, such as whether there are
sufficient funds for a person to place a bet.

3) Not including the classes necessary for the design
(NUM), refers to omitting classes in the diagram in

VOLUME 10, 2022 28899



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

spite of being explicitly mentioned in the statement,
for example, the absence of the Account class in the
exercise Betting.

4) Creation of classes that should be related to a concept
(FUN), but the concept itself does not exist in the
diagram. For example, when a student has created a
class named BetType, but the concept Bet does not
exist in the diagram.

5) Incorrect use of multiplicity between classes (LIS)
because the student does not identify the possible exis-
tence of several instances of the same class. For exam-
ple, in the exerciseHotel, some students did not identify
that multiple reservations can be made to the same
room.

6) Classes with inadequate or insufficient behavior
(COM), this category refers to those classes that were
created with a behavior foreign to the concept of the
class or the behavior only partially represents the con-
cept, for example, the creation of a Hotel class, which
has reserveRoom() method.

7) Creating the same class multiple times on a single
class diagram (INS), instead of instancing the class
multiple times. For example, the creation of differ-
ent rooms, such as SingleRoom, DoubleRoom,
TripleRoom, instead of just the class Room.

8) Defining attributes that could be a class (ATR),
an example of this is when the student cre-
ates a Reserve class, and places an attribute
roomNumber, and there is no Room class in the
design.

9) Placement of different methods that could have been
represented by a single method (MET), for example,
when it is placed move-left, and move-right
instead of move.

10) Classes built in the image and likeness of concepts of
the real life (REA), for example, in the case of a student
who created a Room class with a toClean()method.

11) Creating a Main class, which only function should be
to trigger the start of the program, and filling it with
functions that should be part of other classes (MAI).

12) Creation of classes whose name and behavior repre-
sent an action and not a concept (ACC), an example
was presented in the exercise Circle, where a student
diagrammed a class labeled SmallCircle, and addi-
tionally two classes: one labeled Draw and one Move.

13) Creating relationships between confusing or erroneous
classes (PCL), it refers to syntax errors in UML seman-
tics. For example, using the composition relationship
instead of aggregation.

14) Construction of classes with attributes but no methods,
evenwhen they neededmethods with distinct behaviors
in the context of the exercise (SIC). For example, the
Client class with the attributes name, lastName,
id, and without any methods.

15) Construction of inheritance structures whose derived
classes only differ from the base class by their attributes

(HER). For example, when students created a base
class called Betwith an implemented bet()method,
and two subclasses, one called IndividualBet
with an attribute called individualFactor and
the other ComplexBet with an attribute called
complexFactor but both with the same imple-
mented method inherited from the base class called
Bet

16) Similarity to the entity-relationship model (REL),
refers to the fact that the learner tends to create an inter-
mediate class for recording details of related classes.

V. QUANTITATIVE ANALYSIS
The quantitative approach allows the search for patterns in
the obtained data. Therefore, comparison is essential in any
field of research as it allows the establishment of systematic
similarities and differences among observed cases, as well
as the possible development and testing of hypotheses and
theories about their causal relationships [37]. A definition for
the term comparison is ‘‘the act of observing two or more
things in order to discover their relationships or estimate
their differences and similarities’’ [38].

A. COMPARATIVE ANALYSIS
In a comparative analysis, a distinction is made between
Most Similar System Design (MSSD) and Most Different
System Design (MDSD). When applying MSSD the research
objects are chosen as similar as possible, except for the
phenomenon whose effects we are interested in evaluating.
While in MDSD the strategy is to choose research units that
are as different as possible, the basic logic is that differences
cannot explain similarities [39].

Comparative analysis involves several techniques includ-
ing: case study, statistical analysis and experimental research.
In addition, it involves a focus on the analysis of a limited
number of cases. The outcome is focused on obtaining data
that leads to the definition of a problem or to the improvement
of knowledge about it [37].

According to [40], the comparative analysis presents two
strategies: case studies and study of variables, which are
defined below:
Case study: A small number of cases are defined and

experimental rigor is sought through the identification of
comparable effects of a phenomenon and the analysis of
differences and similarities between them.
Variables study: It aims to formulate broad generalizations

about the objects to be studied and to test abstract hypotheses
derived from theories applicable to the cases of study.

The efficiency of the different methods available for con-
ducting comparative research will depend on their effective-
ness in solving the problem of causal complexity analysis.

In this research theHierarchical Agglomerative Clustering
(HAC) method will be implemented. The main idea is to
group similar data points in one group and separate the dif-
ferent observations into other groups, calculating the distance
between them. The hierarchical grouping is represented by

28900 VOLUME 10, 2022



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

dendograms that allow a clear analysis of similarities and
differences between the individuals in the case study, facil-
itating the monitoring of the persistence of difficulties and
misconceptions of the students in object-oriented software
design.

1) VARIABLES OF STUDY
In this study and based on the results of the case studies, it was
determined that the comparative entities are:
• Results of the diagnostic tests, performed on students at
the beginning of the academic instruction.

• Results of the evaluation tests, conducted at the end of
the academic instruction.

2) DEFINITION OF VARIABLES
For this research, two case studies were defined, represented
by the results of the diagnostic test (Case 1) and the evaluation
test (Case 2) of a group of 22 students, which is equivalent to
the dependent variables.

On the other hand, the independent variables are repre-
sented by the categories of difficulties found during the quali-
tative study and which were classified as: CLA, HOL, NUM,
FUN, LIS, COM, INS, ATR, MET, REL, REA, MAI, ACC,
PCL, SIC and HER described in the section IV-D.

Once the comparable entities and the variables to be stud-
ied have been defined, the comparative strategy allows to pay
attention to those aspects that are very different (the most
differences) and those aspects that are very similar (the most
similarities).

3) VARIABLE DICHOTOMIZATION
Cluster analysis is extremely important in scientific research,
in any branch of knowledge. Bearing in mind that classifica-
tion is one of the fundamental objectives of science and to
the extent that cluster analysis provides us with the technical
means to carry it out, it will be essential in any investigation.

Therefore, once the cases and variables to be studied have
been defined, the HAC method is used to categorize the
students who took the diagnostic and evaluation tests into
groups. The groupings made were based on the type and
number of occurrences of problems found in the students of
the case study on object-oriented software design.

