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ABSTRACT Multi-Objective Genetic Algorithms (MOGAs) have been successfully used to address
dynamic problems in a wide variety of domains. In these domains, data changes over time, so a non-
static analysis is required to obtain feasible solutions. In this type of environments, MOGAs are often
time-consuming and require special adaptation to work properly. A number of different techniques have
been proposed to adapt MOGAs to dynamic environments for tackling the previous problems such as
hypermutation, memory and immigrant schemes or multi-population methods, among others. In particular,
immigrant strategies are one of the most commonly used methods, for that reason, this work proposes a new
methodology that allows to make a detailed evaluation of their performance when these strategies are used.
The proposed methodology works on two levels, a coarse-grain one and a fine-grain one. In the former,
an overall evaluation of the different immigrant strategies is made based on three different dimensions:
Quality, Stability and Speed. In the latter, a detailed study of the status of the immigrant individuals during
the evolution of the algorithm is carried out. This is a very relevant aspect to take into account in order
to evaluate whether an immigrant strategy is working properly or not. To deploy this methodology, a new
visualization technique for population mixing analysis is proposed in this work. In order to validate the
proposed methodology, a test case in the context of the Dynamic Community Detection problem (DCD)
has been selected using a MOGA that applies several different immigrant schemes, showing both how the
methodology works and how it could be employed in a particular dynamic problem.

INDEX TERMS Dynamic problems, immigrant strategies, multi-objective genetic algorithms, dynamic
community detection, social network analysis.

I. INTRODUCTION
In areas such as computational complexity theory, dynamic
problems are defined as a kind of problems where input
data changes over time [1]. This simply fact critically affects
how the information is represented and how the algorithms
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handle data. These algorithms, usually known as dynamic
algorithms, need to manage two main issues, the first one
related to the memory space required to store data, and the
second one related to a set of time-based features (initial-
ization, insertion, deletion, query, etc. . . ) and how the algo-
rithm uses data in different time stamps [2]. Many real-world
problems are dynamic in nature, in particular within the
optimization field. Dynamic Multi-objective Optimization
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FIGURE 1. Flow chart of a genetic algorithm that integrates an immigrant strategy in its algorithmic scheme. The steps involved in the vanilla version of
the algorithm are shown in light (grey) color. Contrary, the step added for the immigrants variant of the algorithm is shown in a dark one.

Problems (DMOPs) are widely present in real world [3].
This type of problem is characterized by time-varying objec-
tive functions in which at least two goals can be pursued.
Traditionally, solving DMOPs implies not only evolving
the solutions close to the optimal Pareto Front (PF) in any
given timestamp but also doing it quickly before a change
occurs. In recent years, another goal has also been pro-
posed, which implies finding solutions robust to changes over
time (ROOT) [4].

DMOP is a very active area of research in evolutionary
computation [5], [6], especially in relation toMulti-Objective
Genetic Algorithms (MOGAs). To address these problems,
MOGAs require that the optimization algorithm can trace the
Pareto-optimal over time, increasing its computational com-
plexity. Therefore, MOGAs should be able not only to evolve
a near-optimal and diverse PF, but also to continually track
a time-changing environment. However, it is unreasonable
to assume no priori knowledge whenever a change occurs
in the environment. Hence, some extent of knowledge trans-
fer [7] is mandatory when designing MOGAs for dynamic
problems. Although more complex techniques exist, such as
those proposed in the emerging field of Evolutionary Multi-
Task Optimization (EMTO) [8], the reuse of individuals
from previous generations is the simplest and most popular
technique for sharing knowledge in genetic algorithms for
dynamic problems. Researchers in this area have proposed
many methods to address this issue [9]. Some of the tech-
niques presented for this purpose are hypermutation [10]
(increases the mutation rate of the population when a change
occurs in the environment), memory schemes [11] (maintains
a memory of individuals during all the MOGA execution,
and when a change occurs, this memory is used to influ-
ence the current population), and immigrant’s [12] (inserts
new individuals into the population when a change occurs
in order to improve the population’s diversity). Among the
different approaches mentioned, the immigrant’s technique
is one of the most widespread and popular [10], [13]–[15].

However, tuning this method for optimal performance is
not a straightforward task. Setting the number of immi-
grants to be inserted, the replacement strategy of those immi-
grants, or boosting their survival probability is a challenging
task [16]. These parameters critically affect the performance
of the MOGA, and it is difficult to get insights about what
could be malfunctioning. For this reason, this work focuses
on proposing a methodology that allows an in-depth analysis
of the effectiveness of the application of this method to solve
dynamic problems.

Summarizing previous algorithms and methods, any immi-
grant technique is based on the idea of inserting new individ-
uals from outside the current evolving population to replace a
predefined part of that population. The underlying hypothesis
is that inserting new individuals will help to improve the
convergence speed and/or increase the population diversity
(two of the most fundamental and critical features for any
evolutionary algorithm). Figure 1, shows the flow chart of
a generic genetic algorithm (GA) that incorporates a basic
immigrant strategy. Depending on the immigrant technique
selected, the Initial Population and Insert Immigrants steps
in the GA will vary. There are several strategies proposed
in the literature for this type of technique, some of the most
commonly applied are the following:
1) Random Immigrant Genetic Algorithm (RIGA) [17]:

Algorithm 1 contains a pseudo-code that implements
the RIGA method. In this immigrants scheme, the ini-
tial population is composed by the solutions of the
population that was being evolved previously to the
new change (line 1). In the Insert Immigrants step
(line 11), newly created random individuals are inserted
into the population replacing the worse individuals. This
technique aims to enhance the exploration capabili-
ties of the algorithm by making the population more
diverse.

2) Elite Immigrants Genetic Algorithm (EIGA) [18]:
Algorithm 2 contains a pseudo-code that implements
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Algorithm 1 RIGA

Require: Pt−1

1: Pt ← updatePrevious(Pt−1)
2: Pt ← evaluate(Pt )
3: while !termination_criteria() do
4: parents← selection(Pt )
5: offspring← ∅
6: for all p1, p2 ∈ parents do
7: child ← crossover&mutation(p1, p2)
8: offspring← offspring ∪ child
9: end for

10: Pt ← replacement(Pt , offspring)
{N random individuals replace the worse of Pt}

11: Pt ← insertRandom(Pt ,N )
12: end while
13:

14: return Pt

Algorithm 2 EIGA

Require: Pt−1

1: Pt ← createRandom(POP_SIZE)
2: Pt ← evaluate(Pt )
3: while !termination_criteria() do
4: parents← selection(Pt )
5: offspring← ∅
6: for all p1, p2 ∈ parents do
7: child ← crossover&mutation(p1, p2)
8: offspring← offspring ∪ child
9: end for

10: Pt ← replacement(Pt , offspring)
{N previous individuals replace the worse of Pt}

11: Pt ← insertPrevious(Pt ,Pt−1,N )
12: end while
13:

14: return Pt

the EIGA method. In this immigrants scheme, the ini-
tial population is a completely new population that
is generated randomly (line 1). In addition, the pop-
ulation of the MOGA before the change happens is
stored in an external memory to be used as immigrants.
In the Insert Immigrants step (line 11), individuals from
the external memory are inserted into the population,
replacing the worse individuals. This technique aims to
enhance the convergence speed of the method by reusing
past information (assuming smooth changes in the
environment).

