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ABSTRACT Traditionally, polarimetric imaging data is visualized by mapping angle of polarization, degree
of polarization, and intensity to hue, saturation, and value coordinates of HSV color space. Due to possible
perceptual uniformity issues in HSV, a method based on CAM02-UCS color space has been recently
proposed. In this user study, the perceptual uniformity and nonlinear bias of the encoding of the degree of
polarization parameter into the chromatic magnitude color channel is modeled by a power-law relationship
between stimulus scale level and is estimated from responses to paired 2-alternative forced choice questions
usingMaximum Likelihood Difference Scaling. Estimated exponent and noise parameters for these methods
are compared for same-hue and different-hue conditions to determine whether the chromatic magnitude
channel can be used to orthogonality encode data parameters independently from the hue channel. Overall,
the HSV condition displayed more nonuniformity, more nonlinear bias, and more non-orthogonality than the
UCS condition. The results here indicate a lower bound for differences between methods since the intensity
was chosen for the ‘‘best case’’ of HSV. These results further support the claim that the chromatic magnitude
color channel of a uniform color space can be used to encode a data parameter independently of the hue
channel in a multivariate colormapping visualization.

INDEX TERMS Polarimetry, optical polarization, data visualization, visualization, color, psychometric
testing, user centered design.

I. INTRODUCTION
Polarization imaging is a field within the optical sciences
in which the characteristics of the polarization of light are
measured across a two-dimensional image plane. Measuring
the polarization of light in a scene offers unique infor-
mation not present in monochromatic or spectral imaging,
particularly concerning the interaction of light with the
surface of materials. A typical polarization imaging system
involves pairing a camera system and a set of polarization
filters, and the polarization parameters are derived by taking
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measurements at different orientations of the filters. Since
humans are insensitive to polarization, the parameters derived
from the measurements must be converted into the domain
of human vision to be visualized. Conveniently, human
color vision has a similar cylindrical coordinate system
to polarization parameters. This observation, first made
by Bernard and Wehner [1], has led to the development
of several related colormapping strategies for polarization
imaging. Walraven produced the first known formalism for
this type of colormapping [2]. A few years later, Solomon
defined a formalism for mapping the polarization parameters
into a color space designed for perceptual uniformity [3].
Wolff and Mancini later defined a formalism using the
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HSV colorspace for a digital polarization camera [4]. Most
instances of this family of colormapping strategies use this
formalism to this day. Tyo, et al., added a modification
to this method by amplifying dark, polarized regions [5].
Neumann, et al., designed a colormapping strategy like
Solomon’s but instead using a more modern color space
(CIE Luv) with display gamut-mapping considerations [6].
Kruse, et al., designed a strategy using the CIECAM02-UCS
color space [7], including display gamut-mapping as well as a
method for improving visibility of dark, polarized regions [8].
Zhao, et al., applied those strategies defined by Kruse, et al.,
for the JzAzBz color space to improve the mapping of the
achromatic channel [9].

While all of these colormapping strategies share a
foundation in converting polarization to a cylindrical color
space, they differ in the choice of color space among
other significant algorithmic differences. Color has been
studied in detail as a channel for data visualization. Ware
described how color parameters affect reading data values and
observing form in regards to color sequences [10]. Guidelines
on how to use color to assist the interpretation of data
are well documented by researchers such as Brewer [11],
Rheingans [12], and Munzner [13]. Smith and van der Walt
notably use these guidelines to design the default colormaps
for the Python module matplotlib [14]. Research surveying
the landscape of the types and uses of colormaps have been
conducted by Zhou and Hansen for the one-dimensional
case [15], and by Bernard, et al., for the two-dimensional
case [16]. The particular way in which color is used can have
dramatic effects on the results of user studies [17], [18].

Previouswork byKruse, et al., had been aimed at analyzing
polarization colormapping strategies by using a perceptually
uniform color space [8], [19]. The analysis primarily used the
criteria of perceptual uniformity and parameter orthogonality
to compare colormapping strategies. Perceptual uniformity is
the characteristic of having the relative difference between
data values produce proportional differences in the observer’s
perception of the differences in the visualization. Sometimes,
this characteristic is referred to as perceptual linearity,
especially when the color sequence follows a particular
progression in an ordered visual encoding channel. For the
purposes of this study, the terms uniformity and linearity are
interchangeable. Parameter orthogonality is the characteristic
of having the different measured data variables be mapped
to color channels that are independently perceived by the
observer; changes in one variable do not affect the perception
of another variable. While uniformity is a characteristic that
can be used to describe both univariate (single data variable)
and multivariate (multiple data variables) colour sequences
alike, orthogonality only applies to multivariate sequences.

The application of perceptually uniform color spaces
for addressing perceptual (non)uniformity in colormaps is
widely accepted as effective in visualization literature [11],
[20]–[23]. This is not a trivial claim that ‘‘uniform color has
uniformity’’. Rather, it is a claim about the transferability
of models used to predict responses to stimuli under certain

conditions to improving the performance of tasks on repre-
sentations of data. In the case of uniformity, it indeed seems to
be that the color models have this transferability. Perceptually
uniform colorspaces have been effective for modeling some
results of user studies on colormaps [24], and colormaps
designed in uniform color spaces have better performance
for data visualization tasks related to uniformity in some
user studies [17], [18]. Moreland mathematically described
a uniform color sequence as a path in 3D color space that has
a constant derivative [25]. Bernard, et al., defined a quality
assessment metric of uniformity for multivariate maps as
the standard deviation of a distribution created by randomly
sampling the color sequence at many points and determining
the ratio of the color difference (1E) between sampled
colors (c1, c2) and the difference in data values (p1, p2) that
the sampled colors represent [16]. Similarly, Bujack, et al.,
defined a quality assessment metric for univariate maps that
instead includes all the possible combinations of colors in the
sequence rather than just a sample [22].