The cluster analysis technique aims to sort individuals into
groups, so that the individuals in the group are as similar
as possible to each other and as diverse as possible between
elements of other groups. Hierarchical clustering groups data
based on the distance between each of the individuals in the
group. This technique tries to achieve successive groupings
among individuals so that they are progressively integrated
into clusters which, in turn, would be joined together at a
higher level forming larger groups that will later be joined
together to reach the final cluster containing all the cases
analyzed. However, it is not appropriate for very large data
set [41].

Based on the agglomerative hierarchical method, groups
were generated in each of the phases of the process looking
for the number of clusters for an optimal grouping. At the

beginning, each individual is separated. At each step, the
closest individuals are merged to form different clusters. That
is, each observation is assigned to its own cluster. Then,
the similarity or distance between each of the clusters is
calculated and the two most similar clusters are merged into
one [42].

4) HIERARCHICAL AGGLOMERATIVE CLUSTERING (HAC)
The HAC algorithm aims to classify individuals. It is funda-
mentally about solving the following problem: Given a set of
individuals of N elements characterized by the information
of n variables Xj, (j = 1, 2, . . . , n). We set ourselves the
challenge of being able to classify them in such a way that
the individuals belonging to a group are as similar to each
other as possible, the different groups being as dissimilar as
possible among them.

With cluster analysis, we search a set of groups with differ-
ent individuals assigned by some criterion of homogeneity,
in our study the criterion is given by the type and number
of occurrences of problems found in students in the design
of object oriented software. Additionally, the possibility of
reassignments should be considered throughout the process,
establish criteria to stop and/or perform the grouping, and
define a measure of similarity or divergence to classify indi-
viduals into groups.

The Euclidean distance is the best known and easiest to
understand dissimilarity, since its definition coincides with
the most common concept of distance (space between two
points). The Euclidean distance is recommended when the
variables are homogeneous and measured in similar units
and/or when the variance matrix is unknown.

Given a set of N elements to be grouped and NxN distance
matrix, the basic process of Johnson’s hierarchical cluster-
ing [43] can be structured according to the following scheme:
• Step 1: Assign each element to a cluster, so that hav-
ing N elements, we will obtain N clusters. The dis-
tances/similarities among the clusters should be equal to
the distances between the elements they contain.

• Step 2: Find the closest/similar pair of clusters and com-
bine them into a single cluster, so that we get less clusters
in each phase.

• Step 3: Calculate the distances between the new cluster
and each of the old clusters.

• Step 4: Update the matrix to specify the distance
between the different clusters that are formed as a result
of the merger.

Steps 2, 3 and 4 can be repeated according to the
researcher’s criteria. These steps consist of searching for
similarities between clusters. Therefore, it is required to
determine a distance measure between each data point.
For this purpose, we use the Euclidean distance function
using (1). The similarity between individuals is plotted using
dendrograms.

‖a− b‖2 =
√∑

i

(ai − bi)2. (1)

VOLUME 10, 2022 28901



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

FIGURE 1. 4-quadrant matrix from which case studies will be classified into different clusters.

Step 1: The initial matrix was obtained based on the study
cases formed by a group of diagnostic tests and an evaluation
test group. The equation (1), resulting in a matrix of 4 quad-
rants, was applied to these data.

In Figure 1, the data from matrix are shown from right to
left and corresponding to the relationship between diagnostic
tests vs diagnosis, diagnosis vs evaluation, evaluation vs diag-
nosis and evaluation vs evaluation. The grey boxes represent
the clusters formed, the blue boxes are clusters with a single
set of results. The yellow boxes are the cases of students who
were part of the cluster and the red boxes are cases that have
already been part of a cluster.

Initially, a total of 11 clusters were obtained, distributed as
shown in Figure 2. The groupings were made on the basis of
the shortest distance between individuals. The largest number
of clusters are given in quadrant 1 and 2, since belonging to
a specific cluster cannot at the same time belong to another
cluster. Therefore, once the grouping is done, the individual
is not taken into account for another grouping.

Quadrant 3 does not record the formation of clusters.While
quadrant 4 records the formation of two clusters, one of them
formed by a single individual.
Step 2: To find the closest pair of clusters and combine

them into a single cluster we use the centroid method. This
method consists of obtaining the average of each individual
contained in the clusters. For example, in Figure 2 it can be
seen that Cluster 1 contains 6 individuals corresponding to
the diagnostic test, in this sense applying the centroid method
corresponds to a value of 36 whose average would be 6.
Cluster 2 has a total of 12 whose average is 2. Cluster 4 has

FIGURE 2. Initial cluster.

a total of 24 and its average is 3 and so on with the rest of the
clusters.
Step 3: We then calculate the Euclidean distances of the

centroids by pairs of clusters and observe which is the small-
est distance recorded, which will constitute the first clusters
to be grouped. the cluster 2 that will be joined will be those
whose calculated distance is the smallest, Figure 3.
Step 4: Updating the matrix, from 11 clusters that were

initially obtained, after the applied process it was reduced to
6 clusters as shown in Figure 4. In order to get this pairing,
we take into account the results of Figure 3. Where, cluster
1 and cluster 5 become one because the distance between
them is the smallest. In the same way, cluster 2 and cluster 4;
cluster 3 and cluster 6; cluster 7 and cluster 8; cluster 10 and
cluster 11 will be joined together, while cluster 9 does not
matchwith any other cluster since the distances are very large.

28902 VOLUME 10, 2022



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

FIGURE 3. Initial distance matrix.

FIGURE 4. Initial matrix update.

It is worth mentioning that the minimum distance between
clusters is 1.

Steps 2, 3 and 4 were performed repeatedly obtaining
the dendrogram in Figure 5. Where, the height of the
branches represents the similarity that exists between indi-
viduals/clusters and each vertical line of the dendrogram
represents 1 cluster. It is up to the researcher how many
clusters to use for the respective comparison.

Applying the agglomerative cluster technique, we obtained
5 possible clusters to analyze. In the initial grouping a total of
11 clusters were obtained. Where clusters 6 and 11 had only
1 individual to analyze, which is why it was discarded.

Group 2 is constituted with a total of 6 clusters, which
became the study group since all the groups have at least
2 individuals to analyze. In addition, there is the possibility
of analyzing the similarities and differences between the
individuals that make it up.

Group 3 is made up of a total of 4 clusters. In this case,
clusters 3 and 4 together represent 5 of the 22 individuals to
be analyzed. While clusters 1 and 2 comprise the majority of
individuals.