3) Hybrid Immigrants Genetic Algorithm (HIGA) [19]:
Algortihm 3 contains a pseudo-code that implements
the HIGA method. This immigrants scheme combines
previous techniques depending on the population needs,
improving convergence speed or improving the explo-
ration necessities by inserting a random immigrant or
an elite one. In this scheme, the initial population is

Algorithm 3 HIGA

Require: Pt−1

1: Pt ← createRandom(POP_SIZE)
2: Pt ← evaluate(Pt )
3: while !termination_criteria() do
4: parents← selection(Pt )
5: offspring← ∅
6: for all p1, p2 ∈ parents do
7: if {p1, p2} ∩ nonDominate(Pt ) == ∅ then

{Exploitation is needed add from elite}
8: child ← selectInd(Pt−1)
9: else
10: if genDistance(p1, p2) ≤ 0.1 then

{Exploration is needed add a random}
11: child ← makeRandomInd()
12: else
13: child ← crossover&mutation(p1, p2)
14: end if
15: end if
16: offspring← offspring ∪ child
17: end for
18: Pt ← replacement(Pt , offspring)
19: end while
20:

21: return Pt

a completely new random population (line 1) and also
stores the population before the change in an external
memory (as in EIGA). However, contrary to EIGA,
this method combines the insertion of immigrants with
the Crossover/Mutation phase. The method works as
follows. If both parents are not members of the non-
dominated set of solutions, then an individual from the
external memory is inserted (lines 7-8). If at least one
of the parents is a member of the non-dominated set and
the distance between both parents is less than 10% of
genes, then a completely random individual is inserted
(lines 10-11). Otherwise, a classical crossover is used
(lines 12-13).

The implementation of any particular immigrant strategy
and its inclusion in a particular MOGA, in order to enable
the algorithm to solve DMOPs, is often quite straightforward.
However, when it comes to the empirical analysis to study
how the immigrant strategy actually affects the evolution
of the population and the numerical performance of the
algorithm, the task becomes complex and hard. Therefore,
and with the goal of making a step further in this direction,
in this work we propose a new methodology that allows
studying in detail the efficiency of the application of the
immigrant strategies to MOGAs from a quantitative perspec-
tive. Our methodology makes possible to analyze if the opti-
mization algorithm is finding sets of non-dominated solutions
close to the PFs, as well as, well-distributed through the
front and adapted to changes in the environment over time.
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When the algorithm fails to fulfill such goals, our methodol-
ogy allows identifying the underlying causes via a new visu-
alization technique. This technique is inspired by the works
proposed to analyze the performance of cellular genetic algo-
rithms [20]. Specifically, the takeover time [21] and the solu-
tion’s flow presented in [22]. On the one hand, the takeover
time, which measures the time it takes a good solution to
dominate a population, serves as a theoretical basis for the
visualization technique since its main utility is detecting if the
native or immigrant population is dominating the population
too quickly. On the other hand, the flow analysis done in [22]
inspired the categorization of the individuals depending on
their ancestors.

This work is not the first of its kind. During the past
two decades, several methods have been proposed to eval-
uate and compare dynamic genetic algorithms, including
the ones using immigrant strategies. It is common to show
graphs comparing the mean value of the objective func-
tion over time or use adaptations of accuracy metrics to
dynamic environments. For example, Yu et al. [16] evaluate
dynamic algorithms based on three metrics: the best/average
performance, the best/average robustness, and the diversity.
Or Morrison [23] who propose the Mean Fitness metric.
Without forgetting the metrics that require knowing the best
solution to a problem like the Accuracy and the Adaptability
presented in [24] and [25]. It is worth nothing to mention that
all the immigrant strategies work on top of genetic algorithms
designed for static problems. However, all the methods pro-
posed in the state of the art analyze the immigrant strategies in
isolation, without taking into account the base genetic algo-
rithm. The main novelty in our methodology is that it gives
priority to the base genetic algorithm. With this methodology
is not only possible to assess if an immigrant strategy works
better than another but also assess if it improves o hinders the
base algorithm in some factor.

In addition, the visualization technique proposed allows
getting an insight into the evolution process that other meth-
ods cannot. It is common knowledge that random immigrants
work best when the changes are ‘‘big’’ and elite immigrants
work best if the changes are ‘‘medium or small’’. However,
the terms ‘‘big’’, ‘‘medium’’ or ‘‘small’’ are open to debate
and highly dependent on the problem. It is difficult to know
when a change is big or medium for a particular problem and
the visualization technique allows checking if the immigrants
are working correctly whatever the size of the changes are.
It is true that there are metrics that try to give understand-
ing about the immigrant dynamics during the evolutionary
process, like the ‘‘immigrant effect’’ proposed in [26] or the
aforementioned ‘‘diversity’’ [16]. But it is also true, that those
metrics were not designed with that goal in mind, notice that
the goal of the ‘‘immigrant effect’’ is to adapt the immigrant
insertion. Which, in our opinion, makes our technique more
flexible and powerful.

Therefore, the main contributions of this work can be
briefly summarised as follows:

1) A new methodology for conducting in-depth and quan-
titative evaluations of the performance of immigrant
strategies is proposed on the basis of three different
dimensions: the quality of the solutions, the convergence
speed, and stability of the results obtained.

2) A new visualization analysis technique for studying
how the solutions of the populations are mixed, as well
as, the status of the immigrant individuals during the
evolution of the MOGA, is presented.

3) An empirical validation of our proposed methodology
using a real-world test case is conducted using a MOGA
that employ different immigrant schemes in a Dynamic
Community Detection (DCD) problem.

The reminder of the article is organized as follows.
A detailed description of the methodology proposed in this
paper is presented in Section II. Section III, introduces the
dynamic community detection problem as a case study for
validating the methodology presented. This section shows
how our proposal can be used for an in-depth analysis of
different immigrant schemes while addressing a real-world
problem. Finally, Section IV outlines the main conclusions
of this work and the future lines of work.

II. METHODOLOGY
The methodology proposed for evaluating the performance
of immigrant strategies is based on the usage of three dif-
ferent metrics or dimensions: Quality, Speed, and Stability.
The next subsections describe these dimensions, and the
workflow followed to assess them. A requirement to apply
our methodology is that two or more different immigrant
strategies are under study. Since our methodology is pro-
posed for analyzing the performance over several instances,
we assume that there are N different instances of the same
problem previously selected. For example, N dynamic net-
works when considering the Dynamic Community Detection
Problem orN jobs/machines configurations whenworking on
Job-shop scheduling problems. In addition, to obtain robust
statistical evidence, we assume that each problem has been
executed independentlyM times using each of the immigrant
strategies selected. It should be noted that N and M should
be chosen taking into account the type of problem and the
desired statistical significance. Finally, we take for granted
that the changes occurring during each of the N problems are
a priori known. From these samples, our approach assess the
performance of the strategies under study.