For orthogonality, the transferability claim has not been
settled in visualization literature. Some researchers have
expressed reservations on the effectiveness of multivari-
ate colour sequences in general [16], [21], [26]. Despite
this, the guidelines from Trumbo [27], Brewer [11], and
Robertson and O’Callaghan [28] on bivariate colourmap-
ping include orthogonality requirements, which inherently
assume the transferability of using orthogonal coordinates
of colour models to encode separate aspects of multivariate
data. Experiments conducted by Wainer and Francolini in
1980 revealed some difficulty in reading specific bivariate
colourmaps [26], but their conclusions should not be
extended to claim that orthogonal perception of data values
for any and all multivariate colourmaps is impractical or
unattainable.

The purpose of this study is to experimentally verify claims
made in the analysis by Kruse, et al., [8] that a trivariate
color sequences for polarimetric imaging data designed
using a perceptually uniform color space would have greater
perceptual uniformity and orthogonality than a similar color
sequence designed using a non-perceptual color space. The
claim of improved uniformity can safely be regarded as
accurate, given the wide acceptance of using uniform color
spaces for improving colour sequence uniformity. Still,
experimental verification of this claim for the particular
application to trivariate polarimetric imaging is warranted.
The claim of improved orthogonality is less supported,
so the primary focus of this study is to determine whether
a method designed using perceptually uniform color space
exhibits stronger orthogonality than a method designed using
a non-perceptual color space. Specifically, the uniformity of
the trivariate colour sequences with respect to one of the data
variables is measured when the other variables are constant
and when they are not constant. Thus, if the constancy of the
other data variables has an effect on themeasure of uniformity
for a particular method, then the claim of orthogonality must
be rejected.
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II. THEORY
A. POLARIZATION IMAGING
Light is understood as transverse electromagnetic waves with
fields that oscillate in a direction perpendicular to the direc-
tion of propagation. When the oscillation is deterministic
in a particular orientation, the light is said to be polarized.
The oscillation can remain fixed at a certain angle (linear
polarized), or can rotate at a constant rate (circularly and
elliptically polarized). In this study, we are only considering
linear polarization. When the oscillation is in uniformly
random directions, the light is unpolarized. Typically, light
will not be purely polarized or purely unpolarized; the
distribution of orientations is neither uniform nor only
nonzero for a single orientation. When one orientation
is more prominent than others, the light is said to be
partially polarized. Partially polarized light can be modeled
as a combination of polarized light and unpolarized light.
To quantify the partial polarization, the intensity of the
polarized part is divided by the total intensity to give a
ratio.

P =
Ip
I
=
Imax − Imin
Imax + Imin

(1)

where the ratio P is a measure of the degree of linear
polarization (DoLP), Ip is the intensity of the linearly
polarized portion, I is the total intensity, and Imax and Imin
are respectively the maximum and minimum intensity values
that could be measured through a linear polarizer as it is
rotated through 180 degrees. All partially polarized light has
a DoLP between 0 (unpolarized) and 1 (fully polarized).
Besides the DoLP, the state of polarization of light is also
described by the angle of polarization (AoP), which is the
angle of the plane of oscillation of the light wave with
respect to an arbitrary set of 2D axes perpendicular to
the direction of propagation. Equivalently, this would be
the angle of the polarizer achieving Imax , and would be
perpendicular to the angle of the polarizer achieving Imin.
When the light is unpolarized, the AoP is undefined since
there is no plane of oscillation. Since the oscillation of the
wave is symmetric about its axis, the AoP only needs to be
defined on a half-circle (π) period rather than a full circle
(2π ). Note that a sensor that measures only linear polarization
is unable to distinguish circular polarization from unpolarized
light.

The underlying physical mechanisms that produce polar-
ized light are varied, but typically involve an a unpolarized
light source interacting with a medium to produce partially
polarized light. The most common sources of polarized light
in the visible spectrum one would come across under normal
circumstances are the sky (Rayleigh scattering [29]), and
light reflecting off of smooth surfaces (Fresnel reflections).
Other sources of polarized light include rainbows, LCD
monitors, and polarized sunglasses. Since the mechanisms
that produce polarization are varied, the applications for
measuring polarization are also varied. Polarimetric imaging
can be used to study the clouds of nebulas [30], to detect

FIGURE 1. Example of mapping methods a: M1 and b: M2 on polarimetric
camera data in the near-infrared. Data from multispectral polarimetric
image database [37].

man-made targets [31], for detecting cancer cells [32],
to draw patterns in the distribution of particles in the sky [33],
and to study the behavior of animals with polarimetric
vision [34], among many others. More applications and
discussions can be found in the review of polarimetric
imaging applications from Snik, et al., [35], and in the review
of polarimetric imaging techniques by Tyo, et al. [36]

B. VISUALIZATION METHODS
In order to visualize the linear polarization parameters
(intensity, DoLP, and AoP), the parameters need to be
mapped into visual encoding channels. A single visualization
technique that would be appropriate for each and every
application of polarimetric imaging is not feasible. However,
in the general case, there are choices for visualizing the
intensity, DoLP, and AoP image data that have broad
applicability. When a user wants to ‘‘see’’ the image data,
there are certain implied tasks that the user would expect
to be able to perform on the image data set that are shared
for most applications. For the intensity image data, users
should be able to detect form, textures, shapes, and everything
else associated with monochromatic vision such that the
users have a concrete reference for localizing the polarimetric
information. For example, users should be able to recognize
that there is a water bottle in the measurements visualized
in Fig. 1, and be able to reference the other polarization
parameters with respect to its features, e.g. the DoLP of the
light reflecting off of the label. For DoLP, form detection
is also a common task, since there can be spatial features
in the DoLP that are not detectable in the intensity. Still,
the primary task that is performed on DoLP image data is
quantitative comparison of the strength of the DoLP of the
features, e.g. determining that the light reflected off of one
object is more polarized than the light reflected from another
object. The ability to identify and look up DoLP values
can be useful, but is usually not essential for understanding
the important aspects of the polarimetric measurement. AoP,
although a continuous parameter, is often described using
more categorical terms such as ‘‘horizontal’’ or ‘‘vertical’’.
Since it is a cyclic parameter, comparative judgements are
not applicable. Instead, the primary tasks that a user would
be performing on AoP image data are identification and look-
up. That is, user should be able to determine whether features
have similar AoP values as well as determine what those
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FIGURE 2. Example of visualizing polarization parameters a: intensity,
b: DoLP, c: AoP using univariate color sequences. Data from multispectral
polarimetric image database [37].