Group 4 is constituted with a total of 3 clusters. Where
cluster 4 has 2 individuals to analyze, cluster 2 has the same
results as in the previous grouping, and cluster 1 comprises
the majority of individuals.

Group 5 consists of a total of 2 clusters. Here, all cluster
groupings form one cluster. Cluster 1 comprise the majority
of individuals while cluster 2 has just 2 individuals to analyze.

Since, Cluster 1 has 2 clusters with a single individual to
analyze and that the groups 3, 4 and 5 comprise the majority
of individuals in a given cluster making it difficult to estab-
lish similarities and differences between these. We chose to
analyze the 2 groups formed by 6 clusters.

B. CLUSTER ANALYSIS
After prior analysis of clusters and number of clusters, it was
decided to work with the set of 6 clusters, for comparison of
results. The 1 to 4 groups represent similar characteristics in
terms of number and type of occurrences in categories. While
groups 5 and 6 represent characteristics that were found with
least frequency.

1) CLUSTER 1
This grouping shows that the category with the highest num-
ber of occurrences is ATR, followed by FUN and COM
categories. It is observed that this group of characteristics are
presented only in the diagnostic tests of the students, Figure 6.

2) CLUSTER 2
In this grouping we observe results of occurrences in both
diagnostic and evaluation tests, Figure 7. In diagnostic tests
the category with the most occurrences is LIST, followed
by NUM and in equal proportions HOL, FUN, COM, REL
and HER. While in the evaluation tests the category with the
highest number of occurrences is LIS, followed by NUM and
ATR.

When comparing the results obtained in the diagnostic and
evaluation tests, it is observed that the problem related to
categories LIS and NUM continues and, in addition, they are
presented in greater number in the evaluation tests.

FUN and COM categories are maintained in both diag-
nostic and evaluation tests. Also, we found a particular case
where student 2, has recurrences in the LIS category in both
tests.

The categories HOL, REL and HER present a minimum
number of occurrences in the diagnostic tests, but do not
appear in the evaluation tests. On the contrary, the categories
REA, ACC and ATR do not appear in the diagnostic tests,
while in the evaluation tests they present a minimum number
of occurrences.

Moreover, in this grouping, one of the students (E2) who
is part of the group presents the same number of occur-
rences in the LIS category in both diagnostic and evaluation
tests. He overcomes the difficulties with the FUN category.
However, in the evaluation test, the ACC category appears.
In general, the student has the same number of occurrences
in both tests in the LIS category.

3) CLUSTER 3
This grouping is made up of data only from the diagnostic
test, Figure 8. Where, it is observed that there are two cat-
egories with the highest number of occurrences COM and
HOL, followed by the category ATR.

VOLUME 10, 2022 28903



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

FIGURE 5. Dendrogram of representation of similarities and differences between clusters.

FIGURE 6. Cluster 1.

FIGURE 7. Cluster 2.

4) CLUSTER 4
In this group, occurrences are observed in diagnostic tests
and evaluation tests, Figure 9. In diagnostic tests the category
with the most occurrences is COM, followed by SIC and in

FIGURE 8. Cluster 3.

equal proportions FUN and INS.While in the evaluation tests
the category with the highest number of occurrences is LIS,
followed by the categories NUM and ATR.

The categories CLA, HOL, COM, INS PCL and SIC
register occurrences in the diagnostic tests, but not in the
evaluation tests. This could be due to the fact that the concepts
covered by the aforementioned categories were clearer for
this group of students. However, in the evaluation test, the
categories ATR and MAI appear.

It is evident that the problems related to the categories
NUM and LIS in the evaluation tests occur in greater num-
bers than in the diagnostic tests. On the other hand, the
FUN category registers a minimal reduction of occurrences
in the evaluation test. While the categories REA and ACC
remain with the same number of occurrences in diagnostic
and evaluation.

Furthermore, in this grouping we find that student E10
presents problems with the LIS category in the diagnostic

28904 VOLUME 10, 2022



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

FIGURE 9. Cluster 4.

FIGURE 10. Cluster 5.

and evaluation test, with a greater number of occurrences in
the evaluation test. Here overcomes the problems with the
categories COM, INS and REA. However, new categories
such as NUM and ATR appear. In general, in the evaluation
test it has fewer occurrences (1 less) but the problem with the
LIS category persists.

5) CLUSTER 5
Occurrences in diagnostic and evaluation tests are visualized,
Figure 10. In diagnostic tests the categories with the most
occurrences are NUM and FUN alike. Followed by the cat-
egories HOL and ATR. While in the evaluation tests the
predominant category is COM, followed by NUM and LIS.

When comparing the results obtained in the diagnostic and
evaluation tests, the COM category increases considerably
in the evaluation tests. Category NUM is presented in the
same number of occurrences in both diagnosis and evaluation.
While the ATR category decreases the number of occurrences
in evaluation tests.

In addition, the HOL, FUN and REL categories appear
in the diagnostic tests, but not in the evaluation tests. The
opposite of the LIS category, which is this group, appears only
in the evaluation tests.

6) CLUSTER 6
This group consists of evaluation test results only, Figure 11.
It is noted that the category with the highest number of

FIGURE 11. Cluster 6.

occurrences is NUM, followed by COM and REL categories
with the same number of occurrences.

VI. RESULTS
This section details the results by clusters, the findings of all
clusters in general and finally a discussion.

A. RESULTS BY CLUSTERS
• Clusters 1 and 3 represent individuals from diagnos-
tic tests only. In cluster 1 the category with the most
occurrence is ATR followed by FUN and COM. While
in cluster 3 the categories with the highest number
of occurrences equally are HOL and COM followed
by the ATR category. In addition, it is evident that in
grouping 1 and 3 the categories that represent the great-
est difficulty for students are COM and ATR.

• In Clusters 2 and 4, there is a greater number of occur-
rences in the evaluation tests. Where, the categories that
represent greater difficulty to students in both groupings
are LIS, NUM and ATR.

• In Cluster 5, the category with the greatest difficulty in
both diagnosis and evaluation is NUM, since the number
of occurrences is maintained. In addition, in the evalu-
ation test, the COM category increases considerably the
number of occurrences compared to the diagnostic test.
The opposite happens with the ATR category where the
number of occurrences in the evaluation tests decreases
compared to the diagnostic tests.