A. DIMENSIONS
As aforementioned, each immigrant scheme is evalu-
ated using three different dimensions: Quality, Speed and
Stability. Each dimension is calculated using the results from
the M executions of each instance of the problem indepen-
dently. Figure 2 shows the workflow for calculating each
dimension. These dimensions are described in detail below:
• Quality. This dimension measures the quality of the
Pareto Fronts generated by an immigrant strategy. One
of the most popular metrics for measuring the quality

27614 VOLUME 10, 2022



A. Panizo-Lledot et al.: Addressing Evolutionary-Based Dynamic Problems

FIGURE 2. (a) Workflow for assessing the quality and stability dimensions. b) Workflow to assess the speed
dimension.

of Pareto Fronts, and the one used in our methodology,
is the Hypervolume (HV) [27]. The HV measures the
area of the objective space covered by a non-dominated
set with respect to a reference point. In order to make a
fair comparison of the HV obtained when working with
different objective functions and problem instances,
a common reference point must be set and each Pareto
Front obtained by the algorithm needs to be normalized.
This normalization uses the maximum and the minimum
values found by all the immigrant strategies in all the
problem instances and all the executions. To calculate
the Quality metric of a particular instance, first, the
median of the HV of the normalized Pareto front gener-
ated after each change for each execution of a problem
instance is calculated. Next, the median of theM execu-
tions is used as the final Quality metric value. It should
be noted that the higher the value of this metric, the
better the performance of the immigrant strategy.

• Speed: This dimension measures the convergence speed
of an immigrant strategy. This is a crucial aspect, since
the whole purpose of the immigrant technique is to reuse
previous information (i.e. knowledge) to accelerate the
evolutionary process. To measure the Speed metric for
an instance of the problem, first, the number of gen-
erations required to converge after each environment
change is calculated. A method is faster than another
methodwhen a fewer number of generations is needed to
converge. For this reason, we total the values previously

calculated, i.e., we calculate the sum of the number
of generations until the algorithm converges after each
environment change. Finally, the median of this value
over the M repetitions is used as the Speed dimension
value.

• Stability. This dimension measures the reliability of the
results of an immigrant strategy. The application of an
immigrant technique could influence the exploration
capabilities of the MOGA, making it less or more prone
to get stuck in local minima. When the latter happens,
the MOGA becomes less reliable, as a single run of the
evolutionary algorithm could give a worse result with a
higher probability. The procedure to calculate thismetric
is the same as in the Quality metric, except for the last
step. For the Stabilitymetric, instead of using themedian
of the M executions of each test case, the Interquartile
Range (IQR) of the values is used. The IQR is a measure
of the dispersion of the data. Therefore, the higher the
value, the lower the stability, causing that the quality of
the solutions obtained has a higher variability between
different runs.

B. WORKFLOW
The workflow of the methodology proposed is composed of
three steps. First, all the immigrant strategies under study
are compared against the same MOGA without immigrants.
From now on, we will refer to this algorithm as Standard.
Then, in the second step, all the immigrant strategies are
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compared against each other, in order to analyze which ones
present better results. Finally, a fine-grain analysis takes
place, where specific problem instances are evaluated inde-
pendently using the Population mixture visualization tech-
nique. Next, we detail each of the steps of the workflow
proposed.

In the first step, all the immigrant strategies are compared
against Standard for each dimension independently. To this
end, the Friedman Signed Ranked Test and the Holm post-
hoc analysis [28] are applied over the scores obtained by each
strategy in all the problem instances. This allows discerning
whether an immigrant strategy improves or hinders some
dimension. An immigrant strategy, to be considered success-
ful, should improve the Speed dimension while maintaining
a similar or better performance in the Stability and Quality
metrics. Since the main purpose of an immigrant strategy is
speeding the convergence when using MOGAs in dynamic
environments, we consider mandatory the improvement of
the Speed dimension. However, applying immigrants tech-
niques should not hinder the exploration capabilities of a
MOGA. Therefore, we expect the algorithm to perform at
least as good as the base technique (the one that does not use
immigrants).

Regarding the visualization of these results, we recom-
mend presenting this information on a table where the rows
are the different immigrant strategies and the columns are
the three dimensions. Table 5 shows an example of this
visualization. Each cell of these columns contains a green
triangle pointing up (s) if the rank obtained by the immigrant
strategy is higher (lower in case of minimization) than the one
obtained by Standard and there is enough statistical evidence
to support that the immigrant strategy performs differently
from Standard. On the contrary, a cell contains a red triangle
pointing down (t) if the rank obtained is lower (higher in
case of minimization). Finally, a cell contains the approxi-
mated sign (≈) when there is not enough statistical evidence
to consider that the immigrant strategy performs differently
from Standard.

The previous step allows understanding if a strategy
improves or hinders some dimension. However, it does not
give any information on the differences of the metric values
for each of the algorithms. Hence, in the second step, all the
outputs of the different immigrant strategies are compared
against each other using a Friedman SignedRanked Test and a
Shaffer post-hoc analysis [28]. Regarding the visualization of
this step, we suggest depicting the relation between the results
obtained by each of the different strategies using a graph.
Figure 3 shows an example of the proposed visualization.
In this graph, the nodes represent the different immigrant
strategies, and the edges join two nodes when there is not
enough statistical evidence to consider that the two methods
perform differently. In addition, the size of the nodes is
inverse proportional to the rank obtained by each strategy
for the quality dimension and directly proportional for the
speed and stability ones, i.e., bigger nodes imply a better
performance.

Finally, for the strategies that do not work as intended,
the methodology includes the third step, where a fine-grain
analysis is performed. First, problem instances that present
difficulties are identified following the same process as in the
first step, except that each problem instance is evaluated inde-
pendently. It should be noted that that in this step, instead of
using the median of theM executions of the different dimen-
sions, theM values are used. Once the problem instances that
are hard to solve for the strategy have been identified, it has
to be identified in which periods, regarding the time stamps
or environment changes, the evolution process is not work-
ing properly. This is done using HV evolution (Figure 4 (b))
and Empirical Attainment Surfaces [29] (Figure 4 (c)) plots.
On the one hand, the HV evolution allows identifying if a
particular strategy is suffering from premature convergence.
On the other hand, the Empirical Attainment Surfaces, which
graphically shows a boundary between dominated and non-
dominated points, allows identifying areas of the Pareto Front
that are not being explored enough by the strategy. Finally,
insight about what is hindering the evolution process can
be obtained using the Population mixture visualization tech-
nique on those specific periods. This technique helps to dis-
cern whether the immigrants of a strategy are contributing to
the improvement of the population, are taking over the entire
population, or, on the contrary, are being excluded from the
population.

C. POPULATION MIXTURE VISUALIZATION TECHNIQUE
This section describes the visualization technique designed
to analyze what is going on with the immigrants during the
evolution. To this end, each individual of the population is
labeled with a particular type. When two individuals mate,
their types determine the new type of their offspring. During
the evolution, the number of individuals of each type in
the population is counted on each generation. Finally, these
values are plotted as curves where one axis contains the
generation (first, second, third, and so on), while the other
axis has the number of individuals in the population of a par-
ticular type. In addition, the curve for each type of individual
receives a different color. Figure 7 shows several examples of
this kind of visualization.

