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ABSTRACT In this paper, a novel image-based task-sequence/path planning scheme coupled with a robust
vision/force control method is suggested for solving the multi-task operation problem of an eye-in-hand
(EIH) industrial robot interacting with a workpiece. The proposed method suggests an optimal task sequence
planning scheme to perform all the tasks and an optimal path planning method to generate a collision-free
path between the tasks when the robot performs free-motion. To this end, a new method is presented which
solves both problems simultaneously. A novel deadlock-free modified artificial potential field (MAPF)
based on rotational potential force is developed for generating the collision-free path betweentasks in the
three-dimensional (3D) environment. The parameters of the MAPF and the sequence of the tasks are found
by an optimizer simultaneously. This problem can be considered as a MAPF-constrained-generalized-
traveling-salesman-problem (MAPF-CGTSP), which is a mix-integer optimization problem. The mix-
integer version of multi-tracker optimization algorithm (MTOA) is developed to solve the problem. However,
since image-based visual servoing (IBVS) is used for motion control, the planning is conducted in the image
space. Integrated with the proposed planning method, a novel chattering-free filtered quasi sliding mode
controller (FQSMC) is specially designed for robust vision/force control of the robot. FQSMC exploits
a novel variable-gain orthogonal-sliding-manifold (VGOSM)which enables the robot to switch between
free-motion mode and interaction mode. FQSMC overcomes large uncertainties and filters out the existing
noises by exploiting an intrinsic filter within its control law. Experimental results show the superiority of the
proposed approach to other state-of-the-art methods.

INDEX TERMS Optimal task-sequence/path planning, advanced artificial potential field, constrained
generalized traveling salesman problem, robust hybrid vision/force control, filtered quasi-SMC.

I. INTRODUCTION
In many industrial robotic operations such as spot welding,
milling, drilling, and electrical circuit soldering, the robot
may need to interact with the workpiece several times on
different paths or points, each of which can be considered
as a task [1], [2]. To carry out such a multi-task operation,
one solution is to consider each task as an individual oper-
ation. Then, the operator will program the robot to perform
each task one-by-one, i.e., manual task planning. Although
widely used, this method is time-consuming, and the oper-
ator’s mistakes may result in a collision and damaging the
workpiece. Therefore, planning an optimal sequence of the
tasks and generating a collision-free path for performing free

The associate editor coordinating the review of this manuscript and

approving it for publication was Cheng Chin .

motion between the tasks are crucial for industrial manufac-
turing to gain high productive, low cost, efficient, and safe
operations [3].

The task sequence planning aims at determining the order
of performing the tasks in a way that the overall operation
time duration is minimized. Usually, the task sequence prob-
lem is defined as a traveling salesman problem (TSP) whose
solution is the optimal sequence of the tasks. Depending
on the tasks’ types and constraints, different types of TSP
problems, such as standard TSP [4], generalized TSP [5] and
clustered TSP can be defined [1]. In [4], the task sequence
problem of a fruit picking operation is addressed. To this end,
the problem is directly formulated and solved as a standard
TSP. In [5], robotic multi-hole drilling operation is addressed,
where the robot task sequence problem is considered as a
modified generalized TSP. In [1], a clustering-based TSP
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algorithm is used to solve the task sequence problem of a
robot manipulator for a large number of target points and
greater spatial constraints in a cluttered environment. In these
studies, the operational areas are assumed to be free of obsta-
cles. In real operations, however, several obstacles may exist
in the robot workspace. Therefore, the lack of designing a
suitable path planning method between the tasks may result
in collision or generation of non-optimal paths.

Path planning involves the strategy of generating the
shortest path between the initial and destination positions
while avoiding the obstacles under several constraints.
Among different methods of path planning, artificial potential
field (APF) method is one of the most well-known and fea-
sible methods for generating a collision-free path. The basic
concept of the APF method requires filling the activity area
with the artificial potential field in which the agent is attracted
to its target position, and is repulsed away from the obstacles
and other agents [7]–[9]. In [7], a non-collision trajectory
planning strategy based on APF is developed for path opti-
mization of serial robots. In [8], a path planning method is
proposed with an APF method for redundant robots. In [9],
a new strategy is developed for assessing the collision risk
and avoiding it using an APF and the fuzzy inference system.
Although conventional APF is very effective for obstacle
avoidance, it suffers from major drawbacks, the most impor-
tant of which is trapping in local minima. This phenomenon
is the result of aligning the repulsive and attractive force
but in the opposite direction. Several approaches have been
presented to address this problem. In [48], a new technique
is employed to add repulsive force normal to the direction of
attractive force which provides more flexibility for the APF
method and results in the escaping from a local minimum.
Another solution is to use metaheuristic optimization algo-
rithms to set the parameters of the APF, to find a short path
that reaches the target. In [47], a repulsive potential field is
proposed by considering the relative distance between the
robot and the target. Then it is optimized by using particle
swarm optimization (PSO) to find the APF parameters in a
way that an optimal path between the target and the departure
point is generated. In [45] a dynamic membrane method
combined with the pseudo-bacterial genetic algorithm for
adjusting the parameters of APF is introduced to enhance
the optimization procedure. In [46], a membrane evolutionary
artificial potential field approach was proposed to solve the
mobile robot route planning problem, which combines mem-
brane computing with a genetic algorithm and the artificial
potential field method to find the parameters to generate a
feasible and safe route. The results show the superiority of
the proposed method to the others.

