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ABSTRACT Wind energy resource assessments at two islands in the Cook Islands are carried out in the
present work. The wind data were collected for one year from sites on Mauke and Rarotonga Islands in the
Cook Islands and the daily, monthly and seasonal average wind speeds, the diurnal variations of the wind
shear coefficient, average temperature and turbulence intensity were estimated. Eleven frequentist methods
and a Bayesian technique were used to determine the Weibull parameters and the wind power density (WPD)
for each site. The best method was determined using the goodness of fit test and error measures. The average
wind speeds were 4.65 m/s and 3.86 m/s at 34 m above ground level for the sites on Mauke and Rarotonga
respectively. Based on the goodness of fit tests and error measures, the Least Squares Method performed
best for estimating the Weibull parameters at the Mauke site, while for the Rarotonga site, the median and
quartiles method performed the best. For both the sites, the Bayesian method, which is being used for the first
time for wind resource assessments, ranked second of the twelve methods, indicating good potential for this
method. The annual energy production (AEP) was also determined which was calculated to be 2192.34 MWh
from a total of ten Vergnet 275 kW turbines at the two sites. Finally, an economic analysis, carried out for
the two sites, indicated a payback period of 7.72 years.

INDEX TERMS Wind energy, Weibull distribution, wind power generation, energy resources, turbulence
intensity, economic analysis.

NOMENCLATURE WPD = wind power density, W /m?>
Symbols: U = actual wind speed
U, = predicted wind speed at time t
A = scale factor, m/s
k = shape factor Acronyms and Abbreviations:
n = number of observations AGL = above ground level, m
TI = turbulence intensity, % BAYES = Bayesian method
U = wind speed, m/s CEPPD = combined energy pattern and power
U = average wind speed, m/s density method
Un = median wind speed, m/s COE = coefficient of efficiency
WAsP = wind atlas analysis and application program EMJ = empirical method of Justus
EML = empirical method of Lysen
The associate editor coordinating the review of this manuscript and EPF = energy pattern factor method
approving it for publication was Christopher H. T. Lee. LSM = least squares method
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MAE = mean absolute error
MAPE = mean absolute percentage error, %
ML = maximum likelihood method
MML = modified maximum likelihood method
MO = moments method
MQ = median and quartiles method
NMO = new moments method
PICs = Pacific Island Countries
RMSE = root mean square error, m/s

Greek Letters:
o = wind shear coefficient
r = gamma function
o = standard deviation of wind speed, m/s

I. INTRODUCTION

Moving to the renewable sources of energy to meet the
energy requirements is one of the top priorities of the Pacific
Island Countries (PICs). One of the main climate change
mitigation policies of the Cook Islands Government is to
achieve 100% renewable energy generation by 2025 [1]. This
will not only help them reduce their dependence on imported
fossil fuels, but will also contribute to a reduction in harmful
greenhouse gas emissions. Solar and wind are two proven
technologies and are therefore preferred by the PICs. Wind
power generation only requires a high initial investment; for
the PICs, the returns on such investments are very good
considering the high cost of electricity.

The Cook Islands is a country located in the South Pacific
with a tropical climate; it has around 15 islands and has a total
land area of about 240 km?. The largest island in the country
is Rarotonga which has a population of around 14,000 and
also has the capital of the country, Avarua. The two sites at
which the wind energy resource assessments were carried
out are on Mauke and Rarotonga islands. Mauke is a very
small island in the Cook Islands group with distinct features
such as lakes, deep caves and a central volcanic plateau.
The island has fossilised coral which surrounds the central
volcanic plateau and reaches a height of around 1000 m. The
island’s soil is also very rich because of the volcanic remains
and thus is called the garden island [2]. On the other hand,
Rarotonga is the main island in the group, which is also the
most populated island and the largest among all the islands
in Cook Islands. The island is volcanic in nature with the
highest peak reaching 658 m. Rarotonga is surrounded by
a lagoon which is 100 m away from the reef. The island
is heavily populated near the sea-shore. The interior of the
island remains unpopulated due to the treacherous and rugged
terrain.

Wind energy has become very popular over the years
since it is a clean energy source and the cost of wind power
generation per unit of electricity has reduced significantly.
Substantial research is being done on wind energy mainly
in the areas of accurate Weibull parameter estimation from
statistical analysis, the overall structure of the wind turbine,
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blade design, materials used for manufacturing the turbine
blades, and the aerodynamics of the wind turbine blade. Some
research works have also focused on enhancing the annual
energy production by improving the blade design using multi
objective genetic algorithms [3], [4].

The current energy trends in the South Pacific call
for Scientists and Engineers to search for cleaner and
sustainable sources of energy. This comes into light following
the increased import and usage of fossil fuels across the
region as a whole. The fossil fuels pose a major threat
to the environment by contributing to an increase in the
greenhouse gas emissions and the associated harmful effects
such as rising temperatures, changing rainfall patterns, ocean
acidification, stronger cyclones and rising sea levels. The
contribution of PICs to current greenhouse gas emissions is
below 0.03%; yet they are the ones that are the worst affected
and are the ones that may go under water due to the rise in
sea level [5], [6].

There is a need for renewable energy technologies to be
implemented so that the countries can produce affordable,
reliable and sustainable energy. Plans for generating wind
power in Cook Islands were made after a feasibility study
was carried out for a 2 MW wind farm [7]. The study
highlighted the need for wind measurements before installing
wind turbines. In 2012, the Renewable Energy Development
Division [8] of Cook Islands prepared a renewable energy
implementation plan and highlighted the need to firm up
the data available for solar and wind energies. A specific
study performed for Mauke island in 2004 [9] found that
grid-connected wind power is more viable both economically
and financially than solar PV and would contribute a higher
amount of renewable energy to the system. In a 2016
Conference [10], it was agreed that Rarotonga has a wind
resource worth developing. Each country in the South Pacific
has its own national sustainable development plan to achieve
United Nations’ sustainable development goals (SDGs); as an
example, Cook Islands aims to have 100% renewable power
generation in near future [11]. Although some renewable
energy technologies namely wind, solar and hydro are already
implemented in the pacific region, energy produced is still
not sufficient and the contribution of renewable energy to
the total energy production is very small. Thus, in order
to extract more energy from renewable sources, resource
assessment is essential to identify the real potential of
different energy sources especially the wind energy. Wind
resource assessment and economic analysis are crucial before
installation of any energy harvesting device [5]. There was
only one study reported till date on the assessment of wind
energy resource in the Cook Islands, which was carried out
in 2007-2008 on a hill with the intention of installing a
wind farm [12]; however, this was not implemented and a
subsequent report [8] emphasized the need for data collection
at more sites. It should be noted that till date, no grid-
connected wind turbine is installed in the Cook Islands,
although most of the above-mentioned reports agreed on the
good potential for wind energy harvesting in the country.
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FIGURE 1. Ideal terrestrial pressure and wind systems [14].

The pressure gradient (difference in atmospheric pressure)
determines the strength of the wind. The larger the difference
between the atmospheric pressures between two points at a
relatively short distance, the stronger the wind. The wind
also maintains a balance between the equatorial region and
the polar region of the earth by transferring energy around.
Without winds, the equatorial regions would get hotter and
the polar region would get cooler. Fig.1 shows the ideal
terrestrial pressure and wind systems. In the Cook Islands
region, predominantly south-easterly trade winds are likely
to be present. This has been reported in our earlier works in
the South Pacific region e.g. for Vanuatu [13].