The available label types for an individual are:
(1) n (native): an original individual of the genetic

algorithm.
(2) i (immigrant): individuals external to the original

population, which are continuously inserted into the
population.

(3) i+i (immigrant’s offspring): individuals whose parents
are two immigrants or immigrant’s offspring.

(4) n+n (native’s offspring): individuals whose parents are
two native or native’s offspring.

(5) n+i (half-blood): an individual which one of the parents
is a native or native’s offspring, while the other parent is
an immigrant or immigrant’s offspring.

Table 1 shows the five proposed types of immigrants and
the type of the resulting offspring after they are generated
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TABLE 1. The rows and columns show the type of the parents, while the
cells depict the type of the resulting offspring after crossover. Since the
table is symmetric, only the upper diagonal of the table is shown, for the
sake of simplicity.

by mating. For example, when two parents of type ’i’ mate
(first row and column of the table), the resulting offspring is
of type ’i+i’. Likewise, if for example, the parents have types
’n+n’ and ’n+i’ (third row and fourth column in the table),
the resulting offspring is of type ’n+n’.
Analyzing the curves that show the evolution of the dif-

ferent types of individuals during the execution, can help
to understand whether the immigrants are contributing to
the evolution of the population, or are taking over or being
excluded from it. Specifically, the presence of a half-blood
(n+i) population curve indicates that a healthy mixture
of both populations, native and immigrant, is taken place.
Hence, the immigrants are contributing to the local popula-
tion. However, on the one hand, the over-representation of the
immigrant’s offspring (i+i) population curve indicates that
the immigrants are taking over the native population. If this
effect is too extreme, all the native population is expelled
from the evolutionary process without a chance of passing
their genes to the next generations, which is equivalent to
evolve the immigrant population alone. On the other hand, the
over-representation of native’s offspring (n+n) population
curve indicates that the immigrants are not contributing to the
evolution process. In extreme cases, all the immigrants can be
expelled from the population without having a chance to pass
their genes to the next generations. This is equivalent to using
a smaller population because, even though the immigrants are
part of the population, they are not allowed to participate in
the evolution process. These two latter cases usually result in
a loss of performance by the immigrant strategy.

III. CASE STUDY: DYNAMIC COMMUNITY DETECTION
In order to test the validity of the proposed methodology,
a test case is studied. In particular, we applied our method-
ology for studying a Multi-Objective Genetic Algorithm that
combines an Immigrant’s scheme with local search strategies
to the dynamic community detection problem [30]. In this
case, we use the proposed methodology for evaluating and
selecting the most suitable immigrant scheme.

The remainder of this section first introduces some pre-
liminaries on the DCD problem. Then, the problem instances
used to conduct all the experiments are introduced. After
that, the particularities of the MOGA for solving the DCDP
are explained. Finally, the results obtained by applying the

proposed methodology are presented and a detailed analysis
is performed.

A. BASICS ON DYNAMIC COMMUNITY DETECTION
The Dynamic Community Detection problem is the dynamic
version of the Community Detection Problem (CDP), which
consists in splitting a network into groups of nodes, usually
known as communities. In a nutshell, it could be considered
as clustering in graphs. There is no an unique definition
of Community agreed upon by the scientific community.
Nevertheless, a widely accepted one is that nodes belonging
to the same community must be strongly interconnected,
while maintaining sparse connections to nodes of other
communities.

Static Community Detection is a hot research area and a
lot of different methods have been proposed to tackle this
problem over the years [31]–[34]. Of all the strategies used
to detect communities, bio-inspired meta-heuristics have
proven great success [35], specially genetic algorithms both
on the mono-objective [36] and multi-objective [37], [38]
configurations.

However, as in so many other areas, the dynamic version
of the community detection problem has been neglected until
recently. The exponential growth of online Social Networks
has increased the demand for efficient dynamic community
detection algorithms, which has boosted the interest in the
area. When considering the time variable, the quantity of
possible analyses broadens. When time is involved, one can
be interested in finding one community structure that fits the
whole network’s lifetime (like in ROOT), detecting signifi-
cant points on the network’s timeline, or studying commu-
nities’ dynamics (if they split, merge, grow . . . etc.) among
others. Hence, the DCD area is composed of an amalgamation
of problems quite different in nature. We refer the readers
interested in this topic to the review [39], where both the
static and dynamic variants of the problem are discussed in
extensive detail and the most common tools available are
reviewed.

In this case study, we will center on the problem of finding
a suitable community structure for each point of a network’s
timeline. The most popular framework to do that is the evolu-
tionary clustering [40]. This framework aims to imbue the
solutions with a certain smoothness. In evolutionary clus-
tering, two forces must be balanced, one that pushes com-
munities to adjust to the present moment and another that
constrains them from deviating from their history. Undoubt-
edly, bio-inspired meta-heuristics, especially MOGAs, are
one of the most popular techniques to do evolutionary clus-
tering. Folino and Pizzuti [41], Chen et al. [42], Bara’a and
Khoder [43], and Ma et al. [44] have proposed MOGAs
that follow the evolutionary clustering framework. The for-
mer two are based on NSGA-II [45] and the latter two on
MOEA/D [46].Outside genetic algorithms, other bio-inspired
metaheuristics have also been proposed to a lesser extent. For
example, Yin et al. [47] have proposed a Particle Swarm
Optimization (PSO) with custom initialization and crossover
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operators, and Zhou et al. [48] have proposed a Bat Algorithm
(BA). However, all of the abovemethods define trivial criteria
for selecting a single Pareto front solution, namely, they stick
with the one that best fits the current network topology.
Which favours one objective over another. How to make such
a decision remains an open question in the area that is worth
investigating.

Contrary to the examples above, the MOGA used for
this case study does not follow the evolutionary clustering
framework. Instead, it forgets about the recent history of
the communities and focuses on their quality at the present
moment. Our MOGA optimizes two different negatively cor-
related quality metrics, as recommended in [49]. Note that
the aim of this use case is not to propose a better MOGA for
DCD and that the conclusions drawn for our MOGA could
easily be extrapolated to other similar MOGAs in the state of
the art.

B. PROBLEM FORMULATION
Given a dynamic networkmodeled as a sequence of snapshots
N = {G0 . . .GT }. Where T is the number of timestamps
and each element Gt (V t ,E t ) ∧ 0 ≤ t ≤ T of the sequence
is a graph composed of a set of V t nodes and a set E t =
{(u, v)|u ∈ V t , v ∈ V t

} edges. The objective of the com-
munity detection problem is to generate a set of dynamic
communities {DC0 . . .DCm|DCi = {C t

i |0 ≤ t ≤ T }} where
m is the number of dynamic communities and each element of
a dynamic communityDCi is in turn a static communityC t

i =

{u|u ∈ V t
}. However, it is normal to find this problem split in

two in the state of the art. Usually, a method finds promising
C t
i communities for each snapshot Gt and a different method

builds the dynamic communities DCi using those promising
communities C t

i . The methods proposed in this case study
tackle the first part of the problem. Hence, given a dynamic
network N = {G0 . . .GT }, their objective is to find a set
of promising crisp static communities {C t

0 . . .C t
n} ∧

⋃
i =

0nC t
i = ∅ for each snapshot Gt .