• Clusters 1, 2, 3 and 4 have in common that the category
where students present more problems is ATR. In addi-
tion, it is observed that in Cluster 2, 4 and 5 the category
in common, where there are more occurrences, is NUM.

• Clusters 2 and 4 exist particular cases of the students E2
and E10 respectively, both students present problems in
the LIS category in both diagnostic and evaluation tests.

B. OVERALL RESULTS
• It is observed that the LIS and NUM categories con-
siderably increase the number of occurrences in the
evaluation tests. This means that, the problems in terms

VOLUME 10, 2022 28905



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

of the aforementioned categories not only remain the
same, but increase in number of occurrences.

• The HOL category occurs only in diagnostic tests with a
high number of occurrences. Thismeans that the concept
related to holistic has been surpassed.

• Categories FUN, COM, INS andATR are presented with
a high number of occurrences in diagnostic tests while
in evaluation tests the number of occurrences is reduced
considerably. In other words, the concepts that involve
these categories have been partially overcome.

• Categories CLA, MET, PCL show the lowest number of
occurrences in diagnostic tests. While in the evaluation
tests there are no occurrences.

• Categories MAI and HER do not record occurrences
in diagnostic tests. However, they record a minimum
number of occurrences in the evaluation tests.

VII. DISCUSSION
This section discusses the results of the difficulties identi-
fied in software modeling through class diagram. The find-
ings of this study have implications also for students as
instructor of software modeling. Moreover, we present the
limitations of this study, especially in the qualitative part.

A. DIFFICULTIES OF SOFTWARE MODELING
In the case of diagnostic tests, the two categories with the
highest occurrences are COM and ATR. While those of eval-
uation tests are LIS and ATR. Below we discuss this results:

1) DEFINING ATTRIBUTES THAT COULD BE A CLASS (ATR)
From the comparative study, it can be seen that the category
that persists both, in the diagnostic and in the evaluation test,
is called ATR, which we will discussed below.

This category refers to the simplification of a concept
by defining it as an attribute of a class, instead of having
conceived it as a class by itself due to its complexity. Some
students believe that placing ‘‘few attributes’’ is a way to
define correctly a concept. They showed this behavior, when
they placed in the Circle class an attribute called type and
in Bet class an attribute called typeOfBet.

Furthermore, difficulties related to misassigned attributes
and missing attributes have also been found in the litera-
ture [34]. However, there is an important tendency to think
that a concept can be defined only with attributes, leaving
aside methods. This is also related to the behavior we get
used to see in the structured approach, where data is used
by functions, as [44] defines systems under the structured
approach: ‘‘A software system is a system that manipulates
and stores data’’, so that data under this approach have a
leading role. The influence of the structured approach on the
implementation of the object-oriented approach has already
been discussed in the literature [10]. However, their mani-
festations go beyond giving more relevance to the attributes;
these results coincide with those analyzed in [45], where
students assigned to the Employee class the methods to
calculate the salary of an employee, when these should belong

to the Human Resources class. This behavior shows a
clear procedural design where the Employee class is in
control and the Human Resources class is just a data.
Detienne [46], [47] also shows his findings related to the
problems that novice learners have when decomposing large
procedures into smaller functional units, thus reflecting the
tendency to place all or most of the functional procedure
in a single class. Finally, in the work presented by Ven Yu
Sien [34], his findings show a lack of identification of related
concepts within the domain problem and problems with mis-
assigned or not assigned attributes.

As in the previous category, students show a clear lack
of abstraction by not being able to conceptualize a concept
through a class with its own behavior or by reducing a concept
to an attribute.

2) CLASSES WITH INAPPROPRIATE OR INSUFFICIENT
BEHAVIOR (COM)
Initially, students presented the highest number of problems
in the COM category, a problem that decreases in 30% after
the previous instruction.

The concepts of a class and an object are very similar in
the object-oriented approach, however an object is a concrete
entity that exists in time and space, while a class repre-
sents only an abstraction [48]. That is why abstraction is a
fundamental concept in the object-oriented approach. When
defining a real life object as a class, with its attributes and
relevant methods, it is a necessity to use abstraction to reduce
the object to only the parts that are needed for the software
that is being designed [45]. In this sense students in this
study have difficulties in giving the class the right behavior
and this has been represented in different ways. Sometimes
because methods associated with the class do not correspond
to the concept that this class represents, or because there is an
overload of methods with low cohesiveness between them,
or there is a class without a behavior.

Different examples of the COM category were seen in
the exercise Hotel, when the Room class has a method
moveFurniture(), or in the exercise Betting where stu-
dents assigned to the Bet class behaviors related to the verifi-
cation of aspects of the event. We have also seen classes with
an overload of methods with little cohesion between them, for
example, a Bet class with methods related to the payment
and the registration of the gambler. Although the Bet class
at first glance has one ‘‘behavior’’. The Bet class is a clear
example of an overloaded class that does many different
things. The overloading of methods in a class has also been
cited in other works [49], [50]. We also find classes defined
only with attributes, such as Client class and Hotel class,
or absence of methods in classes [51].

Many authors describe this problemwhen defining classes,
some of them attribute it to the confusing behavior of assign-
ing a ‘‘real’’ behavior of the physical object to the soft-
ware object. This was also a finding reported in [52], who
conducted a study where students were asked to create a
composite class consisting of several simple classes, where

28906 VOLUME 10, 2022



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

the composite class was called Room and the simple classes:
Mirror, Bed, and Cupboard. The students placed the
addMirror method in the Room class. The authors inter-
pret this behavior as a student confusion, since it is a possible
situation in real life. This involves assigning the erroneous
behavior to the Room class; related results were also reported
by [10].

Other studies conducted by [9], report difficulties of stu-
dents in conceiving a class as an abstraction of some kind
of entity in the real-world problem domain. Although some
authors defend the idea that objects have the property of
naturalness, which is understood as the property that allows
mapping the physical objects of the problem domain to the
software [53], [54].

Also some students have created classes built only with
the get() and set() methods, giving the false sensation
that these have behavior, when these methods indicate that
through them the attributes of that class can be accessed from
outside, rather than the behavior of the class itself. Students
are often motivated to use get() and set methods to hide
the modules, being a misinterpretation of the Information
Hiding Principle [55]. The difficulty of defining objects has
also been documented in the literature [45], [54], [56].