values are using a legend or key. Two features having a similar
AoP value can be indicative that they share important physical
properties such as surface orientation. Conversely, having
different AoP values can be indicative of having different
physical properties, even when the difference in value is
small. Of all the polarization parameters, this property is
unique to AoP. A longer discussion into why this is the case
can be found in the article from Kupinski et al. [38]
Most often, each parameter is colormapped using uni-

variate color sequences to produce a set of three individual
pseudocolor images. An example of this is shown in Fig. 2.
Because of the required tasks and the data structures of the
three polarization parameters, the color sequences should
be appropriately chosen to maximize the effectiveness of
the visualization. Intensity can be colormapped using a
perceptually linearized grayscale, DoLP using the ‘‘spiral’’
class of color sequences [10], and AoP using a cyclic color
sequence such as a color wheel. Although these sets of images
are easy to produce using available software packages,
researchers using these images to investigate polarization
phenomena have found difficulty in examining spatial cor-
relations between the polarization parameters [39]. Methods
for producing polarimetric imaging visualizations where the
spatial attributes of each parameter coincide are generally
either glyph-based or use a trivariate colour sequence [19].
In the glyph-based methods, glyphs, or markers, in the form
of lines with their orientations and lengths determined by
the polarization parameters of AoP and DoLP, respectively,
are overlaid on an intensity image. This method has the
advantage of having an intuitive association between the
physical characteristics of the glyphs and the geometric
description of polarization. The main drawback is that the
glyphs must be significantly larger than the size of the
pixels in order to be visible such that only sampled or
spatially-averaged measurements of the polarization can be
displayed.

The method for multivariate colormapping is done by
mapping the polarization parameters into a three-dimensional
color space. The justification for this method is that both the
structure of linear polarization parameters and human color
vision can be easily mapped into a cylindrical shape. Color
vision can be modeled by an achromatic magnitude (e.g.
brightness, lightness) as the longitudinal axis, a chromatic
magnitude (e.g. saturation, chroma, colorfulness) as the radial
axis, and the hue angle which describes the classification

of color (e.g. blue, red, green) as the angular coordinate.
For polarization parameters, the intensity can clearly be
mapped to the achromatic magnitude. The DoLP as a
radial component can thought of as the ‘‘distance’’ from
unpolarized light, which makes it a clear candidate for
mapping into the chromatic magnitude, which describes the
radial distance from a neutral gray. Hue angle and AoP are
both angular components, and can classify the polarization
(e.g. horizontal, vertical) or color (e.g. red, blue). In this
study we will compare two similar methods for trivariate
colormapping that mainly differ in the color model in which
they are designed.

1) METHOD 1 (M1)
Polarization parameters are mapped into the cylindrical coor-
dinates of theHSV space. There are twomain variations using
HSV space. The older and more commonly used method
maps polarization parameters intensity, DoLP, and AoP
directly into the Value (achromatic magnitude), Saturation
(chromatic magnitude), and Hue coordinates, with a factor of
2 multiplied to AoP to covert its π radian period into 2π [40].
The second method by Tyo et al. [5] is a slight adjustment to
this method, which corrects for the lack of chroma for low
levels of value. This is due to the fact that the measure of
chromatic magnitude in the saturation coordinate as defined
in HSV is relative to the value coordinate. The correction in
thismethod is to increase the value coordinatewhen theDoLP
is high. Thus, the chroma in the saturation is not limited by
the value.

H (A) = 2 A, S(P) = P, V (I ,P) = max(I ,P) (2)

where I , P, and A are the quantities of intensity, DoLP, and
AoP. This second method is chosen as M1 since it is more
similar to M2 due to the correction. An example of this
method applied to real polarimetric image data is shown in
Fig. 1a.

2) METHOD 2 (M2)
Polarization parameters are mapped into the cylindrical
coordinates of a uniform color space. This more recent
method attempts to correct for issues in HSV-based methods
that arise from the fact that the HSV space is not based on
a perceptual model of human color vision. The reasoning
goes that if the polarization parameters are mapped to a more
perceptually uniform colorspace, then the tasks required of
the resulting visualization will be performed more easily,
accurately, and consistently. This reasoning has been used to
develop color maps [14], and has evidentiary support from
the results of user studies [17], [18]. The mapping functions
for this method are defined by Kruse et al. [8].

H (A) = 2A

C(P) = gP

L(I ,P) = (L1(P)− L0(P))I + L0(P)

L0(P),L1(P) = {L : f (L) = C(P)} (3)
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where H , C , and L are the hue, colorfulness (chromatic mag-
nitude), and lightness (achromatic magnitude) coordinates of
any uniform color space, f is a gamut-matching curve which
defines the boundary of a rotationally symmetric subset, and
g is a scaling factor such that g = max(f ). In this study,
CAM02-UCS [7] is used as the uniform color space since
that is what was used originally in the method proposed by
Kruse et al. [8], although any uniform color space could be
equivalently substituted. Like M1, the achromatic magnitude
is dependent on the value of P. In this method, the curve c is
used to find the values of lightness that allow for colorfulness
C to be able to be displayed by a computer. I is then linearly
mapped into this range [L0,L1] of L. An example of this
method applied to real polarimetric image data is shown in
Fig. 1b.

III. METHODOLOGY
The purpose of this study is to experimentally measure
and compare the uniformity and orthogonality of the two
visualizations methods M1 and M2. Specifically, this study
is limited to measuring those two aspects with respect to a
user’s ability to make comparative judgments between DoLP
values represented by the chromatic magnitude channel.
To measure the uniformity, the comparative judgments made
by the users are modeled to determine the consistency of
the judgments as well as whether there is a nonlinear bias
in the way the comparative judgments are made. To measure
the orthogonality, the uniformitywasmeasured bothwhen the
judgments were made between DoLP values with same value
of AoP, and between DoLP values with different AoP values.
Since AoP is mapped into the hue coordinate, the former
condition is referred to as the same-hue condition (E1), and
the latter is referred to as the different-hue condition (E2).