C. PROBLEM INSTANCES UNDER STUDY
For testing the performance of the different immigrant tech-
niques, 18 different synthetic networks have been used (the
N parameter in our methodology). The benchmark is com-
posed of these dynamic networks and their corresponding
ground truth. We have opted for using only synthetic net-
works becausewith themwe can generate a benchmarkwhere
it can be ensured that a complete and balanced set of scenarios
take place. To generate the benchmark theDANCER software
has been used [50]. This software allows creating dynamic
networks, configuring the number of changes that occur dur-
ing the evolution of a dynamic network, as well as, the type
of these changes. Two different operations are available for
generating the dynamic networks:

• The micro operation introduces little changes in the
network at the node scale (insert/delete a few edges or
nodes).

TABLE 2. Description of the different types of dynamic networks
generated for the case study.

• The macro operation introduces big changes in the net-
work at the community scale by merging and splitting
them.

Taking this into account, synthetic networks with different
types of dynamics are generated to study the efficiency of
different immigrant strategies for dynamic networks with
different characteristics. Therefore, the synthetic networks
generated use all the micro operations available all the time.
However, for the generation of each benchmark a different
combination ofmacro operations is used. It is worth mention-
ing that to generate each dynamic network both operations
are applied with different intensities, where a higher intensity
implies that more changes occurs during the evolution.

Table 2 shows the different synthetic dynamic networks
generated for testing and the specific characteristics of each
one to test. Each row of the table corresponds to one
combination of macro operators. All the networks contain
nine snapshots (i.e., changes in the network) with between
100-200 nodes and 200-1000 edges. The naming system for
the different types of networks consists in several letters fol-
lowed by a ‘_XX’. The letter indicate the type of operations
that happens in the networks while the ‘_XX’ indicates the
intensity. The nomenclature for the intensities is 01 for low,
02 for medium and 03 for high.

D. MOGA PARAMETRIZATION FOR THE DCDP
The MOGA analyzed for the DCDP uses the NSGA-II
algorithm [51] to optimize two objectives: the ‘‘Community
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TABLE 3. MOGA operators.

Score’’ [52] and the ‘‘Average ODF’’ [53]. The ‘‘Community
Score’’ is an inter-community objective, which calculates
how strongly the nodes of a community are connected. In par-
ticular, it measures the density of connections in relation to
the number of nodes inside a community. Equation 1 shows
the formula followed to calculate the Community Score.
where C is the set of communities that an individual encodes;
S is each of those communities; ms is the number of edges
inside a community S and ns is the number of nodes in
community S.

C_SCORE =
∑
S∈C

(
2ms
ns

)2 (1)

The ‘‘Average ODF’’ is an inter-community objective,
which calculates how strongly the nodes that belong to dif-
ferent communities are connected. In particular, it measures
the average fraction nodes’ edges pointing outside their com-
munities. The formula to calculate the Average ODF can be
found in Equation 2.Where whereC is the set of communities
that an individual encodes; S is each of those communities;
ns is the number of nodes in the community S and d(u) is the
degree of node u.

AVG_ODF =
∑
S∈C

(
1
ns

∑
u∈S

(
|{u, v|v /∈ S}|

d(u)
)) (2)

The MOGA encodes the individuals using the ‘‘locus-
based adjacency’’ [54] encoding. In this encoding, each gene
is associated to a node of the network and the allele values
correspond to nodes of the graph. The genetic operators of the
MOGA are the tournament selection, the two-point crossover
and a specially-tailored for the problem mutation opera-
tion, which randomly selects several genes of an individual
and changes their values to a random neighbor community.
Finally, the stopping criteria checks the convergence of the
algorithm using a Single-Sample Chi-Square Test over the
HV of the past 20 Pareto fronts. In addition to this, a max-
imum number of generations is also used as stopping criteria,
in order to assure the end of the execution when the algorithm
does not converge. Notice that a summary of the operators
used in all MOGAs is available at Table 3

Regarding the hyper-parameters used, which are summa-
rized in Table 4, both the population and offspring sizes are

TABLE 4. MOGA parameters.

300 individuals. Please note that the size of the population
remains constant over all the evolution process. In addition,
the crossover rate is 100% and the mutation rate is set to the
1% of the genes of an individual. Regarding the immigrants,
a 10% of the population is replaced with immigrants. Notice
that this parameter is only used in the methods were a fixed
number of immigrants are introduced into the population.
Finally, the alpha used for the Single-Sample Chi-Square Test
is 0.05 and the maximum number of generations is 300.

In order to calculate the HV, first the Community Score
Objective is inverted by subtracting 1.0. Then, the Pareto
Fronts are normalized as stipulated in Section 2. Next, the HV
is calculated using the ideal reference point (1.1, 1.1). Finally,
the number of executions of each MOGA (the M parameter
in our methodology) has been set to 20.

E. APPLICATION OF THE METHODOLOGY: ANALYZING
THE MOGA IN A DCD PROBLEM
In this case study, we consider the three immigrant strategies
from the state of the art: RIGA, EIGA, and HIGA (which
were described in Section I). In the experimental evaluation,
we have also included two additional strategies, in order to
set an actual comparison basis:
• Hypermutation Genetic Algorithm (HGA) [55]. This
method is not based on the immigrant strategy. This
algorithm, instead of continuously inserting immigrants
into the population, increases the mutation rate of the
population when a change occurs in the environment
and then the evolution process continues normally. This
method is included in our experimental evaluation since
it uses a different strategy than immigrants for dealing
with the changes in the environment, which is simpler
and less memory consuming since just a single popula-
tion needs to be stored.

• Delayed Elite Immigrants Genetic Algorithms (DEIGA).
This method is based on the immigrant strategy and its
similar to EIGA, but with the difference that immigrants
are only inserted into the population after a fixed number
of generations. This method is included in the study
since it allows understanding if the immigrant and native
populations explore different sections of the search
space. With this method we can analyze if given enough
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time, both immigrant and native populations converge
to the same Pareto fronts or to different ones.

1) FIRST STEP: COARSE-GRAIN ANALYSIS
AGAINST STANDARD
As aforementioned, the first step of the methodology is
to compare the performance of the immigrant techniques
against the performance of the Standard method. This allows
evaluating if the algorithm being tested is able to achieve
better results than the base algorithm (without any immigrant
schemes).