3) INCORRECT USE OF MULTIPLICITY BETWEEN CLASSES
(LIS)
In the Evaluation tests, the LIS category is found with the
highest number of occurrences, which will be discussed
below.

Class diagrams allow us to show the classes and the asso-
ciations between them. Additionally it allows us to visualize
the number of objects involved in the association through
multiplicity. Thanks to the multiplicity it is possible to define
an exact number of objects that are involved; or, if * is used,
it indicates that there are an indefinite number of objects in
the association [3]. In this way, UML allows to specify the
role of the objects that participate in the association.

In this study there were manifestations related to the LIS
category in the exercise Betting. One of the expected multi-
plicities was between the Bet and Gambler classes, since
the person making the bet could place several bets, and this
was not considered by many students. Most of the students
who made the Bet and Gambler classes performed a mul-
tiplicity of 1 to 1 instead of 1 to *. This is evidenced when
students did not draw any multiplicity or when they wrote
methods such as getAllBet() in the class Bet, without
knowing where or how they handle all bets.

At the software design level, another relationship is aggre-
gation relationship which is used between two classes and is
a type of association, which means that an object (the whole)
is formed by other objects (the parts) [3]. It is required to
define this multiplicity when it want to express the existence
of more than one object of the same type. It can also be used
aggregation to represent a physical container.

Students do not abstract globally, usually thinking that an
object has a specific task. When students realize that the task

is to manage a set of objects, they understand the need for
some mechanism to deal with multiple instances; however,
they are unable to define multiplicity correctly. The difficulty
is also related to the conception that a whole and its parts is
not always considered like a container, rather this whole/parts
relationship is more conceptual [48].

The difficulty of define the multiplicity is a persistent
problem that has been manifested in several nuances, being
a possible cause of this problem, the difference in between
structured and object-oriented approach, where conceptually
there is no data and all elements are variables. This possible
cause lies largely in a lack of understanding of the object
concept rather than in a direct relation to problems with
the UML.

LIS is the category that had the highest number of occur-
rences of problems in the Bet and Hotel exercises, however
in exercise Circle it did not have many appearances, because
in that exercise it was not required to use multiple objects for
its resolution, unlike the first exercises.

We found that 2 of the 22 students who are part of the
comparative study, have problems in the same categories in
both tests. In both cases the category with which they present
problems is LIS. The first case (E2) presents the same number
of occurrences in both tests. While the second case (E10)
presents a greater number of occurrences in the evaluation
test.

B. ADVICES
several authors mention the possible causes of the difficul-
ties in modeling that students usually present [57]–[60]. For
example, with respect to assigning an appropriate behavior
to classes, some authors agree that students do not perceive
the fact that a class models some real-world phenomenon,
something in the problem domain. In this sense, the literature
contemplates the use of UML to carry out the design process
correctly, such is the case of Prasad and Iyer [61] who claim
that UML diagrams specify behaviors and scenarios of a
given system at various levels of abstraction.

One of the difficulties shown in the diagnostic stage,
it was the transfer of models from the structured approach
such as the Entity-Relationship model to the object-oriented
approach (REL). For this, some authors propose tools to
bridge the gap between object-oriented programming and
procedural programming, one of them is Web Plan Object
Language (WPOL), proposed by Ebrahimi and Schweik-
ert [62].

WPOL is a solution based on a Plan-Object paradigm,
where a plan must exist to request, dictate and guide the
creation of objects. With a similar intention, Xinogalos [63]
uses the objectKarel tool in his study to help students in their
transition from procedural/imperative programming to object
orientation. Xinogalos introduces object-oriented program-
ming concepts using the microworld approach with objec-
tKarel for a clear, playful and practical presentation of objects
and classes, without neglecting other fundamental concepts
such as inheritance and polymorphism.

VOLUME 10, 2022 28907



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

C. THREATS TO RELIABILITY
Qualitative research has been widely criticized for not provid-
ing enough information about the analysis of the data and how
it has worked from the raw data to its conclusions. This study
adheres to the quality criteria presented by Lincoln et al. [64],
Neuman [65], and Merriam [25] in the educational context.

On one hand, the work has reliability, that is, the con-
sistency of the results obtained from the data. To ensure
reliability, the researchers of this study, instead of requiring
that people outside the research agree that, based on the data
collected, the results make sense, are consistent and reliable.
They detailed the traceability of the source data and the
decisions taken to reach their conclusions. The details of the
environment and participants are also described, which will
allow other researchers to apply this study in similar contexts.

On the other hand, validity that means truthfulness, but in
the qualitative context we could rather speak of authentic-
ity, which means capturing a detailed view of the research
process. To ensure validity in this research, we have applied
strategies such as triangulation, by using several researchers
so that each exercise was analyzed and coded separately. The
codes and categories were consensual through peer debriefing
techniques, ensuring the credibility of the research in this
way.

In the presented research students go through different
stages of learning: a) when the concepts are presented to
the students, b) when they do exercises to try to learn the
concepts, and c) when the students take the assessments.
In this sense, it should be noted that there is a possible threat
to the validity of the research because the stage in which the
students present the problems was not identified, nor were
the causes of the problems. It is important to recognize that
the problems might have been caused by the approach of
the teacher while teaching the topic rather than the approach
of the students while learning it. Nevertheless, neither the
identification of the stage nor the causes were considered
within the scope of the study.

In addition, to avoid ethical conflicts regarding the
manipulation of the data collected from the students,
informed consent forms were prepared to guarantee
anonymity and confidentiality of the data obtained from the
students. This report was read and signed by the students
before the research.

VIII. CONCLUSION
The work carried out allowed us to determine which are the
most recurrent difficulties in object-oriented software design
and their persistence in a group of university students.

The qualitative study approach was used to generate the
documentation from the diagnostic test and student inter-
views. The thematic analysis of this documentation allowed
us to identify, analyze and report patterns within the data,
resulting a total of 16 categories.

As a result of the quantitative approach, it was possible to
determine the occurrences of the problems of the students in

the case study. In addition, the results obtained between the
diagnostic and evaluation tests were compared to establish
similarities and differences between the cases observed, using
the hierarchical clustering technique.

When comparing the number of occurrences of the cate-
gories where students present greater difficulty, between the
diagnostic and evaluation tests applied at the beginning and at
the end of the course respectively, it was found that students
present a greater number of difficulties in the LIS and NUM
categories. The number of occurrences in these categories not
only remains the same, but also increases in the evaluation
test. The categories REA and ACC register a lower number of
occurrences in the diagnostic tests, but increase their number
in the evaluation tests.