The Coriolis Effect greatly influences winds. This is due to
the earth’s rotation and there are two factors that are related to
it. Firstly, the earth is constantly moving. Therefore, tracking
the wind on any freely moving object would be difficult.
Secondly, the rotational speed of the earth changes from polar
region to equatorial regions.

As we move towards the equator, the rotational speed
of earth increases. Due to earth’s rotation, in the Northern
hemisphere, anything travelling horizontally would feel being
deflected right of its travel direction and vice versa in
the Southern hemisphere [15]. Thus the deflection due to
this phenomenon of Coriolis Effect influences the winds in
the Northern and Southern hemispheres greatly. Frictional
drag is also a very important factor that influences wind
speed since it is less at greater altitudes but more at lower
altitudes due to the presence of buildings, trees and moun-
tainous terrains. The lower wind speed lowers the Coriolis
effect with almost no significant impact on the pressure
gradient [15].

It is very important to study wind patterns such as wind
speeds and directions for a particular region to clearly explain
the wind directions that are obtained from wind resource
assessment. For example, the expected winds in the South
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Pacific are the South-Easterly trade winds. However, some
earlier studies on wind energy resource assessment in the
South Pacific showed some other wind directions such as East
or East-North-East [16], [17]. Moreover, obstacles at lower
altitudes affect wind speeds and cause turbulence, making
it interesting to determine the turbulence intensities under
different wind conditions as this may affect the structural
integrity of the wind turbine.

Many researchers have carried out wind resource assess-
ments using wind speed data from different locations. Sharma
and Ahmed [18] carried out wind energy resource assessment
for two sites in Fiji: Kadavu and Suva. They found that
the average wind speeds at 20 m AGL and 34 m AGL are
5.65 m/s and 6.38 m/s respectively. They also carried out
wind shear analysis and also plotted the wind resource map
to find out the AEP from virtual turbines located at suitable
locations. The two measurement sites showed very good wind
potential. Wais [19] compared the two and three parameter
Weibull distribution to study the most appropriate model.
In some cases, the frequency of the low wind speeds is greater
which cannot be accounted for by any method other than
the three parameter Weibull distribution. He compared the
wind speeds for three different locations and found out that
the three parameter Weibull distribution performed the best
when there was greater frequency of lower wind speeds.
Lun and Lam [20] studied 30 years of wind data for three
locations in Hong Kong which were in city area, open sea
area and an exposed city area. With the 30 years of wind data,
they calculated the Weibull parameters, which revealed that
the parameters varied over the years. They also studied the
Weibull distribution of wind speed for each location and it
was observed that the distribution curve was wider for the
open sea areas. Liu et al. [21] studied the wind resource in
China and found that the national annual mean wind speed
was 4.09 m/s at 10 m above ground level. They used the data
from a large number of meteorological stations and identified
locations in the country where the potential of wind power
is high. Bhuiyan et al. [22] studied the Weibull parameters,
analyzed the wind speeds and estimated the energy generation
for Kuakata region in Bangladesh using a web tool called
‘Wind Energy Assessment’ which gave an energy output
of 2243 kWh/year; the production cost was also calculated.
Abdraman et al. [23] studied the wind energy potential for
N’Djamena in Chad from wind data of 12 months recorded
at an airport weather station. They analyzed the wind data to
calculate the Weibull parameters, the distributions of the wind
speed, the turbulence intensities and the energy production at
a height of 100 m using a Vestas V80/1.8 MW wind turbine.
It was found that the turbine would produce 50.42 GWh
of energy per year Olaofe [24] used 10 years of satellite
data at a height of 10 m for a coastal region in Nigeria.
He studied the monthly, seasonal and the yearly means as
well as the distributions using three mathematical models:
Rayleigh, Weibull and Rician. The Weibull and the Rician
distributions showed better fit and showed that offshore wind
energy potential in Nigeria was good. Rocha et al. [25]
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analyzed nearly two years of data for two sites in Brazil
using seven Weibull approaches and found that the equivalent
energy method performed the best in this case. It was also
noted that the numerical methods can give better efficiency if
the number of iterations is higher thus the numerical methods
are also recommended. Tizpar et al. [26] studied the wind
energy potential for Mil-E-Nader region based on 10 minute
average wind speed data, which was measured at a height
of 40 m. The analysis was performed to obtain the monthly
wind speed variations as well as the diurnal wind speed
variations. Based on the wind speed data at 40 m height, the
power law was used to extrapolate the wind speed at other
heights. Energy analysis was carried out for different heights
whereby the best hub height was found by comparing several
classifications of wind turbines. Shu et al. [27] used six
years of wind data that were recorded by five meteorological
stations that had varying terrains to carry out the statistical
analysis of wind characteristics. The Weibull distribution was
used in this study for the estimation of Weibull parameters.
The study found that the scale factor (A) varied from 2.85 m/s
to 10.19 m/s for the sites whereas the shape factor (k) varied
between 1.65 and 1.99. It was seen that the highest Weibull
parameters were obtained at a greater latitude at a remote
location and the lowest Weibull parameters were obtained
in an urbanized area. Dabbaghiyan et al. [28] studied the
wind energy potential for four locations in Bushehr province
of Iran. One-year wind data measured at heights of 10 m,
30 m and 40 m were used to estimate the wind power density
using the Weibull approach. It was noted that the Weibull
method performed well to give a good fit on the histogram.
The annual energy production from twelve wind turbines with
generating capacities ranging from 1 kW to 100 kW was also
estimated. Chang [29] used a two-parameter Weibull function
for evaluating the wind energy potential and compared it
with six other numerical methods that are commonly used for
estimating the Weibull parameters. The performance analysis
was done using parameter error, wind energy error, root mean
square error and the Kolmogorov-Smirnov test. From the
results, it was observed that the graphical method performed
the worst with tests of random variables. It was noted
that the maximum likelihood method, modified maximum
likelihood method and the moments method performed the
best with increasing number of data for the particular location
using the simulations based on double checks. However,
the maximum likelihood method performed better than the
modified maximum likelihood method. Rehman et al. [30]
carried out an assessment of wind energy potential across
geographically distinct locations in the southern part of India.
The three cities selected for the study had different elevations.
They used three methods of ML, LS and WAsP for estimating
Weibull parameters. Guenoukpati et al. [31] studied the
wind characteristics for three different coastal sites in West
Africa. In the study, they used seven numerical methods to
find the shape and scale factor. They used similar methods
such as EMJ, EML, EPF, ML, MO, graphical method and
a hybrid method which is a mixture of EPF and EMIJ.
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According to them, the hybrid method gave accurate results.
The numerical methods were used for finding accurate
Weibull parameters of the Weibull distribution function so
that the wind speed characteristics and WPD can be presented
accurately. Saeed et al. [32] stated that the numerical methods
for estimating the Weibull parameters are inconsistent and
that the two-parameter Weibull distribution is one of the best
methods for wind data representation. In the work, artificial
intelligence optimization techniques were used based on
the Chebyshev metric which proves mathematically and
guarantees convergence for wind parameter estimation. A site
close to the coastal region in Pakistan was chosen to obtain
wind data. The wind data were analyzed and showed that
the results offer greater accuracy compared to the numerical
methods. They also carried out a cost analysis for determining
whether the site was worthy for wind power generation
Chen et al. [33] estimated the wind power potential in
Taiwan and carried out an economic analysis. They used
ML method only for estimating Weibull parameters and for
ranking the sites. Guarienti et al. [34] carried out the wind
energy resource assessments for 27 stations in the state of
Mato Grosso do Sul, Brazil, using hourly wind speed data
series. The accuracy analysis for the data were also carried out
and six numerical methods (Graphical Method, Maximum
Likelihood Method, Modified Maximum Likelihood Method,
Moment Method, Empirical Method and Power Density
Method) were used to estimate the Weibull distribution
parameters. The Maximum Likelihood Method (ML) and
Modified Maximum Likelihood Method (MML) performed
the best for their case in analyzing most of the data from the
27 stations. In a recent work, Nair and Kumar [35] carried
out wind resource assessment at a site on Vanua Levu in Fiji.
They used the Weibull parameters from the WAsP software
and reported a mean wind speed of 5.91 m/s and a wind power
density of 206 W/m? at 34 m AGL.