Table 5 shows the results of the comparative performance
of the five methods considered in the study with respect to the
Standard method. This comparison is based on the usage of
the three dimensions proposed in the methodology: quality,
speed and stability. The numerical results are mixed with
regard to the quality of the solutions found. On the one hand,
out of the three immigrant techniques under study, EIGA
is the only one that improves over Standard, while RIGA
andHIGA exhibit similar or worse performance, respectively.
On the other hand, between the other two methods, DEIGA
shows a better performance, while HGA exhibits a similar
one. The fact that DEIGA has a better numerical performance
than Standard was expected as EIGA also does, and DEIGA
is just a EIGA with a delay on the insertion of the immi-
grants. However, the fact that HGA does not improve the
results reveals that the gradual insertion of individuals into
a population brings benefits to the search mechanism over
the direct re-utilization of past populations in DCD problems.
Regarding the speed of the algorithms, all the techniques
studied show a better convergence speed than Standard. This
was an expected result as the main reason for applying a
mechanism that reuses past populations is improving the con-
vergence speed by reusing past knowledge. Finally, contrary
to what happened with the speed dimension, all the algo-
rithms considered in the experimental evaluation present a
worse stability than the Standard algorithm. This implies that
the HV of the Pareto Fronts obtained by all the methods have
greater variations between consecutive executions compared
to the control method. This is a sign that reusing individuals
from past populations could deteriorate the exploration capa-
bilities of a MOGA, making it more prone to get stuck in a
local minimum/maximum. Please notice that not only do the
immigrant strategies suffer from poorer stability but also does
the HGA and the Delayed EIGA.

2) SECOND STEP: COARSE-GRAIN ANALYSIS BETWEEN
IMMIGRANT STRATEGIES
The second step of the methodology consist in conducting
a comparative study between all the techniques under study
using the Friedman Signed Ranked Test and Shaffer post-
hoc. The study is carried out on the basis of the three dimen-
sions: quality, speed, and stability. The results obtained are
presented using graphs in Figure 3. Each node represents a
different technique, where the size of the node is inversely
proportional to the rank obtained by each method in the

TABLE 5. Results for the Friedman Signed Ranked Test and the Holm
post-hoc using STD as the control method. The first group contains the
three immigrant strategies, and the second one the rest of the methods.
‘s’ ‘s’ indicates that a method performs better than STD. Contrary,
performs worse than STD. Finally, ‘≈’ indicates that the method performs
equally to STD.

Friedman Signed Ranked Test in the Quality dimension and
directly proportional in the Stability and Speed ones, i.e.,
bigger nodes imply a better performance. Two nodes are
connected by an edge if the Shaffer post-hoc analysis shows
that there is no statistical evidence that the two methods
perform differently (i.e., the two methods can be considered
equal).

The previous step revealed that EIGA and DEIGA are
superior to Standard regarding the quality, while RIGA and
HGA have a similar performance than the control method.
Nonetheless, the second step of the methodology reveals
that HGA performs better than RIGA since the HGA node
is bigger than the RIGA node in Figure 3 (a) and there
is no edge between RIGA and HGA. In addition, this step
also allows appreciating that both EIGA and DEIGA have a
similar numerical performance (there is an edge between both
nodes). From these results, we can conclude that for this prob-
lem is better to reuse previous populations with a mutation
phase than inserting random immigrants during the evolution
process because HGA performs better than RIGA. However,
we cannot draw any conclusion about if the immigrant and
native population explore different areas of the search space,
as both EIGA and DEIGA have a similar performance.

Next, regarding the Speed dimension, from the previous
step we know that all the methods are faster than Standard.
However, this step shows that are two different groups (see
Figure 3 (b)). The first group is composed of RIGA, HGA,
and EIGA, whose nodes form a clique. The second group is
composed of HIGA and DEIGA, whose nodes form a kind
of tail. From these results, we can conclude that inserting
random (RIGA) or elite (EIGA) immigrants exhibit a similar
convergence speed than directly re-using previous popula-
tions (HGA). Surprisingly, the HIGA method, which uses
a combination of elite and random immigrants, presents a
worse convergence speed than both of the other immigrant
techniques.

Finally, regarding the Stability dimension, the previous
step of the methodology has shown that all the algorithms
considered have worse stability than Standard. Analyzing
the results obtained in this step, shown in Figure 3 (c),
we can conclude that all the techniques perform equally bad
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FIGURE 3. From left to right, the results of the Friedman Signed Ranked Test and the Shaffer post-hoc analysis for the Quality, Speed, and Stability
metrics. Each node represents a different algorithm. The nodes in dark color correspond to the immigrant techniques under study and the light ones
to the other methods. The size of the nodes is inversely proportional to its Friedman test rank in the Quality dimension and directly proportional in
the Speed and Stability ones (i.e., bigger nodes have a better performance). Two nodes are connected when the difference between two methods
are not statistically significant.

regarding this dimension being that the resulting graph forms
a clique.

Summarizing, from the results obtained in the first two
steps for the problem at stake, it can be concluded that all
the immigrant techniques exhibit worse stability compared to
the Standard method and there are no differences between
them. In addition, it can also be concluded that gradually
inserting elite immigrants into the population has produced
better results compared to directly reusing previous popula-
tions. However, this is not the case when inserting random
immigrants. Surprisingly, the method that combines the use
of both elite and random immigrants (HIGA) shows the worse
results and even has a worse performance in terms of quality
than Standard. Finally, with the results obtained so far, it can
not be evaluated if the native and immigrant populations
explore different search space areas, as EIGA and DEIGA
have a similar performance in all aspects except for speed
(which it was expected due to the delay in the insertion of
immigrants in DEIGA).

3) THIRD STEP: FINE-GRAIN ANALYSIS
Following the third step of the methodology, the immigrant
strategies are evaluated on specific problem instances were
difficulties are found. In order to carry out this analysis,
first, a study of the quality of the Pareto Fronts found by the
algorithms is carried out to find periods where the algorithm
is not working properly. Next, an in-depth analysis of those
periods is carried out using the Population mixture visual-
ization technique (Section II-C). This visualization technique
allows examining what could be causing these difficulties.

Following the methodology, first, the performance of the
immigrant techniques for each dynamic network generated is
evaluated on the basis of the Quality metric to identify which
immigrant strategies are performing poorly. Table 6 shows the
quality obtained by each immigrant method compared to the

TABLE 6. Results for the Friedman Signed Ranked Test and the Holm
post-hoc on the HV using STD as the control method.

standard method for each problem instance tested. A green
triangle pointing up (s) indicates that a method performs
better than STD. Contrary, a red triangle pointing down (t)
indicates that a method performs worse than STD. Finally,
the approximated sign (≈) indicates that the method performs
equally to STD. The evaluation has been done using the Fried-
man Signed Ranked Test and the Holm post-hoc analysis
using as data the 20 Quality values (one per execution of
a problem instance) obtained by each strategy. Each quality
value is calculated by doing the median of the HV obtained
at each of the nine snapshots that form a dynamic network.

The results from Table 6 reinforce the conclusions drawn
in the two previous steps, using elite immigrants does have
benefits over reusing past populations, while using random
immigrants does not. It should be noted that HIGA and RIGA
have a worse numerical performance than HGA, which in
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FIGURE 4. Left figures (a, c, e, g) shows the attainment surfaces of the final Pareto Fronts found by the STD method and the
immigrant strategies. The STD method is shown on the left panel of the attainment surfaces. Right figures (b, d, f, h) shows the
evolution of the HV over the different generations of the MOGA for the same methods. The STD method is shown in orange,
while the immigrant strategy is shown in blue.

turn performs worse than EIGA. However, it can be seen that
there are several networks for which all of the immigrant
techniques under study obtain worse quality than the base-
line. In particular, the networks sm_eq_01, sm_eq_02, and
sm_mm_01 are of special interest because all the methods fail
except DEIGA. To further analyze the previous phenomena,

the rest of the section studies the behavior of each of the
immigrant techniques on the sm_eq_01 network. Only the
results of the sm_eq_01 network are shown because the con-
clusion obtained by analyzing the others are similar.