On the other hand, the concepts related to the categories
FUN, COM, ATR and REL have been partially overcome,
their number of occurrences in the evaluation test is lower
than the number of occurrences in the diagnostic test.

The categories CLA, HOL, INS, MET, PCL, SIC and HER
register a minimum number of occurrences in the diagnostic
tests, but they do not register occurrences in the evaluation
tests. This could be due to the fact that the concepts covered
by the aforementioned categories were clearer for this group
of students. No occurrences are recorded in theMAI category
in the diagnostic tests, however, it appears in the evaluation
tests.

Consequently, the comparative study allowed us to know if
difficulties of the students in object-oriented software design
have been overcome or not at the end of the course, or at the
same time, to know what new difficulties they present when
making design decisions.

The comparative study also shows that there are students
who have difficulties in the same category with a similar
number of occurrences in both diagnostic and evaluation
tests. As is the case of students E2 and E10, both students
present problems in the LIS category.

ACKNOWLEDGMENT
The authors would like to acknowledge and thank the Anony-
mous Reviewers for their valuable recommendations, which
contributed to improving the quality of this article.

REFERENCES

[1] P. Bourque, R. Dupuis, A. Abran, J. W.Moore, and L. Tripp, ‘‘The guide to
the software engineering body of knowledge,’’ IEEE Softw., vol. 16, no. 6,
pp. 35–44, Nov. 1999.

[2] M. Boehm, ‘‘Software engineering,’’ IEEE Trans. Comput., vol. C-25,
no. 12, pp. 1226–1241, 1976.

[3] I. Sommerville, ‘‘Software engineering 9th edition,’’ Tech. Rep., 2011,
p. 18.

[4] C. Hu, ‘‘The nature of software design and its teaching: An exposition,’’
ACM Inroads, vol. 4, no. 2, pp. 62–72, Jun. 2013.

[5] K. Sanders and R. McCartney, ‘‘Threshold concepts in computing: Past,
present, and future,’’ in Proc. 16th Koli Calling Int. Conf. Comput. Educ.
Res., Nov. 2016, pp. 91–100.

[6] J. Börstler, L. Kuzniarz, C. Alphonce, W. B. Sanders, and M. Smialek,
‘‘Teaching software modeling in computing curricula,’’ in Proc. Final Rep.
Innov. Technol. Comput. Sci. Educ. Workshop Groups, 2012, pp. 39–50.

28908 VOLUME 10, 2022



P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

[7] F. Steimann, ‘‘Fatal abstraction,’’ in Proc. ACM SIGPLAN Int. Symp.
New Ideas, New Paradigms, Reflections Program. Softw., Oct. 2018,
pp. 125–130.

[8] V. Thurner, ‘‘Fostering the comprehension of the object-oriented program-
ming paradigm by a virtual lab exercise,’’ in Proc. 5th Exp. Int. Conf.,
Jun. 2019, pp. 137–142.

[9] S. Xinogalos, ‘‘Object-oriented design and programming: An investigation
of Novices’ conceptions on objects and classes,’’ ACM Trans. Comput.
Educ., vol. 15, no. 3, pp. 1–21, Sep. 2015.

[10] P. Flores, J. Torres, and R. Fonseca-Delgado, ‘‘Design decisions under
object-oriented approach: A thematic analysis from the abstraction point
of view,’’ in Proc. 8th Comput. Sci. Educ. Res. Conf., 2019, pp. 89–97.

[11] Z.Ma, ‘‘An approach to improve the quality of object-orientedmodels from
novice modelers through project practice,’’ Frontiers Comput. Sci., vol. 11,
no. 3, pp. 485–498, Jun. 2017.

[12] D. P. Tegarden and S. D. Sheetz, ‘‘Cognitive activities in OO develop-
ment,’’ Int. J. Hum.-Comput. Stud., vol. 54, no. 6, pp. 779–798, Jun. 2001.

[13] T. Gorschek, E. Tempero, and L. Angelis, ‘‘A large-scale empirical study of
practitioners’ use of object-oriented concepts,’’ in Proc. 32nd ACM/IEEE
Int. Conf. Softw. Eng. - ICSE, 2010, pp. 115–124.

[14] P. Hubwieser and A. Mühling, ‘‘What students (should) know about object
oriented programming,’’ in Proc. 7th Int. workshop Comput. Educ. Res.,
Aug. 2011, pp. 77–84.

[15] M. Kayama, S. Ogata, K. Masymoto, M. Hashimoto, and M. Otani,
‘‘A practical conceptual modeling teaching method based on quantita-
tive error analyses for novices learning to create error-free simple class
diagrams,’’ in Proc. 3rd Int. Conf. Adv. Appl. Informat., Aug. 2014,
pp. 616–622.

[16] W. Silva, I. Steinmacher, and T. Conte, ‘‘Students’ and instructors’ per-
ceptions of five different active learning strategies used to teach software
modeling,’’ IEEE Access, vol. 7, pp. 184063–184077, 2019.

[17] S. Frezza and W. Andersen, ‘‘Interactive exercises to support effective
learning of UML structural modeling,’’ in Proc. Frontiers Education. 36th
Annu. Conf., 2006, pp. 7–12.

[18] A. Eckerdal and M. Thuné, ‘‘Novice Java programmers’ conceptions of
‘object’ and ‘class’, and variation theory,’’ ACM SIGCSE Bull., vol. 37,
no. 3, pp. 89–93, 2005.

[19] M. Thuné and A. Eckerdal, Students’ Conceptions of Computer Program-
ming. 2010.

[20] J. W. Coffey, ‘‘Relationship between design and programming skills in an
advanced computer programming class,’’ J. Comput. Sci. Colleges, vol. 30,
no. 5, pp. 39–45, 2015.

[21] Q. Sun, J. Wu, and K. Liu, ‘‘Toward understanding Students’ learning
performance in an object-oriented programming course: The perspective
of program quality,’’ IEEE Access, vol. 8, pp. 37505–37517, 2020.

[22] W. A. F. Silva, I. F. Steinmacher, and T. U. Conte, ‘‘Is it better to learn from
problems or erroneous examples?’’ in Proc. IEEE 30th Conf. Softw. Eng.
Educ. Training (CSEE&T), Nov. 2017, pp. 222–231.