Thus, it can be seen that most of the previous researchers
used 6-8 methods for estimating the Weibull parameters and
for finding the accurate wind power density. In recent wind
resource assessments carried out for Suva [17], Kadavu [36],
Vanuatu [13] and Tuvalu [37] in the South Pacific, the
authors used 10 different methods for estimating Weibull
parameters. This work uses an additional method, called
combined energy pattern and power density method (CEPPD)
for estimating the Weibull parameters and wind power
density. Thus, a total of eleven methods and a Bayesian
technique are used in the present work that were never used
in the past works. Moreover, wind resource assessment was
carried out in Cook Islands just once from May 2007 to
May 2008; however, these measurements were carried out
on a hill of approximately 80 m height to find a high wind
speed hilly site for possible wind farm installation [38].
The measurements were performed at a site close to the
North-Eastern coast. However, the plan of a wind farm at the
proposed site never materialized. The present measurements
were performed close to the North-Western coast near the
main hospital and a more populated area with the intention
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of finding the feasibility of installing 5 wind turbines of
275 kW each at suitable locations across the island. The
present work includes a detailed statistical analysis of wind
characteristics, accurate estimation of Weibull parameters
and wind power density using eleven different methods
and a Bayesian technique plus an economic analysis with
10 wind turbines that are commonly installed in the South
Pacific countries. Statistical analysis software ‘R’ and wind
resource assessment software ‘WAsP’ were used in the
present work. ‘R’ is an open-source and free statistical
analysis software. It is increasingly being used for data
analysis and graphics, and is very useful for exploring,
modelling, and visualizing data. Also it is a widely used
software by researchers from diverse disciplines. Since it
is open-source, the researchers are always able to perform
new statistical analyses and apply cutting edge statistical
techniques as soon as these are available or anyone thinks of
them [39]. In this paper, ‘R’ is used for the following analyses
including data processing, simulations and for graphing
and visualizations: (i) calculation of hourly, daily, diurnal,
monthly and seasonal parameters, (ii) estimation of Weibull
parameters using all the methods, and (iii) calculation of the
goodness of fit and error measures (R2, COE, RMSE, MAE,
MAPE, COE). The WASsP software suite is now an industry-
standard tool for wind resource assessment, siting of wind
turbines and estimation of annual energy production. WAsP
software has the capability to predict wind climate and power
production based on the currently available wind turbines in
the market which makes it advantageous for modeling wind
energy. The software calculates its own Weibull parameters
using the equations described in Table 4 [40]. Apart from
estimation Weibull parameters, WAsP was also used in the
present work for drawing the resource grid and for estimating
the annual energy production with the selected wind turbines.
The main contributions of the present work can be listed as
follows:

o Wind resource assessments for two islands (Mauke
and Rarotonga) in Cook Islands are carried out by
carrying out detailed measurements of wind speed
at two heights above ground level, wind direc-
tion, and ambient temperature. The daily, monthly,
and seasonal variations of wind speed and diur-
nal variations of turbulence intensity, wind shear
coefficient and ambient temperatures are studied in
detail.

o For each of the sites, eleven frequentist methods and
Bayesian method were used to find Weibull parameters.

« Five goodness of fit/error estimates were used to find the
most accurate Weibull parameters and estimate the wind
power density.

o Annual energy production from five virtually located
Vergnet 275 kW turbines was estimated for both the
islands. An economic analysis was also carried out to
estimate the payback period. This work will directly
contributed to a developing country like Cook Islands
meet the sustainable development goals.
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Il. DATA AND METHODOLOGY

In the present work, an in-depth wind resource assessment
was carried out at two locations in the Cook Islands. The data
were acquired using ‘“‘Integrated Renewable Energy Resource
Assessment Systems” (IRERAS) which consist of a 34 m
tall tower consisting of several sensors and instruments. The
information of the sensors, instruments, location of measure-
ments, modelling of the data using Weibull distribution and
the Weibull parameters estimation methods, the validation of
data and the performance analysis of different methods are
presented in the following subsections.

A. METHOD
One IRERAS tower was installed at each of the two sites
that were selected for measurements and detailed analysis
of wind data. The towers are from NRG systems; they are
34 m in height and are fixed to a base plate and supported by
guy wires. Each tower is mounted with a number of sensors
that measure wind speed, atmospheric pressure, temperature,
rainfall, relative humidity, solar insolation and wind direction.
All the useful data are collected in a NRG SymphoniePlus
data logger in an SD card. Internet enabled logging system
is used to interface the data logger and the Symphonie Pack
system. The data were transferred using a mobile network
to the main server at the Information, Communication and
Technology (ICT) building of the University of the South
Pacific (USP) with the help of a GSM iPack combined with
a SIM card. The instruments that were mounted on the tower
are as follows:

o Cup anemometers at 34 m and 20 m AGL

o Wind vane at 30 m AGL (aligned to true North)

« Barometric pressure sensor

o Temperature sensor (enclosed in a circular six-plate

radiation shield) [13], [17].

The raw data files were converted into excel format where
the date and time were standardized to be compatible with
the algorithm being used for this project. The data were
then converted into a valid input file which is a.txt file. The
data were then analyzed using R software and the daily,
monthly and hourly averages of the data were calculated.
The data were recorded at an interval of 10 minutes and sent
to the main server once every day. There are 15 channels
in the data logger which measure mean values, minimum
values, maximum values and the standard deviation of the
parameters recorded from the sensors. The measurement
sensor’ specifications are presented in Table 1.

The data validation steps are as follows:

« Retrieving raw data files

« Developing data validation routines

« Validating the data

o Creating valid data files

o Processing data and generating reports
Data management is an important part of carrying out a wind
resource assessment. There are several important steps to be
followed in data management. The first step is to check the
parameters of the sensor that are arriving at the server against
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TABLE 1. Measurement sensor specifications.

TABLE 2. Validation criteria for measured quantities.

Parameter| Sensor type Range Accuracy PARAMETER VALIDATION CRITERIA
Wind NRG #40 Anemometer 1.0to 0.1 m/s in the Wind speed: horizontal

Speed 96.0 m/s range 5-25 m/s A Offset < Avg <25 m/
Wind NRG 200P direction 0-360° N/A verage set<Avg<somis
Direction | vane Standard deviation 0< Std.Dev.<3m/s
Pressure NRG BP-20 barometric 15.0to +1.5 kPa Maximum gust Offset < Max < 30 m/s

pressure sensor 115 kPa - - -
Tempera | NRG 1105 25°Cto | #1.1°C Wind direction
ture 65°C Average 0 < Avg <=360°
Standard deviation 3 < Std.Dev< 75
14000 Maximum gust 0 < Max < 360°
12000 - Mauke data Temperature (Summer Shown)
—=— Raratonga data s I Variabil O -

410000 - easonal Variability 25°C< Avg<40°C
= Solar Radiation

~ 8000 4

;.:? Average Offset <= Avg <= 1300 W/m?
$ 6000 -

g
& 4000 - TABLE 3. Relational test criteria for measured quantities.