A. PSYCHOMETRIC FUNCTION
In these visualizations, the DoLP is mapped into the
chromatic magnitude channel. Since this is an ordered
channel, the primary basic task that can be best accomplished
is comparison. That is, observers should be able to accurately
judge the relative difference between represented values as
well as the order of the values. Similarly, interval comparison
tasks are used to determine perceived scaling of stimuli
in the Maximum Likelihood Difference Scaling (MLDS)
technique [41]. In this technique, observers are presented
with two pairs of stimuli and must choose which pair
appears to have a greater difference (interval) between them.
The pairs can be created from a set of three (triplets) or
four (quadruplets) stimuli. The two intervals for triplets are
defined using a common midpoint stimulus and a stimulus
on each side of the stimulus scale. Quadruplet intervals
are two independent pairs of stimuli that do not share
stimulus values. Most often, perceptual scaling of stimuli
are determined using stimuli with difference intervals around
the just-noticeable difference (JND) threshold. The scale
produced by these methods may only be accurate for small
differences, while large differences are of more importance

in data visualization. Thus the MLDS technique, which uses
supra-threshold stimulus intervals, may be more accurate
for determining scale values that predict large-difference
perceived intervals.

The perceived scale can be constructed by parametrizing
the stimulus interval. The set of n stimulus values x0 to xn−1
correspond to perceived scale values ψ0 to ψn−1, with both
x and ψ normalized to the interval [0, 1]. For each trial,
the observer will be presented with four stimuli, xi, xj, xk , xl
corresponding to scale values ψi, ψj, ψk , ψl . The observer
chooses which pair (i, j or k, l) has the larger perceived
interval between them. This choice can be modeled by a
decision variable D such that when D < 0, the difference
in the first pair is judged to be greater, and the second pair
when D > 0. In the absence of noise, the decision variable is
determined just by the differences in scale value and would
produce consistent responses for every observer.

D(i, j, k, l) = (ψl − ψk )− (ψj − ψi) (4)

For a real observer, the decision variable must include a noise
parameter.

D(i, j, k, l) = 1t + ε, ε ∼ N
(
0, σ 2

)
(5)

where1t = (ψl−ψk )− (ψj−ψi), with i, j, k, l representing
the indices of the quad for trial t , and ε is a Gaussian random
variable from a zero-mean normal distribution with variance
σ 2. ForN trials at different quadruplets, the probability of the
set of responsesR = {R0, . . . ,RN−1} for the set of difference-
of-differences 1 = {10, . . . ,1N−1} depends on the unfixed
scale values {ψ1, . . . , ψn−2} and noise parameter σ .

P(R|ψ1 . . . ψn−2, σ ) =
N−1∏
t=0

8

(
1t

σ

)1−Rt

(
1−8

(
1t

σ

))Rt
(6)

where Rt = 0 corresponds to choosing the first pair
(i, j) as more different, and Rt = 1 corresponds to
choosing the second pair (k, l) as more different. 8 is
the standard normal cumulative distribution function. The
derivation for this can be found in the original publication
for the MLDS method [41]. Eq. 6 represents the product
of Bernoulli-distributed probabilities of the responses in
each trial, which is simply the probability that the normally
distributed sample ε is greater than the difference-of-
differences 1t . The probability of responses given the
parameters is equivalent to the likelihood of these parameters
given the responses.

L(ψ1 . . . ψn−2, σ |R) = P(R|ψ1 . . . ψn−2, σ ) (7)

Maximizing this function for scale values ψ1 . . . ψn−2
and noise σ gives n − 1 maximum likelihood estimators
ψ̂1 . . . ψ̂n−2, σ̂ .
While testing this model in preliminary runs, we discov-

ered a difficulty with determining the number of stimulus
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FIGURE 3. Colorfulness (C CAM02-UCS) curves for both methods as a
function of DoLP at 0.5 intensity. Colored solid curves are for M1 (Eq. 2)
mapped using HSV at 6 different values of AoP corresponding to the
primary and secondary display colors of sRGB, with the thick black curve
for the average. Dotted curve is for M2 (Eq. 3) mapped using CAM02-UCS,
which does not have different curves for different values of AoP since
they are by design equal.

levels to use in our trials. On the one hand, too few stimulus
levels would not provide enough resolution to get useful
information on the shape of the scaling. On the other hand,
too many levels created too many parameters, since the
expected number of trials would either create scale value
parameters with very high uncertainty or would not be
sufficient for maximum likelihood convergence. Generally,
MLDS uses a large number of trials in order to converge with
small errors. Given the speed at which observers performed
this task, the number of expected runs would not be
sufficient.

In order to have many stimulus levels as well as
convergence on estimators, the number of estimators can be
reduced by assuming the scale values fall along a parametric
curve [42]. Given that the curves of the mapped colorfulness
shown in Fig. 3 are roughly exponential, we assume that the
scale values ψ will follow a power-law relationship with the
stimulus levels x. Although this parametric form will not be
able to show small nonuniformities that are expected from
the curves in Fig. 3, the major differences between mapping
methods can still be measured. We modeled

ψ(x) = xb (8)

where b is the exponent parameter. This exponent represents
the nonlinear bias of how the user makes comparative
judgments on the DoLP values. The left side of Eq. 7
simplifies to L(b, σ |R0 . . .RN−1).

Additionally, in order to describe the probability of user
responses, the psychometric function should also include the
potential for users to have momentary lapses in judgement.
Including this accounts for responses that may be quite
inconsistent with the rest of their responses which are not
representative of the parameters being determined. This,
along with the power-law parametrization, forms the final

psychometric function.

f (b, σ,R,1, λ) = L(b, σ |R)

=

N−1∏
t=0

λ+ (1− 2λ)8
(
1t

σ

)1−Rt

×

(
1−8

(
1t

σ

))Rt
(9)

where λ is the lapse rate. The lapse rate for each participant
is measured as the proportion of responses to a set of
24 quadruplets with maximal difference-of-differences 1t
that are inconsistent with reasonable values of the two
parameters b, σ . The correction in Eq. 9 effectively sets a
minimal and maximal probability for each response given
the likelihood for a participant to lapse or guess. This set
of responses are also used for excluding participants as
described in Sec. IV-A.