[23] M. LeCompte, ‘‘Un matrimonio conveniente: Diseño de investigación
cualitativa y estándares para la evaluación de programas,’’ Revista Elect.
Invest. Evalu. Educativa, vol. 1, no. 1, pp. 1–13, 1995.

[24] R. E. Stake, The Art Case Study Research. Thousand Oaks, CA, USA:
Sage, 1995.

[25] S. B. Merriam, Qualitative Research and Case Study Applications in
Education. Chennai, India: ERIC, 1998.

[26] V. Braun and V. Clarke, ‘‘Using thematic analysis in psychology,’’ Quali-
tative Res. Psychol., vol. 3, no. 2, pp. 77–101, 2006.

[27] Y. Sarduy Domínguez, ‘‘El análisis de información y las investigaciones
cuantitativa y cualitativa,’’ Revista Cubana Salud, vol. 33, p. 5, Sep. 2007.

[28] C. Gómez Díaz de León and E. A. D. León de la Garza, ‘‘Método compar-
ativo,’’ Tech. Rep., 2014.

[29] B. J. Oates, Researching Information System Computing. Thousand Oaks,
CA, USA: Sage, 2005.

[30] J. V. Seidel and J. A. Clark, ‘‘THE ETHNOGRAPH: A computer program
for the analysis of qualitative data,’’ Qualitative Sociol., vol. 7, nos. 1–2,
pp. 110–125, 1984.

[31] D. Wicks, ‘‘The coding manual for qualitative researchers,’’ Qualitative
Res. Org. Manage., Jan. 2017.

[32] S. Friese. (Aug. 2018). Atlasti 8 user Manual. Accessed:
Sep. 1, 2021. [Online]. Available: http://downloads.atlasti.
com/docs/manual/atlasti_v8_manual_en.pdf

[33] K. Sanders and L. Thomas, ‘‘Checklists for grading object-oriented CS1
programs: Concepts and misconceptions,’’ ACM SIGCSE Bull., vol. 39,
no. 3, pp. 166–170, Jun. 2007.

[34] V. Y. Sien, ‘‘An investigation of difficulties experienced by students devel-
oping unified modelling language (UML) class and sequence diagrams,’’
Comput. Sci. Educ., vol. 21, no. 4, pp. 317–342, 2011.

[35] P. Pourali and J. M. Atlee, ‘‘An empirical investigation to understand the
difficulties and challenges of software modellers when using modelling
tools,’’ in Proc. 21th ACM/IEEE Int. Conf. Model Driven Eng. Lang. Syst.,
New York, NY, USA, 2018, pp. 224–234, doi: 10.1145/3239372.3239400.

[36] D. R. Stikkolorum, F. G. de Oliveira Neto, andM. R. V. Chaudron, ‘‘Evalu-
ating didactic approaches used by teaching assistants for software analysis
and design using UML,’’ in Proc. 3rd Eur. Conf. Softw. Eng. Educ., New
York, NY, USA, Jun. 2018, pp. 122–131, doi: 10.1145/3209087.3209107.

[37] D. Berg-Schlosser and G. De Meur, ‘‘Comparative research design: Case
and variable selection,’’ in Proc. Configurational Comparative Methods,
Qualitative Comparative Anal., 2009, pp. 19–32.

[38] L. Bartlett and N. Krawczyk, ‘‘Apresentação da seção temática-métodos de
educação comparada,’’ Educação Realidade, vol. 42, no. 3, pp. 815–819,
2017.

[39] C. Anckar, ‘‘On the applicability of the most similar systems design and
the most different systems design in comparative research,’’ Int. J. Social
Res. Methodology, vol. 11, no. 5, pp. 389–401, Dec. 2008.

[40] J. Caïs, L. Folguera, and C. Formoso, Investigación Cualitativa Longitudi-
nal, vol. 52. CIS-Centro de Investigaciones Sociológicas, 2014.

[41] J. Marín, ‘‘Los análisis cláster de tipo jerárquico y los dendrogramas,’’Una
Visión Para la Triangulación Metodológica en Los Estudios Comparativos
Regionales. Costa Rica, America: Universidad de Costa Rica, 2008.

[42] R. V. Baños, M. J. R. Hurtado, V. Berlanga, and M. T. Fonseca, ‘‘Cómo
aplicar un cluster jerárquico en spss,’’ Revista Innov. Recerca en Educ.,
vol. 7, no. 1, pp. 113–127, 2014.

[43] S. C. Johnson, ‘‘Hierarchical clustering schemes,’’ Psychometrika, vol. 32,
no. 3, pp. 241–254, 1967.

[44] R. Wieringa, ‘‘A survey of structured and object-oriented software spec-
ification methods and techniques,’’ ACM Comput. Surv., vol. 30, no. 4,
pp. 459–527, Dec. 1998.

[45] R. Or-Bach and I. Lavy, ‘‘Cognitive activities of abstraction in object
orientation: An empirical study,’’ ACM SIGCSE Bull., vol. 36, no. 2,
pp. 82–86, Jun. 2004.

[46] F. Détienne, ‘‘Design strategies and knowledge in object-oriented pro-
gramming: Effects of experience,’’ Hum.-Comput. Interact., vol. 10, no. 2,
pp. 129–169, Sep. 1995, doi: 10.1207/s15327051hci1002263_1.

[47] F. Détienne, Software Design–Cognitive Aspect. Springer, 2001.
[48] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and

K. Houston, Object-Oriented Analysis and Design with Applications,
3rd ed. Reading, MA, USA: Addison-Wesley, 2007.

[49] P. Flores, N. M. Martínez, and S. P. Roche, ‘‘Persistent ideas in a software
design course: A qualitative case study,’’ The Int. J. Eng. Educ., vol. 32,
no. 2, pp. 937–947, 2016.

[50] M. P. Monteiro, ‘‘On the cognitive foundations of modularity,’’ in Proc.
PPIG, 2011, p. 22.

[51] S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi, ‘‘Mistakes
in UML diagrams: Analysis of Student projects in a software engineering
course,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., Softw. Eng. Educ.
Training (ICSE-SEET), May 2019, pp. 100–109.

[52] N. Ragonis and M. Ben-Ari, ‘‘A long-term investigation of the compre-
hension of OOP concepts by novices,’’ Comput. Sci. Educ., vol. 15, no. 3,
pp. 203–221, Sep. 2005, doi: 10.1080/08993400500224310.