2000 - / A \
J L Sample Parameter Validation Criteria
e e . Sy
- 1 ) Wind speed average (All sensor type)

0 1
Wind speed difference at 34 m AGL, m/s

FIGURE 2. Difference of wind speeds for the two anemometers at 34 m
AGL in Mauke and Rarotonga.

a manufacturer’s catalogue for the sensor. The next step is to
measure data for the first few hours and compare it against
data from neighbouring meteorological stations. Finally, the
data are monitored daily from the server. Some error sources
with measured data are:

« wear and tear of sensors and structural components

« lightning strike

« loose or faulty wiring
Developing a data validation routine includes range tests,
relational tests and trend tests. A few tests were carried out
for validation check. Firstly, the range test was conducted
which identifies vague results such as the wind speeds
below the offset value of the sensors’ threshold. Also,
values that are greater than the maximum need to be
reviewed for validity [41]. The relational test compares
values that are acquired from different heights. Finally, the
trend test compares the changes in measured values. For
data processing, the range of the wind speed is offset <
Average < 25 m/s and the range of the solar radiation is
offset < Average < 1300 W/m?2. For the barometric average
pressure, the range must fall between 94 kPa and 106 kPa and
the average difference in temperature must be greater than
1 degrees Celsius between 1000 hours and 1700 hours, The
average change in wind speed for 1 hour must be less than
5 m/s, average temperature variation over one hour must be
less than 5°C and the average 3 hours change in barometric
pressure must be less than 1 kPa. These validation criteria
and the relational test criteria for measured quantities are
described in Tables 2-3 respectively [37].
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1 hr change <5.0m/s

Temperature average
1 hr change +5°C

Barometric pressure average (Optional)
3 hr change +1 kPa
Change in Temperature (Optional)

3 hr change Changes sign twice

The trend in the measured data must be studied to
find out that correct data are being recorded. In this
assessment, no significant differences were recorded in the
measurement of wind speed, wind direction, barometric
pressure and ambient temperature. The difference in wind
speeds for the two anemometers installed at 34 m AGL
in Mauke and Rarotonga is shown in Fig. 2. The two
anemometers placed at 34 m AGL at both the locations were
at 22.5° and 202.5°. The wind speeds recorded at the two
anemometers has a correlation coefficient of 0.9929. Since
the predominant wind direction is North-east and South-east,
the results indicate that the difference in the measured
wind speeds due to the wake of the measurement tower is
within 0.8%.

The diurnal variation was calculated for the wind speed and
temperature. The wind shear coefficient, turbulence intensity
and accurate wind power density were also calculated. Using
eleven different methods and a Bayesian technique, the
Weibull parameters were estimated and the performance
parameters were compared using various goodness of fit tests.
Using the wind speed and the wind direction, a wind map
was plotted using WAsP and the annual energy production
was estimated. The economic analysis was carried out to
estimate the payback period for the investment using the
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Tukume Beach

FIGURE 3. Location of the measurement site in Mauke with coordinates
of 20° 09’ 43.20” S, 157° 20’ 29.66” W (Source: Google maps).
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FIGURE 4. Location of the measurement site at Hospital Hill in Rarotonga
with coordinates of 21° 12’ 48.86"” S, 159° 49’ 12.96” W (Source: Google
maps).

net average annual energy production. Fig. 3 shows the
location of the IRERAS tower placed in Mauke Island with
coordinates of 20° 09’ 43.20” S, 157° 20’ 29.66> W whereas
Fig. 4 shows the location of the tower placed near the Hospital
in Rarotonga with coordinates of 21° 12’ 48.86” S, 159° 49’
12.96” W.

B. WEIBULL DISTRIBUTION FUNCTION

Many distributions are used for the estimation of wind energy
potential assessment. The most commonly used are the
Weibull and Rayleigh distributions. The Weibull distribution
is a good fit to mean wind speed. The Weibull distribution
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function is most commonly defined by the shape factor
(k) and the scale factor (A) and has been used widely by
researchers.

The function is described as follows [42]:

k—1 k
FU) = § (%) (%) (1)

where U is the wind speed, k is the shape factor which
describes the width of the distribution and how the graph
peaks whereas A is the scale factor which indicates how
windy the site of study is. The corresponding cumulative
distribution function is as follows [42]:

u

k
Py =1—e () ?)

C. METHODS OF ESTIMATING WEIBULL PARAMETERS
For the analysis of wind speed, it is not always best to use the
normal distribution since wind speed is never negative and
is also skewed to the right side thus the Weibull distribution
is the best way to represent it. In the two-parameter Weibull
distribution, the shape factor (k) and scale factor (A) need
to be specified or determined. To determine the k and A
values, different methods are used. The best method for
each site may be different. In this work, eleven different
frequentist methods and a Bayesian component were used
from which the best method was selected using a number
of performance measures. The eleven frequentist methods
used were: the median and quartiles method (MQ) [43], the
moments method (MO) [44], the empirical method of Justus
(EMJ) [43], the empirical method of Lysen (EML) [43], the
least squares method [45], the maximum likelihood method
(ML) [43], the modified maximum likelihood (MML) [43],
the energy pattern factor method (EPF) [43], the WAsP
method [45], [46], new moments method (NMO) [47]
and combined energy pattern and power density method
(CEPPD) [48]. The description of the methods are presented
in our previous publication [13], [17]. Table 4 lists the
mathematical expressions for the frequentist methods:
where:

Uo.25 = 25% wind velocity quartile

Uo.75 = 75% wind velocity quartile

A = weights chosen

Uj is the wind speed measured at the interval i

f(U > 0) = probability for wind speed equal to or
exceeding zero.

The frequentist methods presented above have certain
drawbacks such as most of their properties hold if the sample
size is large. Thus, in this research we also use a Bayesian
approach for estimating Weibull parameters in wind speed
data, which is free from such limitations. This is the first
work in which Bayesian method is used to find the Weibull
parameters for wind resource assessment.

In Bayesian paradigm, data and prior distribution are
combined together to estimate the posterior distribution of
the parameter of interest. The approach uses the Bayes’ rule,
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TABLE 4. Eleven frequentist methods used for estimating Weibull parameters.
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which is simply expressed as:

p@IU) apU16)p(©@). (25)

where p (0 |U) is the posterior distribution of parameters 6 =
(A, k), p(U |9) is the likelihood of the data and p (0) is the
prior distribution of the parameters.

In Bayesian estimation, uniform prior distributions of
parameters 8 = (A, k) is used for fitting the wind data.
Firstly, a sample of the joint posterior distribution is obtained
by simulating a sample from a Markov chain Monte Carlo
method using Gibbs sampler. Then, performing a total of
20,000 Gibbs sampler iterations and using a burn-in period of
2000 (i.e. the point after which Gibbs sampler is supposed to
attain convergence) the posterior estimates of the parameters
are obtained using the R software with R2jags package.

Five performance measures were used to find the
best method of estimating the Weibull parameters: the
root mean square error (RMSE) [44], [49], [50], coef-
ficient of determination (Rz) [49]-[51], mean absolute
error (MAE) [44], [52], mean absolute percentage error
(MAPE) [44], [49], [50], [53], and coefficient of efficiency
(COE) [25], [44], [54]. By ranking the methods based on
performance analysis, the best method was obtained.