Although all these studies have shown successful results,
they are only applicable to single task operations. However,
in [6], an integrated path planning and task sequencing
approach is presented for robotic remote laser welding (RLW)
operation, which is a multi-task operation. A TSP with neigh-
borhoods and durative visits (TSP-ND) is defined to find the
optimal path and sequence of tasks. However, the proposed

method cannot be adopted when physical interaction with the
workpiece is required.

In addition to the path/sequence planning problem, interac-
tion with a workpiece by an industrial robot is a challenging
task that entails simultaneous control of the position of the
end-effector and interaction force [10]. To this end, hybrid
position/force control approach has been used in indus-
tries [10]–[14]. However, it requires the exact knowledge
of the end-effector and workpiece, such as their poses and
models, which may not be available [14].

To handle this issue, hybrid vision/force control has been
suggested, in which a vision system provides non-contact
measurement of some features of the workpiece or the end-
effector [13]–[16]. Note that many studies have attempted
to improve the overall performance of the visual servoing
for a free-motion task and address the existing disadvan-
tages [17], [18], while the research on advanced methods in
the context of hybrid vision/force control is rare [13]–[16].
In [13], a camera with an eye-to-hand (ETH) configuration
is used to estimate the position of the end effector. In [15]
and [16], an eye-in-hand (EIH) camera is used to perform
an image-based visual servoing (IBVS) in combination with
force control. First, the system is decoupled into force and
vision systems. Then two individual controllers are designed
for each one. Using an EIH camera eliminates the necessity
of knowing the workpiece’s model. However, designing two
separate controllers can be complex and time-consuming.
Besides, the effect of uncertainties is not considered, and
the overall controller’s stability is not proved. To cope with
this problem, employing sliding mode control method, would
be an option to overcome large uncertainties and provide
high tracking accuracy [20], [21], [37]. However, the conven-
tional SMC suffers from chattering which emanates from a
switching term within its control low. To handle this prob-
lem, several methods have been suggested such as higher-
order and Quasi SMCs [20], [21]. Another problem with
SMC is its susceptibility to noisy feedback. Usually, simple
low-pass filters or Kalman filters can be used to tackle this
problem. However, the performance of the control process
may be degraded since these filters are not usually robust
to uncertainties and also are not considered in the stability
proof of the controller. Employing SMC for vision control
systems using traditional image features is not feasible since
their interaction matrix might be noninvertible [19]. This is
the reason for the rareness of employing SMC in image-based
visual servoing research studies.

Note that for hybrid vision/force manipulation with multi-
ple tasks, the task-sequence/path planningmust be carried out
in the image feature space. Lots of research has been devoted
to path planning in image space for pure visual servoing with
different objectives [22], [23]. In [22], a path planningmethod
is coupled with IBVS that suggests a modification of the
projective interpolation algorithm that ensures the visibility
of the target, while the camera calibration is not required.
In [23], an image-based trajectory planning algorithm is pro-
posed to avoid the problems caused by the camera’s field of
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view of IBVS methods by parametrizing the camera velocity
screw utilizing time-based profiles. However, integrating task
sequence/path planning with the vision/force control is a
challenging task and to the best of our knowledge, such a
strategy has not been suggested before. The reason is that
the planning must be done in Cartesian space to gain an
optimal path and avoid the collision, while in IBVS, the
image feature feedback is employed, and the position of
the end-effector cannot be measured directly in real-time.
The fulfillment of the task demands a feasible method to
map any arbitrary desired trajectory from Cartesian space to
image feature space. It is noted that some mapping methods
have been proposed such as learning by demonstration and
spline fitting [24], [25]. However, these techniques cannot be
utilized to map the specified paths as it is required for task
sequence/path planning. In [24] a spline method has been
developed to transform the desired trajectory from Cartesian
space to the desired trajectory in image space. However,
in this method, a new desired image feature path is required to
be extracted corresponding to every different desired pose in
the Cartesian space. The same method is suggested in [25].
However, no fitting method is used and the smoothed sig-
nals in the feature space are utilized instead. In addition
to the mapping method, a technique should be integrated
with the overall control law for managing the switching
between the interaction and free-motion tasks. By employing
such an algorithm, the robot can touch the surface or detach
from it at the beginning and end of each task.

In this paper, to address all the mentioned issues of multi-
task operation performed by an EIH industrial robot, a novel
approach is developed. The proposed approach comprises
two main parts: an optimal path/task sequence planning
scheme and a robust hybrid vision/force control method.

Building upon the literature, a novel approach namedmod-
ified APF-constrained generalized TSP (MAPF-CGTSP) is
developed to solve the task sequence planning for multi-
task operations with the optimal path length and obstacle
avoidance. MAPF-CGTSP can be divided into two parts:
a) modified APF (MAPF); and b) constrained generalized
TSP (CGSTP).