With the above in mind, in a second step, the attainment
surfaces and the HV evolution of the Pareto Fronts found
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FIGURE 5. Number of half-blood individuals for the RIGA method that survive (in orange) and are expelled (in blue) of the
population between two generations. The X axis shows the number of generation and the Y axis the number of individuals of a
particular type. The percentage on the bottom right corner of the plot indicates the percentage of immigrants inserted into the
population at each generation.

at each snapshot of the network sm_eq_01 are evaluated.
This allows identifying in which snapshots the algorithms
are working properly in which they don’t. The network
under study is composed of nine snapshots. All the methods
included in the study performwell in all the snapshots, except
for the last three. We focus our analysis on the results of the
seventh snapshot, even though the same effect could be found
in the other two ones.

As aforementioned, Figure 4 only shows the attainment
surfaces and the HV evolution of the immigrant techniques
obtained by all the immigrant techniques in the seventh snap-
shot of the sm_eq_01 network. The attainment surfaces plot
shows that all the techniques except for DEIGA perform
worse than Standard; notice the dark areas on the left attain-
ment surfaces. Moreover, in the HV evolution plots, it can be

seen that all immigrant techniques except for DEIGA suffer
from premature convergence to a greater or lesser extent.
It should be noted that the orange line of the HV plots gets
stuck in a local minimum compared to the blue one. To further
study why the different immigrant techniques are not prevent-
ing this premature convergence, each immigrant technique is
studied independently using the populations mixture visual-
ization technique:
• Starting with the RIGA technique, the Figure 5 shows
the number of half-blood (n+i) individuals (i.e., an off-
spring of a native and an immigrant individual) that
continues from one generation to the next (in orange)
and that are removed from the population (in blue). The
different sub-figures in Figure 5 correspond to different
percentages of immigrants inserted into the population
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FIGURE 6. Number of individuals of different types for the HIGA method. The X axis show the number of generation during the
evolutionary process and the Y axis the number of individuals of a particular type. Sub-figure (a) shows the number of
individuals that survive from one generation to the next. Sub-figure (b) shows the number of individuals that are expelled from
the population.

at each generation; 1% (3 individuals), 5% (15 individ-
uals), 10% (30 individuals) and 20% (60 individuals) of
the population are replaced by immigrants is shown in
sub-figures (a), (b), (c), and (d), respectively. As it is
shown in the figure, the mixture between natives (indi-
viduals from the previous snapshot in the case of RIGA)
and immigrants (completely random individuals in the
case of RIGA) have not enough quality and are almost
completely removed from the population in the same
generation that are created. Moreover, the percentage of
immigrants inserted into the population does not change
this effect. Therefore, it is hard that two immigrant
individuals mate in RIGA and almost impossible that
their offsprings continue to the next generation. Since
the immigrants are just being expelled from the popula-
tion without having a chance of passing their genes to
the next generation, they are essentially wasting space
on the population. As a result, in practice, the RIGA
technique in the DCD problem is equivalent to having a
smaller population, which produces the fast convergence
speed and the low quality of the solutions already found
in Section III-E1.

• Regarding the HIGA technique, Figure 6 shows the
number of individuals of the different types during the
evolutionary process for the HIGA method. The fig-
ure on the left (sub-figure (a)) shows the number of
individuals that continue from one generation to the
next, while the one on the right (sub-figure (b)) shows
the ones that are being expelled from the population.
The sub-figure (a) shows that the HIGA method inserts
a large number of immigrants (individuals from the
previous snapshot) during the first generations of the
evolution. In fact, it inserts so many immigrants that

the native population becomes extinct after the fifth
generation. Nevertheless, analyzing the sub-figure (b),
it can be noticed that after the native population has
become extinct, the number of immigrant individuals
that leave the population decreases and then plateaus.
It is not unreasonable to hypothesize that this plateau is
produced by the algorithm trying to enhance its explo-
ration capabilities by adding random immigrants, which
is the same technique that RIGA uses. Summarizing,
the HIGA method is too aggressive at the beginning
of the evolutionary process and removes all the native
individuals from the population, essentially behaving
like HGA. After that, it tries to enhance the population
diversity by introducing random individuals, just like
RIGA, which results in the immigrants just using space
and not contributing to the exploration (i.e., it is like
using a smaller population). This behavior explains the
bad quality of the results of HIGA, just like RIGA.
However, contrary to RIGA, HIGA does it gradually
during the evolutionary process, hence the lower con-
vergence speed.

• With respect to EIGA, Figure 7 shows the number of
individuals of different types for a particular generation.
Each sub-figure shows how the different types vary for
distinct percentages of immigrant individuals. Contrary
to the other methods, in EIGA there is an adequate mix-
ture between native and immigrant individuals, which
can be noticed in the half-blood line (the n+i green
line). As expected, there is a transition phase where the
two populations (immigrant and native) mate, produc-
ing valid offsprings. After that period, both populations
continue mixing, but they result in solutions with lower
quality that are expelled from the population. The length
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FIGURE 7. Number of individuals of different types for the EIGA method. The X axis show the number of generation during the
evolutionary process and the Y axis the number of individuals of a particular type. The percentage on the top right corner of
the plot indicates the percentage of immigrants inserted into the population at each generation.

of this mixing period varies depending on the percentage
of immigrant individuals inserted into the population,
the higher the percentage of immigrants, the shorter the
period. Furthermore, for percentages as high as 5%, the
immigrant population (or their descendants) take over
the population (sub-figures (b), (c), and (d)). However,
when the percentage is only 1% (subfigure (a)), it can be
seen that no population fully dominates the other. The
evolutionary process reaches an equilibrium where the
immigrant population (or their descendants) occupies a
part of the population, while the native one occupies the
rest. This fact suggest that the immigrant and native pop-
ulation could explore different regions of the landscape.
Summarizing, the EIGA strategy is the only immigrant
technique from the study that achieves an adequate mix-
ture between populations, hence its better results and fast

convergence speed, combining the quality of HGA with
the speed of convergence of RIGA.

• Finally, we analyze DEIGA, which was included for
comparative reasons. As aforementioned, this method
works like EIGA, but the insertion of immigrants is
delayed a certain number of generations. From the
results shown in Figure 7 sub-figure (a), it can be
hypothesized that if the native population is allowed to
evolve for a certain number of generations, so they can
better adapt to the environment, the mixture of individu-
als could produce better results. DEIGA method allows
checking this hypothesis. Figure 8 shows the number
of individuals of different types during the evolutionary
process for DEIGA. Each sub-figure shows how the dif-
ferent types varies when waiting for a different number
of generations, which is shown at the top right corner.
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FIGURE 8. Number of individuals of different types for the DEIGA method. The X axis shows the number of generation during
the evolutionary process whereas the Y axis shows the number of individuals of a particular type. The number on the top right
corner of the plot indicates the number of generations waited until the immigrants are inserted into the population. In all plots
a 10% of immigrant individuals are inserted at each generation.