B. PREDICTIONS
To test the validity of using the colorfulness coordinate
in CAM02-UCS for analyzing these visualizations, we can
establish a set of predictions for the results wewould see if the
scale valueswere purely determined by the colorfulness of the
stimuli. Using the colormapping functions in Eqs. 2 and 3, the
maximum likelihood estimators for an ideal observer can be
simulated for bothmethods (M1,M2) and hue conditions (E1,
E2). The scale values {ψ1, . . . , ψn−2} for this ideal observer
are directly proportional to the colorfulness coordinate C
such that their decision variable for each trial in Eq. 5
depends solely on the colorfulness of the quadruplet stimuli
after colormapping and the decision noise (Gaussian random
variable). Using a set of stimulus quadruplets, the decision
variables can be generated for a given noise parameter,
leading directly to a set of corresponding responses. The
maximum likelihood estimators (b̂, σ̂ ) for the sets of
responses and quadruplets can be estimated and recorded.
An iteration of an experiment involving a given number of
ideal participants can be simulated, and the mean values
can be recorded. Running many iterations of simulated
experiments, distributions for the means of the estimators
can be generated for different levels of decision noise
for both methods and hue conditions. These distributions
can be used to determine if the experimental means are
unlikely to occur under the condition that the scale values
for the participants are determined by the colorfulness of the
stimulus quadruplets.

Fig. 4 shows the results of 10,000 iterations of these
simulations when using the same sample sizes as the
real experiment. For the estimator b̂, the mean value of
the distribution of simulated experiment means is mostly
independent of the input decision noise. In contrast, the
confidence intervals for both estimator distributions widen as
the input decision noise increases, with a more pronounced
effect for E2 due to its smaller sample size. Additionally,
the confidence intervals are much larger for E2 for the
same reason. The confidence intervals here indicate the
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FIGURE 4. Mean values and 95% confidence intervals of the means of
10,000 iterations of simulated experiments for several levels of input
decision noise for parameters A: b, B: σ . Data points are offset on the
x-axis to make error bars more visibly distinguishable.

range of values expected for an individual experiment
where participants behaved like the ideal observer. The
means indicate the asymptotically ‘‘true’’ value of the
parameters, which are extremely precise due to the large
number of iterations. These statements also hold for the
simulated effects and interaction terms, which are shown in
Table 4.

The mapping method M2, which has a strictly linear col-
orfulness mapping (Fig. 3), unsurprisingly has an estimated
exponent mean centered around 1. The mapping method
M1, which does not have a linear colorfulness mapping, has
estimated exponent means greater than 1, with a larger value
for E2 than E1. For the noise parameter, the exactly linear
mapping of M2 leads to estimators equal to the input decision
noise. ForM1, the estimated noise parameters are greater than
the input decision noise. With the single-hue condition, E1
shows a smaller increase in estimated noise compared to the
multi-hue condition E2. The difference here can be attributed
to the effect of hue on the colorfulness mapping for M1 (see
Fig. 3). This effect would be more pronounced in the multi-
hue condition, which can explain the difference in E1 and
E2 for M1. That is, the hue-colorfulness interaction causes
deviations from a strict power-law scaling, which manifests
as an increased noise estimator.

C. PARTICIPANTS
Participants were undergraduates fulfilling requirements for
a first year psychology course. Participants gave informed
and written consent in accordance with the experiment
protocols approved by the Human Research Ethics Advisory
Panel in the School of Psychology, UNSW Sydney. In E1,
there were 55 participants, of which 47 were included for
the final analysis. Due to social distancing restrictions for
COVID-19, the collection for E2 was cut short. This resulted
in 27 participants for E2, with 21 for final analysis. The
gender and age statistics can be found in Table 1.

TABLE 1. Number of participants with age and gender statistics. ‘‘All’’ :
total dataset. ‘‘Included’’ : dataset after exclusion criteria (see Sec. IV-A).

FIGURE 5. Example stimuli quadruplets for A: M1/E1, B: M2/E1, C:
M1/E2, D:M2/E2. Circle indicates area of interest.

D. STIMULI
Individual stimuli consist of three computer rendered layers
of a faceted cylinder mapped into each of the linear
polarization channels. The normalized intensity coming from
diffuse reflection of the object rendered with a rough surface
was used for the intensity channel, while the degree of
polarization channel wasmodeled by the normalized intensity
from specular reflection of the object when rendered with
a smooth material. The normal vector angles of the facets
were used for overall pattern for the values of the angle of
polarization, and the specific values in the area of interest
for each stimulus is achieved by adding a scalar offset to the
entire pattern. The center of the specular reflection layer (i.e.
the brightest part of the layer) was used as the location of the
area of interest. The area of interest was indicated by a black
circle, and the participants were instructed to only consider
the area within the circle when making their decision on each
stimulus quadruplet.

Each cylinder has 32 facets, comprising 0.5 scene units
in height and 0.5 scene units in diameter, and is positioned
at the origin. The cylinder has a Phong surface model with
an exponent parameter of 5. The ‘diffuse’ renders have the
diffuse reflectance set to 0.5 (and zero specular reflectance)
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and the ‘specular’ renders have the specular reflectance set
to 0.05 (and zero diffuse reflectance). The scene is viewed
from a perspective camera at 1 scene unit distance with a
horizontal field of view of 76.6 degrees. The scene is lit by
a directional light source, rendered at 5 degree increments
between −45 and +45 degrees. Rendering was performed
using Mitsuba (ver. 0.5.0) [43]. Only the center 5 facets were
considered for the areas of interest, as the others would be
too small due to the projection. The angle of the specular
light source has to be set such that the area of interest falls
in the center of one of the 5 facets, and the diffuse light
sourcemust be set such that the area of interest has the desired
intensity. From the set of possible combinations of angles that
match this criteria, one combination was chosen at random
for each stimulus quadruplet. Each cylinder in a quadruplet
share the same illumination layers, with the specular layer
linearly scaled for each cylinder to match its DoLP stimulus
level x.
During preliminary trials, the stimulus levels x corre-