MAPF is the modification of APF in which a rotational
repulsive force is added to the repulsive force in 3D space.
This repulsive force can be defined by two rotational param-
eters for each obstacle in the environment. If the param-
eters of the MAPF are adjusted properly, a deadlock-free
path will be achieved. CGTSP is a TSP problem that can
modelmulti-tasks operations sequence for an industrial robot.
Employing MAPF for path planning between each two
selected tasks by CGTSP results in MAPF-CGTSP model.
Note that the parameters of MAPF are continuous while
the sequence of the CGTSP is integers and binaries. There-
fore, to adjust the parameters of the MAPF and find the
optimal solution of CGTSP a mix-integer optimization algo-
rithm can be employed. To this end, the mix-integer version
of multi-tracker optimization algorithms (MTOA) is devel-
oped and applied to the problem [49]. Note that MTOA is

a population-based optimizer that can find the optimal solu-
tion with higher precision and reliability compared to those
of the other well-known methods such as genetic algorithm
(GA) [50], particle swarm optimization algorithm (PSO) [51],
and grey wolf optimizer (GWO) [52]. The objective function
of the optimization problem is the summation of the length of
the paths between every two tasks generated using the MAPF
and CGTSP sequence. When this function is minimized, i.e.,
MAPF-CGTSP is solved, an optimal path between the opti-
mal sequence of the tasks is generated. Note that since IBVS
method is used for controlling the robot, the initial position
of the end-effector (IP) is unknown in the Cartesian space
while it is known in the image feature space. Therefore, the
cost value cannot be calculated in the cartesian space directly.
To address this issue, first, the MAPF-CGTSP is transformed
from the Cartesian space into image feature space. To this
end, using the real data and a multi-layer perceptron neural
network (MLP-NN) [26], [38], a novel method is developed
to obtain the image features corresponding to the desired path
in the Cartesian space. Then, the equivalent cost value will be
calculated using the trajectories in the image feature space.

As mentioned before in the literature, the industrial robot
in this study uses an eye-in-hand IBVS. The conventional
IBVS methods are not suitable for tracking a trajectory
on the image plan or performing a multi-task operation
which needs switching between the free-motion and inter-
action with the workpiece several times. Therefore, in this
paper, a novel filtered Quasi SMC (FQSMC) is designed for
hybrid vision/force control. FQSMC exploits a variable-gain
orthogonal sliding manifold (VGOSM) comprising orthogo-
nal terms of force and vision errors with variable gains. Thus,
the convergence of sliding manifold towards zero leads to the
convergences of both force and vision errors towards zero.
The variable gains in VGOSM also contribute to increasing
the convergence speed, smaller tracking error, and preventing
unwanted oscillation. Additionally, a binary contact variable
is defined and incorporated in the VGOSM whose value
changes when the robot performs free motion or interacts
with the surface. A method is also developed to manage
to switch between the free-motion and hybrid vision/force
operations. FQSMC has a continuous output which results in
Quasi-motion and elimination of chattering. Besides, by ana-
lyzing the control law of FQSMC, an intrinsic low-pass filter
appears, which leads to filtering out the measurement noises
associated with the camera and force sensor. Since the intrin-
sic filter is part of the control law, it will be involved in the
stability proof and performance analysis.

The main contributions of this paper are listed as follows:
• Developing a new scheme called MAPF-CGTSP for
image-based task sequence/path planning for multi-task
operation of industrial robots.

• Presenting a new approach to obtain the image features
corresponding to the desired path in the Cartesian space
using a multi-layer perceptron neural network.

• Developing mix-integer MTOA to solve the optimiza-
tion problem of MAPF-CGTSP.
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• Designing a robust FQSMC with a novel VGOSM that
enables the robot to perform free motion and interaction
with the workpiece in the presence of uncertainties and
noisy signals.

The rest of this paper is organized as follows. The system
modeling and problem statement are described in section 2.
Section 3 develops an optimal task sequence/path planning.
The proposed hybrid controller is introduced in Section 4.
Section 5 gives and discusses the experimental results.
Conclusion remarks are drawn and presented in Section 6.

II. PROBLEM STATEMENT AND SYSTEM MODELING
In this section, the problem of performing a multi-task oper-
ation using IBVS and force control and system modeling is
presented. First, different types of tasks are defined. Next, the
modeling of a vision system is explained in detail and last,
the interaction force modeling exerted on the workpiece is
investigated.

A. PROBLEM STATEMENT
Referring to FIGURE 1.a, a six-DOF serial industrial robot
equipped with a force sensor and an eye-in-hand (EIH) cam-
era is considered. The workpiece is fixed with respect to the
robot’s reference frame. Also, a rectangular feature object
is marked on the workpiece’s surface whose corners are
considered as four feature points (FIGURE 1.b). The surface
of the workpiece satisfies fS (Xs) = 0 where fS : R3

→ R
is the constraint function depending on the workpiece geom-
etry; Xs = (xs, ys, zs) is the coordinate of any point on the
workpiece’s surface.

An operation may consist of two types of tasks: tasks in
which the end-effector should interact with the workpiece
while a) tracks a path; b) position to a single point. For the
former tasks, the coordinates of one of the path’s endpoints
can be considered as the departure point and the other end-
point as the destination point. The desired tracking speed and
the desired interaction force are dependent on the position
of the tool-tip on the path. For the latter task, the duration
of the regulation on the point is determined. Also, the desired
interaction force could be chosen as a function of time. These
tasks are defined as follows:

Task i :



Type :

{
1, for point
2, for path

Pwd (ϑ) =
[
fx (ϑ) fy (ϑ) fz (ϑ)

]T{
Tt , for point
vd (ϑ) , for path{
Fzd (t) , for point
Fzd (ϑ) , for path,

i = 1, 2, . . . , nT , ϑ =
[
0 1

]
. (1)

where nT is the number of tasks, ϑ is an auxiliary variable
which can vary from zero to one; Pwd (ϑ) is the desired path
on the planar workpiece which is generated from the depar-
ture point to the destination point when ϑ changes from zero

to one; Tt is the duration of the interaction with the workpiece
for the type 1 tasks, and vd (ϑ) is the desired velocity for
tracking the type 2 tasks. Fzd is the desired interacting force
signal, which is the function of time or ϑ for type 1 and
type 2 tasks, respectively. Note that

(
fx (ϑ) , fy (ϑ) , fz (ϑ)

)
,

i.e. the coordinate of a point on the predefined path of the
task for ϑ ∈

[
0 1

]
, must satisfy the surface constraint

since the task is defined on the surface of the workpiece, i.e.,
fS
(
fx (ϑ) , fy (ϑ) , fz (ϑ)

)
= 0.