In all plots a 10% of immigrant individuals are inserted
on each generation. As it can be seen, even waiting
a small number of generations (e.g., 10) prevents the
immigrant population from taking over the whole pop-
ulation (notice the difference with Figure 7 (c)). Also,
the larger the number of generations DEIGA waits to
insert the immigrants, the smaller is the size difference
between the populationswhen an equilibrium is reached.
However, if the value is too large, as in the sub-figure (e),
the opposite effect is produced since the immigrants
of the population have not enough quality to occupy
their own space in the population. Nevertheless, when
the immigrant solutions enter the population, there is
always a mixture between both type of individuals (the
n+i green line is present in all the plots). Summarizing,
letting the population evolve some generations before

inserting immigrant solutions produces the best results
as prevents the immigrants from taking over all the pop-
ulation and allows a good mixture between populations.
However, waiting too many generations produces the
opposite effect and prevents the immigrant solutions
from entering into the population. Nevertheless, even in
those cases, some kind of mixture between the popula-
tions always appears.

F. CONCLUSION OF THE EXPERIMENTAL ANALYSIS
The experimental evaluation has shown that both RIGA and
HIGA have a low numerical performance. The fine-grain
analysis carried out revealed that the insertion of completely
random individuals into an already established population
produces offspring of so little quality, compare to the rest,
that they are immediately discarded from the population.
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In practice, these methods are reducing the size of the pop-
ulation since the immigrant solutions are discarded without
contributing to the exploratory capabilities of the algorithm.
However, the EIGA method shows better results as it is the
only method where an adequate mixture between the native
and immigrant populations is achieved. Nevertheless, the per-
centage of immigrants inserted in the population affects the
quality of the numerical results. If too many immigrants are
inserted, the selection pressure of them is too high and they
over take the whole population, making the native solutions
extinct. Surprisingly, when the percentage of immigrants
inserted is not too high, a equilibrium is achieved and both
population continue evolving independently.

To further study this phenomenon the EIGA algorithm was
evaluated including a delay in the insertion of immigrants
(DEIGA). These experiments have shown that waiting as
little as ten generations before inserting the immigrants pro-
duces an equilibrium where the immigrants and the native
population continue evolving independently, even for high
percentages of immigrant insertions like 10% of the pop-
ulation and the further the algorithm waits, the lower is
the different in size between both populations during the
equilibrium. However, if the algorithm waits too many gen-
erations, the opposite effect happens and the immigrant
individuals have not enough quality to enter the popula-
tion. Nevertheless, a mixture between populations is always
present.

The appearance of this equilibrium where both popula-
tions evolve in parallel, suggest that, for this particular setup
(multi-objective genetic algorithms for dynamic community
detection), the immigrant and the native solutions have differ-
ent exploration capabilities and in order to achieve the best
results the population needs some time to mature. For this
reason, it is crucial that the selection pressure of the algo-
rithm does not expel the native solutions from the population
too fast, before the individuals are exposed to other type of
individuals.

However, the results presented in this section should be
considered preliminary for the DCD field, as they have only
been tested using synthetic networks. For more robust results,
benchmarks composed of real networks are also needed.
However, at the time of writing, finding them is not an
easy task. In addition, all the conclusions presented here are
only relevant when estimating the capability of a method to
find non-dominated sets of solutions. Which solutions should
be selected from each non-dominated set to form a good
dynamic community is still an open question in the area
of dynamic community detection. Depending on the criteria
followed, the results could change. Hence, we cannot assure
that the method that generates better non-dominated fronts
will give the best community dynamics. At least until some
good criteria is found and tested. However, as there is no
defined criteria jet, is not a far stretch if we hypothesize that
having the richest and most varied set of solutions will be a
good start for any future criteria.

IV. CONCLUSION AND FUTURE WORK
This article presents a newmethodology for evaluating immi-
grant strategies in MOGAs on the basis of three different
dimensions: Quality, Stability, and Speed. The purpose of this
methodology is twofold. On the one hand, it allows evaluating
if a particular immigrant strategy is improving o hindering
one of the aforementioned dimensions. On the other hand, the
methodology also allows obtaining insights about what could
be happening in the case that some dimensions get hindered.

To prove the effectiveness of the new methodology, a case
study has been carried out on the Dynamic Community
Detection (DCD) problem. In our case study, we analyze
the results of the three most common immigrant strategies:
RIGA, EIGA, and HIGA. In addition, two other methods
were included, HGA and DEIGA, in order to set an actual
comparison basis.

The experimental analysis has shown that inserting random
immigrants into an already established population produces
low quality offspring that do not survive. In practice, for this
particular case study, using random immigrants is equivalent
to reducing the population size and it is better to directly
re-use a previous population. As a consequence, RIGA and
HIGA have a low numerical performance, even when com-
pared with HGA. On the contrary, the study shows that using
elite immigrants achieves promising results and produces
benefits over the direct re-utilization of previous populations.
Hence, the better performance of EIGA over all other meth-
ods, including the comparison basis method HGA. In addi-
tion, the experimental analysis has shown that EIGA reaches
an equilibrium between both immigrant and native solutions
in the population, suggesting that a multi-population genetic
algorithm would be beneficial for this particular strategy on
this particular problem. However, it is important to note that
the results extracted from the case study should be consid-
ered preliminary, as they were only tested using synthetic
networks. More robust results require benchmarks composed
of real networks, which, at the time of writing, are difficult to
find. However, despite this limitation, the results of the case
study should be considered robust when assessing the relia-
bility of the methodology, which is the main objective of the
article. Therefore, after the above analysis, we can conclude
that the proposed methodology has allowed systematizing the
analysis of the different immigrant techniques and that the
population mixture visualization technique provides valuable
insight into their inner workings. Finally, with the above in
mind, we can declare that our methodology could ease the
successful application of immigrant techniques to MOGAs.

However, three areas that deserve further study are iden-
tified in this work. From the dynamics of the interactions
between native and immigrant solutions found in EIGA,
a first issue is to design a multi-population multi-objective
genetic algorithm for the Dynamic Community Detection
problem. This algorithm would have two populations, one
with the native solutions and one with the immigrants,
that work independently but periodically exchange solutions

VOLUME 10, 2022 27627



A. Panizo-Lledot et al.: Addressing Evolutionary-Based Dynamic Problems

between the populations. Alternatively, it would also be inter-
esting to study the DCD problem from the perspective of an
Evolutionary Multi-Task Optimisation (EMTO). In EMTO,
instead of solving each task one at a time, all tasks are
solved at the same time using the knowledge gained in one
task to help the others. In particular, is of special interest
the MFEA [56] algorithm in which all tasks (snapshots in
DCD) are optimized at the same time by a single population.
Secondly, and since the DCD problem is a discrete problem,
we aim to extend this type of analysis to more complex
dynamic problems like continuous problems or tackling other
dynamic multi-objective problems to completely asses the
evidence of the benefits of the analysis methodology pro-
posed in this article. Finally, since the proposed methodology
allows systematizing the analysis in the case of dynamic
multi-objective problems, we found interesting to adapt it
first to dynamic mono-objective problems, and later to other
related problems like EMTO.
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