sponded directly to DoLP levels such that the full range of
DoLPwas used. Some participants had difficulty determining
how to interpret difference-of-differences1 when one of the
cylinders appeared gray, having no colorfulness/saturation
(DoLP = 0). That is, the difference between cylinders that
were gray and cylinders that had a discernable color could be
seen as categorical, whereas the difference between cylinders
that both had discernable colors could be seen as quantitative.
To eliminate the levels of DoLP that produce gray cylinders,
the DoLP range was set as [0.2, 1.0] (20%-100%), which now
correspond with stimulus levels x [0, 1].
While the choice to use a specular layer for the DoLP

and the normal vectors for the AoP have some basis in the
physics of Fresnel reflections, this method of mapping the
rendered illumination channels to the polarization parameters
directly does not employ a physics-based polarization
rendering model. The resulting polarization properties are
still physically possible and reasonable for an object in
a polarization imaging scene. The choice to not use a
physical model had two justifications: 1) ability to change
polarization parameters independently and 2) processing time
for rendering images. First, the experimental design requires
the ability to freely change the degree of polarization without
affecting the other polarization parameters. Using a physical
model would make this much more difficult since changing
the physical properties of the light source or object would
affect all of the polarization channels simultaneously as well
as the geometry of the object which could be an additional
source of experimental bias or error. Second, polarization
renderingmethods are computationally expensive, and—with
thousands of images needed to be rendered—impractical.

E. TASKS
The MLDS method involves participants answering a series
of two-alternative forced-choice questions (2AFC). At each
trial, participants are shown a quadruplet containing two
pairs of stimuli, which have been colormapped according to

one of the methods M1 or M2. Participants must make a
judgement on which pair appears to have a greater difference
in chromatic magnitude (colorfulness for M2 and saturation
for M1). To indicate their choice, they key in the up or down
arrow.

In order to test the orthogonality assumption, two condi-
tions of AoP/hue similarity were tested. In the first experi-
ment E1 (same-hue condition), each quadruplet stimulus was
mapped using the same layers of intensity and AoP, with only
DoLP changing within the quadruplet. The value of intensity
at the area of interest was set at a constant level of 0.5. This
does not mean that the brightness of this area is constant,
since both color mapping methods scale the brightness with
DoLP. The value of 0.5 was chosen since it produces the
most linear colorfulness curve for M1, so that the comparison
between the methods are made at the ‘‘best case scenario’’
for M1. The AoP was set based on the surface normals with
a random offset constant added. In the second experiment E2
(different-hue condition), the offset constant for AoP was set
at a different randomvalue for each stimulus, with aminimum
difference in AoP set to 30 degrees.

The two experiments E1 and E2 were conducted at
different times andwith different participants (one participant
completed both experiments on separate occasions). For each
experiment, the mapping methods were not mixed together,
with participants performing a session on each mapping
method fully before starting the other mapping method. The
order of methods was counterbalanced such that half of the
participants performed M1, then M2, and half with M2,
then M1. In the results section, the group order G indicates
participants who completed M1 first as G1, and M2 first
as G2.

The quadruplets were chosen using a modified psi
method [44], which attempts to maximize the amount of
information gained during each trial. For each quadruplet,
the observer’s response would reveal information on the
parameters (b, σ ) with the amount of information varying by
quadruplet. The adaptive psi method is a Bayesian technique
for choosing the next stimulus that minimizes the expected
information entropy in the posterior probability distribution
based on the prior probability distribution. In our preliminary
studies, this method would tend to repeat certain quadruplets
many times within a trial. While the minimum was often
stable at a certain quadruplet, other quadruplets had values of
expected entropy very close to the minimum due to having
a large number of stimulus quadruplets with similar level
pairings. In order to avoid potential issues in regards to
biases and to broaden range of quadruplets selected, the next
stimulus quadruplet was taken as a random choice from the
set of quadruplets with an expected entropy within 0.03% of
the minimum value.

For each method, participants would respond to a set
of 38 quadruplets before taking a 30 second break. After
completing a total of 4 sets for the method, participants
would take a self-paced break of at least 30 seconds. Then,
the participants would repeat the instruction portion and set
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FIGURE 6. One slide of the participant instruction which describe the
color terms of a) ‘‘saturation’’ for M1, and b) ‘‘colorfulness’’ for M2.

of stimuli for the other method. In total, the participants
responded to 304 stimulus quadruplets (152 per method).

F. INSTRUCTIONS
Prior to conducting the session for each method, participants
were briefly informed on the color terms relating to the
chromatic magnitude channel (‘‘saturation’’ for M1, ‘‘color-
fulness’’ for M2) using a color wheel typical in polarization
visualization. The chromatic magnitude increased with the
radial component, and the hue varied along the angular
component. Participants were further informed on the other
color terms ‘‘hue’’ and ‘‘brightness’’ and their orthogonality
by showing how colors with different hues or different
brightnesses can have the same chromatic magnitude (see
Fig. 6 for one example). participants were then instructed
on how to interpret the difference in chromatic magnitude
by using visual aids marking the radial length of two colors
(see Fig.6). The instructions continued to describe the task of
comparing differences of two pairs of colors before showing
a sample rendered stimulus quadruplet.

G. EQUIPMENT
Experiments were conducted in one of three similar
dark rooms with a calibrated monitor (Display++ from

Cambridge Research Systems Ltd). A custom linear RGB
colorspace was developed for each monitor based off
of the colorimetric measurements of the color primaries.
Stimuli were rendered and saved as arrays of CIE XYZ
tristimulus values, which would be converted to the RGB
colorspace of each monitor during each experiment run.
The following formulas (modified from Lindbloom [45])
were used to convert the XYZ values to and from custom
RGB spaces.XY

Z

 = M

RG
B

 ,
RG
B

 = M−1

XY
Z

 (10)

whereM is a 3×3 display calibration matrix that depends on
the colorimetric measurements of the display.