The main objective of this paper is to develop an image-
based task sequence/path planning coupled with a hybrid
vision/force control method for the industrial robot to com-
plete the entire multi-task operations effectively.

B. MODELING OF THE VISION SYSTEM
The kinematic relationship between the image feature
vector and the camera frame {Fc} is derived as fol-
lows [17], [18], [35], [36]:

Ṡ = LsV (2)

where S ∈ Rnf is the vector of image features, nf is the num-
ber of image features, V ∈ R6 is the relative kinematic screw
between the camera and the object (workpiece), and Ls ∈
Rnf×6 is the interaction matrix. Note that the image features
that are chosen for visual servoing of a 6-DOF robotic arm
should correspond to the end-effector’s pose, i.e., should map
the projection of the end-effector trajectory from Cartesian
space onto the camera image plane. A good feature point is
one that can be located unambiguously in different views of
the scene, such as the corners of the feature object. The image
features parameters are defined to be any real-valued quantity
that can be calculated from one or more image features, such
as the distance between two points in the image plane and the
orientation of the line connecting those two points [41], [42],
perceived edge length [43], the area of a projected surface, the
relative areas of two projected surfaces, or the centroid and
higher-order moments of a projected object [35], [43], [44].

To have a unique solution for traditional IBVS and also
prevent the singularity issue, one preferable choice is to
adopt an object with at least four feature points (or eight
image features) [35], [36]. However, in traditional IBVS,
the main objective is to minimize the norm of image fea-
ture errors instead of converging them towards zero. This
issue arises since LS may not be invertible. In this case,
the system is locally stable, and global stability cannot be
guaranteed [17], [18]. Hence, employing advanced IBVS
control strategies is not possible since the global stability
of the closed-loop system is not ensured. To cope with this
problem, a set of modified image features S suggested in [23]
(please refer to FIGURE 1.b) is adopted as follows:

S =
[
xc yc Dc θcx θcy θcz

]T
(3)

where:

xc =

∑4
i=1 xci
4

, yc =

∑4
i=1 yci
4
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Dc =
∑3

i=1

√
(xci+1 − xci)2 + (yci+1 − yci)2

+

√
(xc1 − xc4)2 + (yc1 − yc4)2

θcx =
1
2

(
atan

(
xc2 − xc1
yc1 − yc2

)
− atan

(
xc3 − xc4
yc4 − yc3

))
θcy =

1
2

(
atan

(
yc3 − yc2
xc3 − xc2

)
− atan

(
yc4 − yc1
xc4 − xc1

))
θcz =

1
2

(
atan

(
yc1 − yc4
xc4 − xc1

)
+ atan

(
yc2 − yc3
xc3 − xc2

))
(4)

The image interaction matrix LS corresponding to the image
features of (3) has full-rank and thus can be invertible. The
entries of LS are available in [23]. The camera velocity screw
is mapped to the joint space using the following relation:

V = Jqq̇ (5)

where Jq ∈ R6×6 and q̇ ∈ R6×1 are the robot Jacobian
and vector of joint velocities, respectively [40]. Substituting
(5) into (2) yields Ṡ = LsJqq̇. In the real applications, the
uncertainties exist in the interaction matrix and Jacobian, i.e.,
LsJq = L̂sĴq+δs. Accordingly, the following relation yields:

Ṡ = L̂sĴqq̇+ δs (6)

where, δs = δsq̇ is the uncertain part of the visual model, and
notationˆdenotes the nominal part.

C. INTERACTION FORCE MODELING
To design a force controller, the model of interaction between
the tool and the workpiece should be derived. To this end, the
stiffness model is exploited [27]. Accordingly, the mathemat-
ical formulation of the interacting force when the tool tip is
in contact with the workpiece’s surface is modeled as:

F = Kf Pf (7)

where Kf εR6×6 is the nominal diagonal stiffness matrix, Pf
is the displacement vector, and F is the vector of forces
and torques exerted to the tool. Taking time derivative of (7)
yields:

Ḟ = Kf V (8)

Substituting (5) into (8) yields Ḟ = Kf Jqq̇. Considering
uncertainties in the kinematic relations and stiffness coeffi-
cient, i.e., Kf Jq = K̂f Ĵq + δF , which leads to the following
relation:

Ḟ = K̂f Ĵqq̇+ δF (9)

where, δF = δF q̇ is the uncertain part of the interaction force
model, and notationˆdenotes the nominal part.