The performance analysis determined the accuracy of the
methods by the following rules:

o The lower the RMSE, the better the Weibull method.

o The higher the RZ, the better the method.

o The lower the MAE, the better the accuracy.

o The lower the MAPE, the better the accuracy.

o The greater the COE, the greater the accuracy of the

estimate.
Figure 5 shows a detailed flowchart of the methodology used
for the present work. The mathematical expressions used for
estimating Weibull parameters are presented in Table 4, while
the explanations of the equations are provided in ref. [17].

Ill. RESULTS AND DISCUSSION

A. WIND SPEED ANALYSIS

Wind speed analysis was also carried out for two locations
in the Cook Islands: Mauke Island and Rarotonga Island
as discussed in earlier section. One year of wind data
were collected from the sites and analysed to study the
daily average wind speed variation throughout the year, the
monthly average wind speed variation as well as the wind
shear diurnal variation and the turbulence intensity diurnal
variation. One year of measurements is sufficient for studying
the seasonal variations in wind speed, direction, turbulence
and wind shear [41]. However, for investments in large wind
farms, the correlate and predict steps are performed iteratively
with several sources of long-term data. Fig. 6 shows the
daily average wind speed variation for the year ranging from
2/08/2013 to 2/08/2014 for Mauke. It can be seen that the
wind speed is lower for the warmer months compared to
the cooler months. The highest average daily wind speed for
the Mauke site was recorded to be 10.26 m/s on the 16™ of
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March, 2014 whereas the lowest average daily wind speed
was recorded to be 1.31 m/s on the 17" of May, 2014.

Fig. 7 shows the daily average wind speed variation for
the entire year ranging from 11/08/2013 to 11/08/2014 for
the Rarotonga site. The highest average daily wind speed
for the Rarotonga site was recorded to be 9.25 m/s on the
14 of September, 2013 whereas the lowest average daily
wind speed was recorded to be 0.96 m/s on 19" September,
2013. The wind speeds are much lower compared to the
previously reported work for Rarotonga [12]. The maximum
wind speeds during December and January were recorded
to be 29.1 m/s at 29 m AGL; probably caused by a tropical
disturbance towards the end of December in the country.

NASA data were obtained from the POWER Project
version 2.3.6 [55] for the Rarotonga site for the sake of
comparison. For the years 2015-2020, the monthly average
wind speeds varied from 4.64 m/s to 8.95 m/s with an overall
average for the six year to be 6.48 m/s. This is considerably
higher than the measured wind speeds at Rarotonga.

Fig. 8 shows the monthly average wind speeds for the
Mauke site whereas Fig. 9 shows the monthly average wind
speeds for Rarotonga site. For the Mauke site, the highest
monthly average wind speed was recorded in July whereas the
lowest monthly average wind speed was recorded in February
for both 34 m and 20 m AGL. For the Rarotonga site, the
trends for the monthly average wind speed were same as
those for the Mauke site. The Cook Islands normally have two
seasons which are the cooler dry season and the warmer wet
season. The warmer wet season is from November to April
whereas the cooler dry season is from May to October. The
warmer wet season is also the cyclone season. The variation in
atmospheric pressure during winter season is larger compared
to the summer season, which leads to higher flow velocities
of air between the high and low pressure systems.

The month of July has the highest mean wind speeds for
both the sites; similar results were obtained for Tuvalu [37]
and Suva [17] with maximum average wind speed recorded
in July. The previous work on wind resource assessment in
Cook Islands recorded the highest wind speeds from October
to December [12]; this is the cyclone season in the South
Pacific and some tropical disturbances or depressions may
have caused the higher wind speeds reported in that work.

Fig. 10 shows the seasonal average wind speeds at day and
night times for both the sites. It is seen that the wind speeds
are higher at the Mauke site for both seasons. The average
wind speeds are generally higher for winter compared to
summer. Higher daytime wind speeds were predicted by [56]
from their probabilistic modeling of wind speed variation.

B. WIND SHEAR ANALYSIS

Wind shear is a phenomenon which occurs due to the
variation in wind speeds over changing elevations due to
the shearing action. The wind shear directly affects the
power output of wind turbines at different hub heights.
The wind shear coefficient is important for determining
the overall energy production of larger wind turbines since
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Data Collection

Real Data Analysis:

1) Daily average wind speed

2) Diurnal variation of wind speed
3) Monthly average wind speed

4) Diurnal variation of wind shear
coefficient

5) Diurnal variation of turbulence
intensity

Frequentist Methods

Eleven Numerical Methods:

1) Moment Method (3,4)

2) Median and Quartiles Method (5,6)
3) Empirical Method of Justus (7,8)

4) Empirical Method of Lysen (9,10)
5) Least Squares Method (11,12)

6) Maximum Likelihood Method
(13,14)

7) Modified Maximum Likelihood
Method (15,16)

8) WASP (17)
9) Energy Pattern Factor (18)
10) New Moment Method (10,21,22)

11) Combined Energy Pattern and
Power Density Method (23,24)

FIGURE 5. Flowchart of the methodology used in the present work.
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FIGURE 6. Daily average wind speeds for the entire measurement period
at 34 m and 20 m AGL for the Mauke site.
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FIGURE 7. Daily average wind speeds for the entire measurement period
at 34 m and 20 m AGL for the Rarotonga site.
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FIGURE 8. Monthly average wind speeds recorded at 34 m and 20 m for
the Mauke site.

wind shear is greater at smaller heights. If the coefficient
is estimated between two heights, the wind speeds can be
extrapolated using the power law to obtain wind speeds
and power output at a greater height. The wind shear
coefficient () can be calculated using the power law as given
below [57]:

In (Uz/Ul)

a=— " (26)

" h (hz/hl)
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FIGURE 9. Monthly average wind speeds recorded at 34 m and 20 m AGL
for the Rarotonga site.
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FIGURE 10. Seasonal average daytime and night-time wind speeds for
both the sites during summer and winter.

For this work, the wind speeds at two heights of 34 m AGL
and 20 m AGL at both the sites were used to calculate
the wind shear coefficient. The wind shear coefficients for
both the sites were plotted which depict well correlated
relationship of wind shear coefficient with the diurnal
variation of average temperature for Cook Islands, which
can be seen from Fig. 11 and Fig. 12. It is observed from
Fig.11 that the wind shear coefficient is greater at night time
compared to the day time. This is due to the temperature
inversion effect. It is seen that the wind speed variation is
greater between 12:00 am — 7:00 am whereas the wind speed
variation is significantly lower between 8:00 am — 4:00 pm.
It can be seen from several works [13], [17], [18], [44], [57]
that the temperature inversion effect occurs when cold air
is trapped near the surface due to warm air masses moving
above it. The temperature inversion effect mostly occurs at
night time at places that have flat terrain or at valleys. When
the sun rises, there is a build-up of convective boundary layers
after a few hours which results in the elimination of the
temperature inversion effect.