M =

SrXr SgXg SbXb
SrYr SgYg SbYb
SrZr SgZg SbZb

 (11)

where Xc,Yc,Zc refer to luminance-corrected colorimetric
measurements of the display at one of the three fully saturated
monitor primary colors c ∈ {r, g, b}, and S constants are
white point coefficients such that the white point RGB =
[1, 1, 1] corresponds to the measured monitor white point
[Xw,Yw,Zw].SrSg

Sb

 =
Xr Xg Xb
Yr Yg Yb
Zr Zg Zb

−1XwYw
Zw

 . (12)

The colorimetric measurements are normalized such that
Yw = 100 in order to set the relative luminance of the
monitor to the same scale as the colormappingmethodswhich
assume a standard D65 white point. Computers running
PsychoPy were used to supply stimuli to monitors and to
record responses [46]. Figure 7 shows the benefits of using
a custom RGB colorspace rather than the linear-sRGB space.
Measurements from the monitor at multiple intensities agree
with XYZ tristimulus values converted from the custom RGB
colorspace significantly more than values converted from
linear-sRGB.

IV. RESULTS
A. EXCLUSION CRITERIA
After conducting both methods, participants completed
the Ishihara color test to determine whether their color
vision may be deficient enough to warrant exclusion. Four
participants were excluded from the analysis of E1 due
to scoring too low on the Ishihara plate test. In addition,
during each run twelve catch trials were included. These trials
appeared exactly as the rest, so that the participant would
not know they were any different from the rest of the trials.
The quadruplet pair was chosen such that the difference in
differences 1t would be quite large for any observer with
reasonable parameters. Provided that participants understand
the task and are answering honestly, the responses to these
catch trials should be consistent. The responses to these trials
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FIGURE 7. Comparison of linear sRGB and custom RGB for predicting
tristimulus XYZ color measurements for one monitor. Color difference
1EUCS [7] between predicted and measured XYZ values is shown for
different monitor intensity levels (RGB values).

were not included in parameter estimation. The choice of
cutoff catch response rate was set at the fifth percentile of the
distribution of all correct catch responses. With twenty-four
catch trials between the two runs for each participant, the fifth
percentile of correct catch responses was eighteen, which
corresponds to a catch response rate of 75%. This cutoff rate
applied to the number of catch trials per run, gave a cutoff rate
for each run of 9/12. In order to maintain the accuracy of the
data, participants were excluded from analysis if their number
of correct catch trial responses was below nine for either run.
Using this criteria, four participants were excluded from E1,
and six from E2. Including the four participants testing too
low on the Ishihara plates, a total of eight participants were
excluded from E1.

B. MINIMIZATION
Parameters b, σ were estimated for each participant within
each method using maximum likelihood estimation. That is,
for each set of responses, the estimators were the minimum of
the logarithm of likelihood function Eq. 9. The minimum of 9
has no closed-form expression, so numerical minimization
must be used. The log-likelihood function has a single
minimum that is smooth, so any number of numerical
minimization methods could be used with virtually identical
results. We used the Nelder-Mead method with a parameter
and function tolerance of 10−4. Supplying the starting param-
eters as the minimum value of the psychometric function
evaluated at 400 points in parameter space, the minimization
had rapid convergence at roughly 20 to 150 iterations.

C. SUMMARY
The means for each parameter can be seen in Table 2. Due
to unequal sample sizes for the group order after excluding
some participants’ data, a de-weighted mean was used. A de-
weighted mean is the mean of the means of each subgroup
so that subgroups with larger sample sizes do not weight the

TABLE 2. De-weighted means and 95% CI for parameters exponent b and
noise σ .

FIGURE 8. De-weighted mean values for both methods and hue
conditions. Error bars depict the [2.5, 97.5] percentile range for means of
10,000 bootstrapped resampled data.

mean toward the average of the subgroup. The de-weighted
means were calculated on log-transformed data and then
exponentiated to get the results in Table 2. Additionally,
to get confidence intervals for these means, the data were
resampled using bootstrapping. For each combination of
group (G1/G2), hue condition (E1/E2), andmethod (M1/M2),
the data were resampled with replacement for the number of
participants within that combination. Then, the de-weighted
mean was calculated on each set of resampled data to get a
distribution of the mean values. This distribution can be used
to find a confidence interval for the mean value by taking the
[100α2 , 100(1 −

α
2 )] percentiles. The results in Table 2 uses

α = 0.05.
Unsurprisingly, the estimated exponent parameters are

mostly distributed log-normally, so the hypothesis tests were
performed on the log-transformed data. In contrast, the
estimated noise parameters often did not have a detectable
distribution. To make the least number of assumptions
about the distributions of the data, the permutation test
was used instead of Student’s t-test for hypothesis testing.
The permutation test determines how likely the difference
between means in two samples is due solely to random
variation. First, the contrast between two de-weighted sample
means is calculated. Second, sample labels under test are
permuted within the other labels which are held constant. For
example, if the effect of experiment is under test, the labels E1
and E2 are shuffled within each group label and redistributed
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TABLE 3. Main effects and interaction terms of log contrast and scaling
from bootstrap sampling, and p-values from permutation tests.

to the participants in that group. Then, the contrast between
means is calculated for the permuted data. This is repeated
for some large number of resamplings, and the p-value is
calculated as the ratio of samplings with a contrast more
extreme than the observed contrast. For interaction terms, the
contrast is calculated for the first term labels within one of
the labels of the second term, and then for the other label
of the second term. Then, the contrast between contrasts
is calculated and compared to resampled contrast between
contrasts to determine a p-value.

The p-value results in Table 3 were calculated using
300,000 random permutations. For the exponent parameter,
the experiment factor is the most significant as a main effect,
with a slightly less significant effect seen in the group order.
The method factor is not significant for exponent alone, even
though the mean values in Table 2 suggest a significant
difference between the two methods. This can be explained
by the interaction effect between method and experiment
seen in Table 3. For the noise parameter, the method was a
significant main effect, with a possible additional interaction
effect from method and experiment. While the significance
for this interaction term is marginal, the fact that such an
interaction can be predicted from the color model simulations
means we are less inclined to be strict on reducing a Type
I (false positive) error here. The potential interaction effect

TABLE 4. Comparison of scaling across factors for the experimental
results in Table 3 against the simulated ideal observer distributions (input
decision noise = 0.2).

between method and group shows some significance in the
bootstrap confidence intervals for the noise parameter, but
with less significance from the permutation test (p = 0.075).
Without strong significance nor a model for this effect, there
is not convincing evidence to reject the null hypothesis that
there is no effect. The other interaction terms were not seen
as strongly significant for either parameter.