III. IMAGE-BASED TASK SEQUENCE/PATH PLANNING
To accomplish the multi-task operation, the robot should start
from its initial position, select a task, and move towards the
position above the start point of the path associated with
the first task by a free motion. When the robot has fully
converged to this position, the robot will move towards the

FIGURE 1. (a) Six-DOF industrial robot equipped with a force sensor and
camera with EIH configuration. (b) Feature object in the image.

surface to come into contact with it. Then, the interaction
begins, and the robot starts tracking the desired path and
the force signal, simultaneously. When the path is tracked
completely, the robot will detach from the surface and the
first task is completed. Then the robot selects the next task,
and the same procedure will be performed. This procedure
continues till all tasks are completed. To make this procedure
automatic, four main parts must be considered: a) an opti-
mal task sequence/path planning method; b) a mechanism
to contact with and/or detach from the workpiece’s surface;
c) a method to map the desired path from the Cartesian space
to image space, and d) a proper vision/force control method
for performing the tasks and free motions. The first three
items are discussed in the following subsections and a novel
hybrid control method will be presented in the next section.

A. OPTIMAL TASK SEQUENCING/PATH PLANNING
Planning the sequence of the tasks is of significant impor-
tance since between every two tasks there is a distance
or path that the robot should pass to reach the next task
with a free motion (pure IBVS). Optimal sequence planning
would decrease the overall length of free motion distance
and thereby reduce the operation time and energy consump-
tion. At the same time, generating a feasible and safe path
between the tasks and the avoidance of all obstacles in the
environment is desired. Therefore, the combination of the
task sequence and path planning for a multi-task operation
result in decreasing the overall length of the path tracked
by the robot for the whole operation. To this end, in this
section, a hybrid optimal task sequence/path planningmethod
is developed while avoiding the obstacles. First, the prede-
fined tasks are described in the following subsections, and
then, the task sequencing and path planning problems are
presented in detail.

1) PREDEFINED TASKS
For type 1 task, the robot is controlled to the desired
point. However, for type 2 task, the desired path should
be transformed to the desired signals so that the robot
can track it. Therefore, the following relation holds for the

VOLUME 10, 2022 26351



B. Ahmadi et al.: Optimal Image-Based Task-Sequence/Path Planning and Robust Hybrid Vision/Force Control

desired path:

(vd (ϑ))2 =

((
∂fx (ϑ)
∂ϑ

)2

+

(
∂fy (ϑ)
∂ϑ

)2

+

(
∂fz (ϑ)
∂ϑ

)2
)(

dϑ
dt

)2

(10)

where vd is the tracking velocity. According to (10), ϑ (t) is
derived as follows:

ϑ (t) =
∫ t

0
vd (ϑ)

((
∂fx (ϑ(t) )
∂ϑ (t)

)2

+

(
∂fy (ϑ (t))
∂ϑ (t)

)2

+

(
∂fz (ϑ (t))
∂ϑ (t)

)2
)− 1

2

dt (11)

By substituting ϑ (t), given in (11), into (1), the following
desired signal is obtained:

Pcd (t)=
[ (
PPcd (t)

)T
(POcd (t))T

]T
,

PPcd (t)=
[
fx (ϑ (t)) fy (ϑ (t)) fz (ϑ (t))

]T
,

POcd (t)=
[
θxd

(
PPcd (t)

)
θyd

(
PPcd (t)

)
θzd

(
PPcd (t)

)]T
(12)

where
(
θxd , θyd , θzd

)
is the orientation of the end-effector

obtained when the end-effector is normal to the workpiece
surface on the interaction position, i.e., rot (POcd (t)) =
Qn(t)
‖Qn(t)‖

where Qn (t) =
[
∂fS (x,y,z)

∂x
∂fS (x,y,z)

∂y
∂fS (x,y,z)

∂z

]T
at

PPcd (t) and rot (.) is the rotation matrix of the end-effector.

2) TASK SEQUENCING PROBLEM
For each path, two points are considered above its end-points
with a specific distance dA called auxiliary end-point (AEP).
These AEPs are the departure and destination points when the
robot performs free motion for switching between the tasks.
When a task completes, the tool-tip detaches from the work-
piece and stays on the corresponding AEP. Then, another task
is selected, and the robot moves towards the AEP correspond-
ing to the next task tomove downwards to the surface and start
the interaction. This procedure continues till all tasks are done
and the whole operation completes. As mentioned before,
since the control process is carried out in feature space, the
initial position of the end-effector is unknown in Cartesian
space. Thus, to prevent the collision with the workpiece or
obstacle at the beginning of the operation, a hypothetical
box that encompasses the workpiece and the obstacles can
be considered. The height of this box is higher than the
workpiece’s maximum height and the initial position of the
end effector, i.e., IP, is assumed to be higher than the height
of the hypothetical box. Then AEPs are extended to the top
surface of the box (in the normal direction to the surface of the
workpiece) and their intersections with that surface generate
some new AEPs called NAEPs. Therefore, to prevent the
collision, the robot tracks the line that connects the IP to
the selected NAEP. Finally, the robot tracks the connecting

FIGURE 2. Task sequence planning in the workspace.

line from the NAEP to the corresponding AEP and continues
the operation by selecting the AEPs of the remaining tasks
(FIGURE 2).