From Fig.11 and from other previous works [17], [37],
it is clear that the wind shear coefficient varies with time
for different sites which could be the effect of factors such
as surface roughness, ambient temperatures and atmospheric
stability. As seen from Fig.11, higher wind shear coefficient
is recorded for the early hours of the day. A few hours after
sunrise, the wind shear coefficient decreases steadily and at
around mid-day the wind shear coefficient is recorded to
be the lowest. Just after mid-day, the wind shear coefficient
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FIGURE 11. Diurnal variation of wind shear coefficient for Cook Islands.

begins to rise steadily and becomes almost constant after dusk
depending on the case. Fig. 12 shows the diurnal variation
of the average temperature for two sites in the Cook Islands.
It can be seen from Fig.11 and Fig. 12 that the diurnal average
temperature correlated well with the wind shear coefficient
for both the sites. It can be seen that for Mauke, the maximum
temperature occurs at 1.00 pm while for Rarotonga, the
maximum mean temperature is recorded at both 1.00 pm and
2.00 pm. For Nukufetau in Tuvalu, the maximum temperature
was recorded at 1.00 pm, while in Funafuti, it was recorded
at 2.00 pm [37]. For Suva in Fiji, the average maximum
temperature was recorded at 2.00 pm [17]. For the two sites in
Vanuatu, the averaged maximum temperature was recorded
at 1.00 pm [13]. Interestingly, for almost all these sites,
the minimum wind shear coefficient corresponded to the
time of maximum temperature while higher values of wind
shear coefficient corresponded to times of low temperatures.
After the elimination of the temperature inversion effect early
morning, the cold air trapped near the earth’s surface heats
up and starts to rise upwards. This upward movement of air
results in bunching of streamlines causing an increase in wind
speed above the previously trapped air. This reduces the wind
shear which reaches its minimum around mid-day. During the
times of higher temperatures, the upward movement of air
continues to reduce the velocity difference at the two heights
of 20 m and 34 m AGL due to the bunching of streamlines
and acceleration of flow at lower heights, which is clear from
the figure. In their work on mapping renewable sources for
100% renewable grids in 2050, Al-Ghussain et al. [58] made
their estimates with a wind shear coefficient of 1/7.

C. TURBULENCE INTENSITY

The turbulence intensity is an important parameter in the
design of wind turbines. The turbulence is caused by
fluctuating wind speeds with time. The turbulence level
depends mostly on the surface roughness of the site, the
strength of the wind and the hub height of the turbine. It is
known that at the normal wind turbine heights, the sites with
greater wind speeds have a higher turbulence intensity since
the turbulence intensity is the ratio of the standard deviation
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FIGURE 13. Diurnal variation of turbulence intensity for the whole year in
the Cook Islands at 34 m AGL.

of the wind speed over the wind speed of the particular
site. For wind turbines, very high turbulence intensities may
have catastrophic effects to the wind turbine. The turbulence
intensity (TT) is calculated using the following equation:

=24 27)
U

Fig. 13 shows the diurnal variation of the turbulence intensity
for the entire measurement period at the two sites in the
Cook Islands. It can be seen that the turbulence intensity
for the Mauke site is almost constant at 23% throughout
the year whereas the turbulence intensity for the Rarotonga
site is almost constant at 31% throughout the year. It is
noted that the turbulence intensity for the Rarotonga site is
higher. It was noted that for average and high wind speeds,
the turbulence levels are fairly constant on any given day.
At lower wind speeds, the turbulence levels were higher and
fluctuating.

D. WIND DIRECTION ANALYSIS

The wind directions for the Mauke and Rarotonga sites were
studied in detail and the frequency of counts by wind direction
were displayed over a contour plot of 360°. Fig. 14 shows the
wind rose plot for the Mauke site. It can be seen from the
wind rose plot that the predominant wind direction is from
the East at around 27% of the entire duration of measurement.
The wind is also coming frequently from South-East and
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FIGURE 14. Wind rose plot of Mauke Island in the Cook Islands showing
frequency of winds received from all directions.

North-East directions. For the two sites in Kadavu and Suva
in Fiji whose latitudes are closer to Mauke, the predominant
wind direction was found to be easterly [17], [36]. The overall
wind direction for the Mauke site (60° to 150°) was very
similar to the Suva site. Fig.15 shows the wind rose plot of
the Rarotonga site in the Cook Islands. It can be seen from
the wind rose plot that the predominant wind direction is
from East-North East direction at around 34% of the entire
duration.

E. ESTIMATION OF WEIBULL PARAMETERS

The statistical analysis of wind data for the Cook Islands
was carried out using the R software with the twelve
Weibull parameter estimation methods for estimating the
shape factor (k), scale factor (A) and estimating the wind
power density. Table 5 presents the values of different
goodness of fit tests and error measures for the Mauke site.
Table 6 presents the performance ranking for the twelve
methods, which show that the best method for estimating the
Weibull parameters and the correct wind power density was
the Least Squares Method which had the highest correlation
coefficient, second highest COE value, the third lowest value
for MAPE and relatively higher values for RMSE and MAE.
The Bayesian Estimates (BAYES) performed the second best
with the second highest value of the correlation coefficient,
eighth highest value of COE and relatively lower values of
RMSE, MAE and MAPE. In this case, the empirical method
of Justus (EMJ) and empirical method of Lysen (EML)
performed similarly because the shape factor (k) and the scale
factor (A) are the same and the corresponding wind power
densities are identical.

However, further analysis may be required to differentiate
between the two methods since the k and A values are only
in two decimal places. The third best method was the WAsP
method which had the fourth highest correlation coefficient,
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FIGURE 15. Wind rose plot of Rarotonga Island in the Cook Islands
showing frequency of winds received from all directions.
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FIGURE 16. Wind frequency distribution and Weibull distribution curve
for the Mauke site.

third highest value of COE, fifth lowest value of RMSE, the
eighth lowest value of MAE and the ninth lowest value of
MAPE. Thus for the Mauke site, the estimated wind power
density was 97.77 W/m?. Fig. 16 shows the wind frequency
distribution and Weibull distribution curve for the Mauke site
which shows that average wind speeds of around 4.5 m/s to
4.6 m/s are most frequent at around 20% to 21% of the entire
measurement period. It is observed that wind speeds greater
than 10 m/s are less frequent.

Fig. 17 shows the histograms and the probability distribu-
tion function for the Rarotonga site which shows that average
wind speeds of around 3.8 m/s are most frequent at around
18% to 19% of the entire measurement period. It is observed
that wind speeds greater than 10 m/s are less frequent. It is
also observed that the probability distribution function for
the Rarotonga site is skewed towards the right compared
to Fig. 16. This is because higher wind speeds experienced
at the Rarotonga site are less compared to the Mauke site.
The effective wind speed for the Rarotonga site was 60.1%.
Table 7 presents the goodness of fit test and error measure
values for the Rarotonga site whereas Table 8 presents the
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TABLE 5. Methods of estimating Weibull parameters, mean wind speed, WPD, and goodness of fit test results for Mauke, Cook Islands.

Method k A U WPD R? COE RMSE MAE MAPE
MQ 2.71 5.15 4.58 83.37 0.9941 1.2456 0.2995 0.1212 2.2851
MO 2.5 5.26 4.67 93.02 0.9966 1.0136 0.1176 0.0746 1.9934
EMJ 2.51 5.26 4.67 92.78 0.9965 1.0195 0.1207 0.075 1.9885
EML 2.51 5.26 4.67 92.83 0.9965 1.0195 0.1207 0.075 1.9884

LS 2.31 5.25 4.65 97.77 0.9976 0.8816 0.1555 0.1352 3.9065
ML 2.47 5.26 4.67 93.51 0.9971 0.9937 0.1089 0.076 2.1431

MML 2.42 52 4.61 92.17 0.9967 0.9684 0.129 0.101 3.0933
EPF 2.46 5.26 4.67 94.13 0.9973 0.9863 0.1047 0.0766 2.1784

WAsP 2.42 5.3 4.7 97.26 0.9973 0.9421 0.124 0.0985 25111

NMO 2.2 5.67 5.02 128.32 0.9965 0.6991 0.4634 0.3471 6.7335

BAYES 2.39 5.21 4.62 93.21 0.9974 0.9866 0.1050 0.0818 2.4716

CEPPD 2.72 5.49 4.88 96.95 0.99693 0.996 0.0766 0.06776 2.12096

TABLE 6. Performance ranking of different methods for Mauke, Cook Islands.
Method k A U WPD R? COE RMSE | MAE MAPE Ranking
LS 2.31 5.25 4.65 97.71 1 2 3 11 11 1