Due to the possible interaction between method and
experiment, the effect of experiment can be investigated for
each method, and the effect of method for each experiment.
Table 3 shows the results of the permutation test and
the contrasts from bootstrap sampling for investigating the
interaction effects between method and experiment. Most
significantly, the effect of experiment was very significant
for M1 but not significant for M2. Additionally, the effect of
method was more significant in E1 for the exponent b.

V. DISCUSSION
The results of the parameter means and main effects
somewhat agree with the simulated results of an ideal
observer. Most of the effects are inside the 95% confidence
intervals of the simulated results. In the factors where they
disagree, there is a consistent trend: scaling values for the
exponent b in the experimental results are more extreme
(further from 1) than the simulated results, and less extreme
(closer to 1) for the noise σ . In particular, the results show
a strong effect of hue condition (E1 - E2) on the exponent
for M1, which is not predicted in the simulated results.
In contrast, there is no significant effect of hue condition
in M2 for either simulated or experimental results for either
parameter. Additionally, the predicted effect of an increase
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in estimated noise parameter for the multi-hue condition E2
can be seen in the scaling of M1 relative to M2 (mean scale
factor of 1.28). The simulated results also predict a small
decrease in noise parameter for E1 relative to E2 for M1, but
those samples in the experimental data only indicate a weakly
significant difference between them. A connection could be
made that since there is significant difference in the noise
parameter between M1/E2 and M2/E2, yet no significance
between M2/E1 and M2/E2 nor between M1/E1 and M2/E1,
that the weak significance between M1/E1 and M1/E2 could
indicate a real, but small, effect. This would be consistent with
the distinctions seen in the simulated data, although the effect
sizes are smaller in the experimental data.

The difference in sample size between E1 and E2 is
accounted for in the permutation test discussed in Sec. IV-C.
However, the difference in sample size does affect the power
of the test for agreement between experimental and simulated
results. Due to the larger confidence intervals for E2 from
the smaller sample size, it is more likely to find a significant
difference between experimental and simulated results for
the measure of contrast between methods in E1 than for E2.
Therefore, it is not surprising that the experimental results
agreed with the simulated results even though there was a
significant difference for E1.

The group order factor was not included in the ideal
observer modeling, as the mechanism for such an effect
is not known to us. From the participant feedback, there
was some confusion regarding the distinction between the
chromatic magnitude terms ‘‘saturation’’ and ‘‘colorfulness’’
that were used in the instruction portion of the experiment
for M1 and M2, respectively. There may be some connection
between using different terms and the group factor, but this is
just a conjecture. In reality there may not be any consistent
effect at all, or the effect may have completely different
causes. Significantly larger sample sizes would be necessary
to conclude that this is a consistent effect.

Regardless of the whether the experimental data match
the simulations of ideal observers, the results display a
consistent trend of M1 exhibiting more nonlinearity and less
hue-colorfulness orthogonality that agree with the previous
analysis by Kruse et al. [8] Conversely, M2 did not show
any sign that hue-colorfulness were non-orthogonal, and a
linear exponent (b = 1) was well within its 95% confidence
intervals of the means. Additionally, M1 displayed a greater
amount of decision noise compared to M2. In no measure
was there any advantage of M1 over M2 found in this study.
Furthermore, since the intensity level was set such that the
mapping of colorfulness C for M1 was on average close
to linear, these results should be considered a conservative
estimate for the differences between the two methods with
respect to the full range of intensity levels. The effect of
parametrising the scales levels ψ as an exponential function
could be obscuring some fine-grain nonuniformities of the
visual encoding in the HSV method that would be expected
from the nonuniformities of the saturation channel of HSV
as seen in Fig. 3. Thus, the parametric model could be

considered as slightly biasing the results in favor of making
the HSV method appear more uniform. Again, this indicates
that the estimation of the advantages of the UCS method over
the HSV method is on the conservative end.

Although the trivariate colormapping methods are specifi-
cally made for visualizing polarimetric image data, the results
of this study have further implications for the effectiveness
of multivariate colormapping methods in general. The results
here support long-held guidelines advocating for using
uniform color spaces for the visual encoding of data into
color. First, the results support the claim that using a uniform
color space is more effective than a non-perceptual color
space for supporting the user task of quantitative comparison.
Second, the results also support the claim that quantitative
comparative judgments can be made using the chromatic
magnitude channel for visual encoding independent of the
hue, provided the chromatic magnitude channel corresponds
to a perceptually uniform color space coordinate. Thus,
a multivariate colormapping system can be used to encode
one variable using the chromatic magnitude channel and
another using the hue channel without the hue-encoded
variable affecting the ability for users to perform quantitative
comparisons on the chromatic magnitude-encoded variable.

VI. FURTHER WORK
This study only investigated users’ ability to make quantita-
tive comparative judgments using the chromatic magnitude
channel as an visual encoding channel in a multivariate
colormapping system independent of the hue channel.
However, it cannot be assumed that the converse would be
true, that users would be able to perform identification and
look-up tasks on a hue-encoded variable independent of the
chromatic magnitude-encoded variable. Certainly these tasks
would be impossible when the chromatic magnitude is zero,
so the hue channel could not be completely independent.
However, at sufficient levels of chromatic magnitude the
ability to perform tasks on hue-encoded variables could
potentially be independent of the chromatic magnitude.

It should also be noted that the effects of size and color
constancy were not measured in this study. Since the regions
of interest of the stimuli (see Fig. 5) were quite large and
surrounded by colors of the same hue, these two effects likely
had very little impact on the results of the study. For images
created from real polarimetric measurements, these effects
could have a significant impact on the ability to perform
comparative judgments on the DoLP. Further study of these
effects for this type of visualization is warranted.
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