The main objective of the task sequence planning, in this
study, is to minimize the summation of path lengths between
the AEPs of the tasks and the distance between the initial
point of the tool-tip and the first AEP. Note that when a path is
selected only one of the AEPs corresponding to its end-points
can be selected which is the main property of generalized
TSP (GTSP). Furthermore, if the selected task is tracking
a path, one of its corresponding AEPs must be selected as
the destination point and thus the other corresponding AEP
is the departure point of the next sequence. However, if the
selected task is a point, its corresponding AEP is considered
as both the destination and departure points for the current
and next sequences. Therefore, this is a constraint for the
end-point selection corresponding to the task. Accordingly,
the overall task sequence planning problem can be defined as
a constrained GTSP (CGTSP) (FIGURE 3). The CGTSP is
defined as follows,

Min : CostCGTSP =
∑nT

j=1

∑2

l=1

(
Cij,ldij,l

)
+

∑nT

i=1

∑nT

j=1

∑2

k=1

∑2

l=1

(
Ci,j,k,ldi,j,k,l

)
,

Contraints :
∑nT

i=1

∑2

k=1

(
Cii,k

)
= 1;∑nT

i=1

∑2

k=1

∑2

l=1

(
Ci,j,k,l

)
= 0;∑nT

i=1

∑nT

j=1

∑2

k=1

∑2

l=1

(
Ci,j,k,l

)
= nT − 1;∑2

k=1

∑2

l=1

(
Ci,j,k,l

)
≤ 1

∀i ∈ {1, . . . , nT }&j ∈ {1, . . . , nT } (13)

where di,j,k,l is the length of the path between the k th AEP
of the ith task and l th AEP of the jth task which is calcu-
lated using MAPF explained in the next subsection; dij,l =∥∥IP− AEPj,l

∥∥ is the distance between the IP and the l th AEP
of the jth task; Ci,j,k,l ∈ {0, 1} is the binary variable that
indicates the connection from k th AEP of the ith task to l th

AEP of the jth task, and Cij,l ∈ {0, 1} is the binary vari-
able that indicates the connection from IP to l th AEP of the
jth task.
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FIGURE 3. Task sequence planning in the image plane.

3) PATH PLANNING USING MAPF
In the manufacturing industry, the robots normally perform
the operations on the workpieces with complex geometries.
Thus, the ability to interact with these kinds of surfaces has
been regarded as an important part of the industries [32]–[34].

For such workpieces, the free movement from one point
to another cannot be performed on a straight line, due
to the potential collision. To avoid the collision, the free
motion must be done on a path that connects those two
points (FIGURE 2).

For generating a collision-free path, APF method has been
a prevailing method [30]. In APF, two kinds of potential
fields are considered. a) attractive potential field towards
the target destination AEP, i.e., Uatt (X); and b) repulsive
potential fields from the surface of the object, i.e., Urep (X).
Accordingly, the overall potential field U (X) is obtained as:

U (X) = Uatt (X)+ Urep (X) (14)

where X ∈ R3 is the coordinate of a point in the Cartesian
space in the workpiece frame; Uatt (X) and Urep (X) are as
follows:

Uatt (X) =
Cp1
2
‖X − Xdes‖2 ,

Urep (X) =


Cp2
2

(
1
ds
−

1
dm

)2

, ds < dm

0, ds ≥ dm,
(15)

where dm is the thickness of the inadmissible layer on the
surface and CPi, i = 1, 2, 3, are positive constants, Xdes is the
coordinates of the destination point and ds = ‖X − Xn‖ is
the normal distance to the surface of the workpiece. Xn is the
point on the surface, which has the minimum distance to X .

Thus, Xn is the solution of

 fS (x) = 0
∂f d (x)
∂x

= 0
where fd (x) =

‖X − x‖.
According to (14) and (15), the overall potential force is

calculated as follows,

F (X) = Fatt (X)+ Frep (X) (16)

FIGURE 4. Rotational potential force.

where Fatt (X) and Frep (X) are the attractive and repulsive
potential forces can be obtained as follows:

Fatt = Cp1 (Xdes − X) (17)

Frep =

Cp2
1
d2s

(
1
ds
−

1
dm

)
∇ds , ds < dm

0, ds ≥ dm
(18)

To generate the desired path from Xdep to Xdes, the steepest
decent method with a constant velocity vm is adopted as
follows:

X (t) = −
∫ t

0

(
F (X)
‖F (X)‖

vm

)
dt + Xdep, X (tdes) = Xdes

(19)

The main disadvantage of APF is its inability to escape
from local minima. When repulsive force and attractive force
has the same value but in the opposite direction, the equivalent
force becomes zero and thus, it sticks in a local minimum
point. One way to handle this issue is to use optimization
algorithms to adjust the parameters, with the objective of
reaching the destination point. However, due to the lack of
flexibility, the solution for the optimization problem may not
exist. To address this issue, in this paper, APF is modified by
adding a rotational force in 3D space which leads to modified
APF (MAPF). This rotational force contributes to escape
from local minima by deviating the direction of the repulsive
force and thus rounding the obstacle. Therefore, the overall
potential force will not be zero in the points where the local
minima occur and by adjusting the parameters properly, the
problem of local minima can be solved. The direction of the
rotational force is normal to the repulsive force and can be
calculated as follows:

Frot (X) =
tan (αrot) · Frep (X) ·

(
Frep (X)× Nrot

)∥∥Frep (X)× Nrot∥∥ (20)

where Nrot is the vector normal to the plane that passes
through the departure and destination points and is fixed with
a specific angle βrot . An example of the rotational force in
3D space is depicted in FIGURE 4. Therefore, the overall
potential force can be rewritten as follows:

F (X) = Fatt (X)+ Frep (X)+ Frot (X) (21)