BAYES 2.39 5.21 4.62 93.21 2 8 11 2 6 2

WAsP 2.42 5.3 4.7 97.26 4 3 5 8 9 3

CEPPD 2.72 5.49 4.88 96.95 6 7 12 1 4 4
MO 2.5 5.26 4.67 93.02 8 9 8 3 3 5
ML 2.47 5.26 4.67 93.51 5 6 9 6 5 6
EMJ 2.51 5.26 4.67 92.78 9 11 6 4 2 7
EPF 2.46 5.26 4.67 94.13 3 5 10 7 7 8
EML 2.51 5.26 4.67 92.83 10 10 7 5 1 9

MML 2.42 5.2 4.61 92.17 7 4 4 9 10 10

NMO 22 5.67 5.02 128.32 11 1 1 12 12 11
MQ 2.71 5.15 4.58 83.37 12 12 2 10 8 12
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FIGURE 17. Wind frequency distribution and Weibull distribution curve
for the Rarotonga site.

performance ranking for the twelve Weibull methods at the
Rarotonga site. Table 8 shows that the best method for
estimating the Weibull parameters and the correct wind power
density was the Median and Quartiles method (MQ) which
had the fourth highest correlation coefficient, eighth highest
COE value, the lowest RMSE value, the lowest MAE value
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and the third lowest MAPE values. The second best method
was the Bayesian Estimates (BAYES) which had the eighth
highest correlation coefficient, ninth highest value of COE
and the second lowest values of RMSE, MAE and MAPE.
The moments method was ranked third for this case. The
empirical method of Lysen (EML), empirical method of
Justus (EMJ) and energy pattern factor (EPF) method also
performed well with almost similar Weibull parameters k and
A. Thus for the Rarotonga site, the estimated wind power
density was 66.25 W/m?. From the performance analysis,
it can be said that the average wind speed for the Mauke
site was 4.80 m/s whereas the average wind speed for the
Rarotonga site was 3.86 m/s. The previous work carried
out near the North-eastern coast of Rarotonga [12] reported
a mean wind speed of 6.7 m/s and Weibull parameters of
2.1 and 7.51 m/s using only the WAsP method.

Table 9 presents the Weibull parameters k and A, the
average wind speed and the wind power density for the two
different seasons in Mauke and Rarotonga. It is known that
most of the south pacific countries including Cook Islands
have two seasons: the warmer wet season and the cooler
dry season. The warmer wet season is from November to
April whereas the cooler dry season is from May to October.
It can be seen from table 9 that the k and A values are
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TABLE 7. Methods of estimating Weibull parameters, mean wind speed, WPD, and goodness of fit test results for Rarotonga, Cook Islands.

Method k A U WPD R? COE RMSE MAE MAPE
MQ 1.93 435 3.86 66.25 0.9987 1.0062 0.0753 0.0415 1.8992
MO 1.92 4.34 3.85 65.67 0.9987 1.0146 0.0778 0.0474 1.9661
EMJ 1.93 4.34 3.85 65.23 0.9988 1.0219 0.0782 0.0508 2.0841
EML 1.93 434 3.85 65.35 0.9987 1.0184 0.0775 0.0492 2.0592

LS 1.89 4.18 3.71 60.18 0.998 1.0574 0.1758 0.1526 4.4104
ML 1.9 433 3.84 66.22 0.9985 1.0038 0.0803 0.0448 1.8486
MML 1.96 437 3.87 65.63 0.9987 1.045 0.0947 0.0704 3.5756
EPF 1.94 4.34 3.85 64.98 0.9988 1.0318 0.0805 0.0546 2.3215
WAsP 1.95 4.4 3.9 67.5 0.999 1.0219 0.098 0.0674 3.606
NMO 2.17 5.02 4.45 90.24 0.9981 0.9946 0.5749 0.5619 18.5681
BAYES 1.94 431 3.82 63.81 0.9986 1.0055 0.0766 0.0438 1.8712
CEPPD 1.96 4.77 4.23 88.32 0.9612398 | 0.87173 0.0766 0.36135 10.3453
TABLE 8. Performance ranking of different methods for Rarotonga, Cook Islands.
Method k A U WPD R’ COE | RMSE MAE MAPE Ranking
MQ 1.93 435 3.86 66.25 4 8 1 1 3 1
BAYES 1.94 431 3.82 63.81 8 9 3 2 2 2
MO 1.92 4.34 3.85 65.67 5 7 5 4 4 3

EMJ 1.93 4.34 3.85 65.23 2 5 6 6 6 4

EML 1.93 4.34 3.85 65.35 6 6 4 5 5 5

EPF 1.94 4.34 3.85 64.98 3 3 8 7 7 6

ML 1.9 433 3.84 66.22 9 10 7 3 1 7

WAsP 1.95 4.4 39 67.5 1 4 10 8 9 8

MML 1.96 4.37 3.87 65.63 7 2 9 9 8 9
LS 1.89 4.18 3.71 60.18 11 1 11 10 10 10

CEPPD 1.96 4.77 423 88.32 12 12 2 11 11 11

NMO 2.17 5.02 4.45 90.24 10 11 12 12 12 12

TABLE 9. Estimated Weibull parameters for different seasons in Cook
Islands.

Location/Season k A U WPD
Mauke dry season 2.54 4.93 5.14 89.13
Mauke wet season 1.95 4.22 3.81 68.47
Rarotonga dry season 247 4.77 4.84 86.61
Rarotonga wet season 1.91 4.01 3.73 67.8

higher for the cooler dry season; the average wind speeds
are also higher along with the corresponding wind power
density. This compares well with Fig. 7 and Fig. 8, which
show the monthly average wind speeds for both the sites.
It is clear from the figures that the average wind speeds are
generally higher during the cooler dry season for both the
sites.

F. ESTIMATION OF ANNUAL ENERGY PRODUCTION (AEP)

The estimation of the annual energy production was carried
out for both Mauke and Rarotonga islands with five 275 kW
wind turbines placed virtually on five different locations
using the WASsP software which is an industry standard tool.
The Vergnet 275 kW wind turbines were used for estimating
the annual energy production. There were certain important
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parameters that were used for the analysis. The Vergnet
275 kW wind turbine has a hub height of 32 m, a rated wind
speed of 12.2 m/s, a rotor diameter of 32 m and a cut-out
wind speed of 25 m/s at a density of 1.16 kg/m> [44]. The
power curve of the Vergnet 275 kW wind turbine is shown in
Fig. 18.

Since PICs have experience with these turbines and there
are no major issues with their maintenance, they were chosen
for estimating AEP. The turbines can be lowered easily for
repair or when there is a cyclone warning; cyclones are
frequent in the South Pacific. These turbines are already in
use in countries like Fiji, Vanuatu and Samoa. The Vergnet
275 kW wind turbines are used in EFL’s (Energy Fiji Limited)
Butoni wind farm in Sigatoka. Other larger commercial
turbines are excellent but were not considered since they are
not suitable for the pacific island countries. The increased
costs associated with logistics, operation and maintenance,
and the costs for installation make these unviable in this
region. At the same time, it will not be easy to bring down
large MW-sized wind turbines if there is a cyclone warning.
The hub height of all the five chosen turbines at each location
was kept same as the height at which the wind data were
measured since there was no significant difference in the wind
measurement across the islands [44].
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TABLE 10. AEP from the five wind turbines at Mauke, Cook Islands.