[53] G. White and M. Sivitanides, ‘‘Cognitive differences between procedural
programming and object oriented programming,’’ Inf. Technol. Manage.,
vol. 6, no. 4, pp. 333–350, Oct. 2005.

[54] F. Détienne, ‘‘Assessing the cognitive consequences of the object-oriented
approach: A survey of empirical research on object-oriented design by
individuals and teams,’’ Interacting Comput., vol. 9, no. 1, pp. 47–72,
Aug. 1997.

[55] P. Flores, N. Medinilla, and S. Pamplona, ‘‘What do software design
students understand about information hiding: A qualitative case study,’’
in Proc. 14th Koli Calling Int. Conf. Comput. Educ. Res., 2014, pp. 61–70,
doi: 10.1145/2674683.2674697.

[56] D. Svetinovic, D. M. Berry, and M. Godfrey, ‘‘Concept identification in
object-oriented domain analysis: Why some students just don’t get it,’’ in
Proc. 13th IEEE Int. Conf. Requirements Eng. (RE), 2005, pp. 189–198.

[57] B. Thomasson, M. Ratcliffe, and L. Thomas, ‘‘Identifying novice dif-
ficulties in object oriented design,’’ in Proc. 11th Annu. SIGCSE
Conf. Innov. Technol. Comput. Sci. Educ., 2006, pp. 28–32, doi:
10.1145/1140124.1140135.

VOLUME 10, 2022 28909

http://dx.doi.org/10.1145/3239372.3239400
http://dx.doi.org/10.1145/3209087.3209107
http://dx.doi.org/10.1207/s15327051hci1002263_1
http://dx.doi.org/10.1080/08993400500224310
http://dx.doi.org/10.1145/2674683.2674697
http://dx.doi.org/10.1145/1140124.1140135


P. Flores et al.: Identifying Difficulties of Software Modeling Through Class Diagrams: Long-Term Comparative Analysis

[58] K. Sanders and L. Thomas, ‘‘Checklists for grading object-oriented
CS1 programs: Concepts and misconceptions,’’ in Proc. 12th Annu.
SIGCSEConf. Innov. Technol. Comput. Sci. Educ., 2007, pp. 166–170, doi:
10.1145/1268784.1268834.

[59] K. Sanders, J. Boustedt, A. Eckerdal, R. McCartney, J. E. Moström,
L. Thomas, and C. Zander, ‘‘Student understanding of object-oriented
programming as expressed in concept maps,’’ ACM SIGCSE Bull., vol. 40,
no. 1, pp. 332–336, Feb. 2008, doi: 10.1145/1352322.1352251.

[60] A. Eckerdal and M. Thuné, ‘‘Novice Java programmers’ conceptions of
‘object’ and ‘class’, and variation theory,’’ in Proc. 10th Annu. SIGCSE
Conf. Innov. Technol. Comput. Sci. Educ., New York, NY, USA, 2005,
pp. 89–93, doi: 10.1145/1067445.1067473.

[61] P. Prasad and S. Iyer, ‘‘How do graduating students evaluate soft-
ware design diagrams?’’ in Proc. ACM Conf. Int. Comput. Educ. Res.,
Aug. 2020, pp. 282–290, doi: 10.1145/3372782.3406271.

[62] A. Ebrahimi and C. Schweikert, ‘‘Empirical study of novice programming
with plans and objects,’’ in Proc. Innov. Technol. Comput. Sci. Educ.,
New York, NY, USA, 2006, pp. 52–54, doi: 10.1145/1189215.1189169.

[63] S. Xinogalos, ‘‘Object-oriented design and programming: An investigation
of novices’ conceptions on objects and classes,’’ ACM Trans. Comput.
Educ., vol. 15, no. 3, pp. 1–21, Jul. 2015, doi: 10.1145/2700519.

[64] Y. Lincoln, E. Guba, and S. Publishing, Naturalistic Inquiry. Thou-
sand Oaks, CA, USA: SAGE, 1985. [Online]. Available: https://books.
google.com.ec/books?id=2oA9aWlNeooC

[65] W. Neuman, Social Res. Methods: Qualitative Quant.
Approaches. London, U.K.: Pearson, 2014. [Online]. Available:
https://books.google.com.ec/books?id=_o0rnwEACAAJ

PAMELA FLORES received the Engineering
degree in computer systems from the Escuela
Politécnica Nacional (EPN), in 2005, and the
master’s degree in information technologies and
the Ph.D. degree in software and systems from
the Universidad Politécnica de Madrid (UPM), in
2011 and 2016, respectively.

She is currently a Professor at EPN. She also
coordinated the Doctorate in Informatics for three
years, and now she coordinates the Master in Soft-

ware at EPN. Her research area is related with object-oriented approach; she
has also worked on qualitative research in computer science.

MAYRA ALVAREZ received the Engineering
degree in computing for management from the
Universidad Politécnica Salesiana (UPS), Quito,
Ecuador, in 2018. She is currently pursuing the
Master of Research degree in computing, mention-
ing intelligent systems, from the Escuela Politéc-
nica Nacional (EPN).

She is also working as a Research Technician
at EPN. Her research interests include the novice
difficulties in programming, emotion recognition,
and machine learning.

JENNY TORRES received the Engineer degree
in computer systems from the Escuela Politéc-
nica Nacional (EPN), Quito, Ecuador, in 2006; the
master’s degree in management of networks and
telecommunications from the Universidad de las
Fuerzas Armadas ESPE, in 2008, before obtain-
ing a SENESCYT Scholarship in Ecuador; the
M.Sc. degree in computer science security from
the University of Paris-Est Créteil, in 2009; and the
Ph.D. degree in computer science from Sorbona

University, France, in 2013. She is currently a Professor and a Researcher
with the Faculty of Engineering Systems, EPN. She was the Associate Dean
and the Director of the Doctoral Program in Computer at EPN. Currently,
she is a member of the Incident Response Center CSIRT-EPN and an Editor
of the scientific journal Revista Politecnica (Scopus indexed).

28910 VOLUME 10, 2022

http://dx.doi.org/10.1145/1268784.1268834
http://dx.doi.org/10.1145/1352322.1352251
http://dx.doi.org/10.1145/1067445.1067473
http://dx.doi.org/10.1145/3372782.3406271
http://dx.doi.org/10.1145/1189215.1189169
http://dx.doi.org/10.1145/2700519