4) CGTSP-MAPF
As mentioned before, to solve the CGTSP, the length of the
paths between each task should be known. These paths, how-
ever, are generated using MAPF whose parameters should

VOLUME 10, 2022 26353



B. Ahmadi et al.: Optimal Image-Based Task-Sequence/Path Planning and Robust Hybrid Vision/Force Control

be adjusted properly by an optimization algorithm. It is
advantageous to merge both CGSTP andMAPF optimization
problems as one optimization problem. Note that since the
parameters of CGSTP and MAPF are binary and continuous,
the resultant optimization problem would be a mix-integer
one. To this end, a mix-integer version ofMTOA is developed
and employed to solve this problem which is discussed in the
following subsections.

a: CGTSP-MAPF OPTIMIZATION PROBLEM
Since the control process is carried out in the image feature
space, the generated path by MAPF must be transformed
into this space. Besides, the initial pose of the end-effector
in the Cartesian space is unknown. Thus, without the loss
of generality, the paths between the AEPs in cartesian
space are replaced with the corresponding trajectories in
the image feature space whose length can be calculated as
follows,

dab =
∫ Tab

0

(
STMAPFabWpSMAPFab

)
dt (22)

where SMAPFab ∈ R6 is the normal image feature vector
corresponding to a point on the path between point a and b;
and Wp ∈ R6×6 is the positive definite orthogonal matrix to
be defined by the user. Note that SMAPF is defined as follows:

SMAPF =

[
xc√
Dc

yc√
Dc

√
Dc
cz

θcx θcy θcz

]T
(23)

where cz is the coefficient of the depth in the image
plane which is calculated based on the size of the image
object. To map the generated path in the cartesian space
to the image plane an MLP neural network is devel-
oped, which will be described in detail. It is worth men-
tioning that dab is a function of MAPF parameters, i.e.,{
Cp1,Cp20 , . . . ,Cp2no , αrot1 , . . . , αrotno , βrot1 , . . . , βrotno ,
dm0 , . . . , dmno

}
, which are adjusted by the optimization algo-

rithm. Accordingly, based on (13), the overall CGSTP-MAPF
optimization problem is derived as follows,

Min : CostCGTS-MAPF =
∑nT

j=1

∑2

l=1(
Cij,ldij,l

)
+

∑nT

i=1

∑nT

j=1

∑2

k=1∑2

l=1

(
Ci,j,k,ld i,j,k,l

)
,

Contraints :
∑nT

i=1

∑2

k=1

(
Cii,k

)
=1;∑nT

i=1

∑2

k=1

∑2

l=1

(
Ci,j,k,l

)
=0;∑nT

i=1

∑nT

j=1

∑2

k=1

∑2

l=1(
Ci,j,k,l

)
= nT − 1;∑2

k=1

∑2

l=1

(
Ci,j,k,l

)
≤ 1

∀i∈{1, . . . , nT }&j∈{1, . . . , nT },

Optimization Variables :

MAPF variables :
{
Cp1,Cp20 , . . . ,Cp2no , αrot1 , . . . ,

αrotno , βrot1 , . . . , βrotno , dm0 , . . . ,

dmno
}
∈ R+

CGSTP variables : Cii,k ∈ {0, 1} (24)

b: MIX-INTEGER MTOA
To solve the CGTSP-MAPF, the mix-integer version of
MTOA is developed and employed. MTOA, which is a
population-based optimization algorithm, was developed by
Zakeri et al. in 2017 [53]. MTOA is composed of two types of
trackers, global GT and local LT . During the search process,
the global tracker,GT s, using stochastic motion and informa-
tion from LT s, explore to find the global optimal point (GOP),
(25), [53]. The number of the local trackers is predetermined;
each of them explores in a neighborhood of the corresponding
GT with radius RS , (26), to find the local optimal point, LP.
The search radius around each GT is determined by its rank,
RK. The search process of this algorithm is described in
detail in [53].

Gi = β
(
GOP− GTi

)
+ (1− β)

(
LPi − GTi

)
,

0 ≤ β ≤ 1 (25)

Rsi =

{
Rf i, Rf i ≥ Rd i
Rdi, Rf i < Rd i,

Rf =
RKi − 1
nop− 1

· (RM − Rm)+ Rm,

Rd i =
∥∥GTi − GOP∥∥ (26)

where Rm and RM are the predefined minimum and max-
imum search radii, respectively. Note that to make MTOA
applicable for integer optimization variables, the following
relation has been used:

Xint =

[
Xcon ·

(
1+ XintMAX − XintMin

)]
XconMAX − XconMin

+ XintMin (27)

where [.] denotes the floor function, Xcon and Xint are the
continuous and integer variables for the optimization, respec-
tively. XconMAX , XconMin , XintMAX , and XintMin are the maxi-
mum and minimum of the continuous and integer variables,
respectively.

B. MAPPING FROM CARTESIAN SPACE TO IMAGE PLANE
In IBVS, S (t) is the set of image features corresponding
to the pose of the camera (or end-effector) with respect to
the workpiece frame

{
Ff
}
at the time instant t , i.e., Pc (t).

However, defining Sd (t), which is the set of desired image
features corresponding to the desired pose Pcd (t), is a chal-
lenging task. To this end, two main approaches have been
suggested [25]: a) extracting analytical relationship between
Pcd (t) and Sd (t); and b) experimental derivation of Sd (t)
when the camera pose is adjusted to Pcd (t) manually, i.e.,
image trajectory planning based on robot programming by
demonstration [25].