Turbine site on Location (m) Power Density Net AEP (MWh) | Capacity Factor (%) Wake Loss (%)
Mauke (W/m?)

Turbine site 001 (671548.9, -2229978.0) 97 237.48 10 0.0

Turbine site 002 (671556.6, -2230675.0) 98 239.93 10 0.0

Turbine site 003 (671783.9, -2231440.0) 94 230.14 10 0.0

Turbine site 004 (672503.7, -2232448.0) 93 227.69 9 0.0

Turbine site 005 (673041.7, -2232948.0) 96 235.03 10 0.0

TABLE 11. AEP from the five wind turbines at Rarotonga, Cook Islands.

Turbine site on Location (m) Power Density Net AEP (MWh) Capacity Factor Wake Loss (%)
Rarotonga (W/m?) (%)

Turbine site 001 (416000,-2350800) 92 225.24 9 0.0
Turbine site 002 (414047.2, 2347127.0) 93 229.56 10 0.0
Turbine site 003 (416196,-2344636) 86 209.25 9 0.0
Turbine site 004 (418955.3,-2345149.0) 80 191.62 8 0.0
Turbine site 005 (421714.7,-2344978.0) 71 166.40 7 0.0

300 imported into WAsP using climate analyst and OWC wizard

and analysed for calculating the Weibull parameters k and

250 4 A. A map of each of the locations was downloaded using

the map editor. The coordinates of the locations were

= 200 - specified as well as the roughness lengths and the map

=~ extension. The map extension must be kept less than 10,000

§ 150 1 m from North to South or West to East to obtain more

I~ accurate results. The extensions of the map were kept around

100 1 5000 m for these two locations. The maps were saved

and imported into WAsP under the ‘terrain analysis’ and

20 the location of the measurement data site was specified.

" ; . . . It is important to specify the measurement site since it

0 5 10 15 20 25 acts as the reference point for other virtual turbines that

Wind speed, m/s

FIGURE 18. Power curve for Vergnet 275 kW wind turbine.

Table 10 shows the annual energy production for Mauke
island whereas Table 11 shows the annual energy production
for Rarotonga island. The total annual energy production
for all the five turbines in Mauke would be 1170.27 MWh
whereas the average annual energy production of each turbine
would be 234.05 MWh. The capacity factor for the turbines
in Mauke varies from 9% to 10%, whereas the wake loss
for the turbines is 0% from WASP since they are located
far from each other. Practically, the tip speed ratio of the
turbine will be high (above 12), hence the wake losses will
be very small [59], [60]. The total annual energy production
for all the five turbines in Rarotonga would be 1022.07 MWh
and the average annual energy production for each turbine
would be 204.41 MWh. The capacity factor for the turbines in
Rarotonga from WASsP results varies from 7% to 10% while
the wake loss is 0%. The combined power generated from
the proposed ten turbines will be able to meet 10% of the
country’s power requirement.

The wind power density maps were plotted using WAsP
mapping and terrain analysis software. The data were
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are installed for analysis and estimation of annual energy
production.

The wind turbines were placed close to the shoreline as
almost all of the population in the two islands is concentrated
close to the shoreline. This is in fact, the common trend in
most of the PICs. After placing a turbine, the hub height was
specified and the calculations were carried out. The results
for all the sites were accurate since the wind power density
matched with the analysis using the R software.

Fig. 19 shows the wind power density map of Mauke
showing the locations of all the five wind turbines whereas
Fig. 20 shows the wind power density map of Rarotonga
showing the locations of all the five wind turbines. On both
the islands, there are region of very high power density;
however, it will be impractical to install wind turbines there.
Those locations are at hills with high elevations, which will
cause practical difficulties for installing wind turbines.

G. ECONOMIC ANALYSIS

The economic analysis of installing ten Vergnet 275 kW wind
turbines was carried out with all the amounts in US$ based on
the following assumption [34]:

o Lifetime (T) of turbine = 20 years
o Interest rate (r) = 12%
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FIGURE 19. Wind power density map of Mauke in Cook Islands showing
the locations of the five wind turbines.

o Inflation rate (i) = 3%
o Operation, maintenance and repair works (Comr) = 25%
of the annual cost of turbine (machine price/life)
o Scrap value (S) = 10% of the cost of turbine and civil
work
o Investment (I) = cost of the turbine + cartage cost +
grid integration cost 4 civil work cost
The equation below shows how the present value of costs is
calculated:

14i 1+i\7 1+i\!
PVC =1+ C, — (1= )
+ 0mr|:r—i]|: <1+r) :| (l—l—r)

(28)

The cost of the turbine would be $660,000.00, which includes
the cost of purchasing the turbine, the cost of civil works,
the cartage cost and the cost for grid integration. The average
annual energy production was calculated for both the islands
Mauke and Rarotonga in the Cook Islands. The average
electricity tariff rate for the Cook Islands is $0.54/kWh [61].
The total annual energy production was calculated to be
2192.34 MWh for all the ten turbines which were installed
virtually on Mauke and Rarotonga. The average annual
energy production for each turbine was estimated to be
219.34 MWh. Thus, the average saving per turbine per
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FIGURE 20. Wind power density map of Rarotonga in Cook Islands
showing the locations of the five wind turbines.

year would be $85,443.60 which gives a payback period
of 7.72 years. Thus, investing in wind turbines would help
improve the economy of the country, as it will result in saving
precious foreign exchange. At the same time, it will reduce
the GHG emissions from the country.

IV. CONCLUSION

Wind energy resource assessment was carried out for two
sites on the islands Mauke and Rarotonga in the Cook
Islands. The average annual wind speed at the Mauke site
was 4.65 m/s whereas it was 3.86 m/s at the Rarotonga site.
The highest wind speeds for both the sites were recorded
in the month of July while the lowest wind speeds were
in the month of February. Eleven frequentist methods and
a Bayesian technique were employed in this work to find
the best distribution and accurate Weibull parameters. The
Weibull parameters, k and A, from the best method were
found to be 2.31 and 5.25 m/s at Mauke (LS method) and
1.93 and 4.35 m/s for Rarotonga (MQ method), while the
wind power densities were 97.77 W/m? and 66.25 W/m?
for the two sites respectively. The wind rose plots indicated
that the predominant wind directions are from the East and
the East-North East for the Mauke and Rarotonga sites,
respectively. The total annual energy production for Mauke
and Rarotonga from five wind turbines on each island
was estimated to be 1170.27 MWh and 1022.07 MWh
respectively, indicating good potential for wind power
generation. The average saving per turbine per year for
the Cook Islands was estimated to be $85,443.60 giving a
payback period of 7.72 years, which indicates that it would be
highly beneficial to install wind turbines at the two islands.
The next step in this work is for the Government of Cook
Islands to agree to install wind measurement towers at the
ten locations identified in the present work and collect about
3 years of data; based on which they can seek funding from
World Bank or some donor countries to install wind turbines
and reduce their dependence on imported fossil fuels which
will help them improve their economy as well as meet the
sustainable development goals of the UN.
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DATA ACCESSIBILITY STATEMENT

Sample data for Mauke island are uploaded on to the IEEE
DataPort (DOI: 10.21227/y6X3-j007). The full data can be
made available upon request and after approval from the
respective Governments.
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