26354 VOLUME 10, 2022



B. Ahmadi et al.: Optimal Image-Based Task-Sequence/Path Planning and Robust Hybrid Vision/Force Control

However, the first method may not be precise in the prac-
tice due to existing uncertainties in the camera’s intrinsic
and extrinsic parameters and the second method involves
a cumbersome procedure which makes it inappropriate for
tracking the desired paths. In this study, to handle these prob-
lems, the combination of these two methods is considered.
First, the analytical relationship between Ŝd (t) and Pcd (t) is
derived. Then, Ŝd (t) passes through a three-layer multi-layer
perceptron (MLP) neural network [26] whose output, Sd ,
is the estimation of Sd . Then, the NN is trained to minimizing
esd = Sd − Sd .

Let f̂sd : R6
→ R6 be the analytical function that takes

desired pose and returns estimated corresponding desired fea-
ture, i.e., Ŝd (t) = f̂sd (Pcd (t)). Using NN, Sd is obtained as:

Sd (t) = NNsd

(
f̂sd (Pcd (t))

)
= f̂sd (Pcd (t))+W3fsig

(
W2fsig

(
W1Ŝd+B1

)
+B2

)
+B3 (28)

where, fsig (?) = 1
1+e−? is the sigmoid activation function.

W1 ∈ Rn1×6, W2 ∈ Rn2×n1 , and W3 ∈ R6×n2 are weight
matrices and B1 ∈ Rn1 , B2 ∈ Rn2 , and B3 ∈ R6 are the biases
of the NN, all of which are tuned by training. n1 and n2 are
the number of neurons in the first and second hidden layers.
The topology of the adopted NN is illustrated in FIGURE 5.a.

To train the NN, a set of desired poses, PSD, which are
selected randomly with a uniform probability distribution in
the workspace, is determined as follows:

PSD =
{
PR1 PR2 · · · PRnd

}
(29)

where PR1 to PRnd are the preselected desired poses, and nd is
the number of sampling data. Then, the sets of image features,
SSD, corresponding to PSD are acquired as:

SSD=
{
SD1 SD2 · · · SDnd

}
(30)

where SDi is the real image feature corresponding to PRi
acquired in experiment. The pair of SSD and PSD can be used
to train the NN using Levenberg-Marquardt (LM) method to
minimize the following cost function [31]:

Cost =
∑nd

i=1

(
SDi − NNsd

(
PRi
))T

×CNN
(
SDi − NNsd

(
PRi
))

(31)

where Cost is the cost function, and CNN ∈ R6×6 is the
diagonal positive definite matrix of cost value weight.

Besides the mapping network, an approach is needed to
manage detachment from and contact with the workpiece’s
surface. The main desired path is defined on the workpiece’s
surface. Then, consider two other desired paths: one is ren-
dered by moving the main desired path above the surface,
called PdF , and the other beneath it, called PdI , with the mar-
gin shown in FIGURE 5.b The desired features corresponding
to those paths are SdF and SdI , respectively. Accordingly,
if the robot needs to detach from the surface, i.e., free motion,
SdF is selected and if the robot needs to interact with the

FIGURE 5. (a) The three-layer NN. (b) Pd , PDF
, and PdI

.

surface, SdI is chosen. Once the tool contacts with the surface,
the binary switching variable ψε {0, 1} is set to 1 and hybrid
control is conducted, provided that SdI is selected as the
desired path. Otherwise, ψ = 0 and free motion is carried
out. This is done by incorporating ψ into the sliding variable
which will be described in the next section. This proce-
dure is presented in Algorithm 1 and named task manager
(TM). In TM, exploiting some thresholds, the contact can be
detected effectively.

Algorithm 1 TM
Initialize FTH ,FTL ,FIinx ;
Input: F,FIinx ;
If (FIinx is1 and ‖F‖ > FTH ) Then ψ = 1; Sd = SDI ; Else
ψ = 0; Sd = SDF ;
Return Sd , ψ ;

IV. HYBRID VISION/FORCE CONTROLLER DESIGN
In this section, FQSMC is designed to exploit a novel
VGOSM for hybrid control of vision and force which leads to
robustness against uncertainties and noises. It also can control
the robot for both free-motion and hybrid vision/force tasks.

A. VARIABLE-GAIN ORTHOGONAL SLIDING MANIFOLD
1) ORTHOGONAL SLIDING MANIFOLD DESIGN
Consider the suggested sliding manifold σεR6 as follows:

σ = σF + σs (32)

where σFεR6 and σsεR6 are orthogonal vectors associated
with the force error and the image feature error, respectively,
presented as follows:

σF = QeF , σs = Kc (I−Q) eP (33)

where eFεR6, epεR6, and QεR6×6 are the vectors of force
and robot pose errors and the compliance selection matrix,
respectively, presented in (34);KcεR6×6 is a positive definite
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orthogonal matrix whose terms are variable, which will be
discussed in the next subsection.

eF =F−Fd , eP=
ˆ̄L−1s es, Q=ψDTD, es=S−Sd (34)

where, FdεR6 is the vector of desired forces, and esεR6is the
vector of image feature errors, SdεR6 is the vector of desired
image features, DεR6 is the selection vector whose entries
are either zero or one, corresponding to directions where
the exerted force must be controlled, ψ is zero when the
robot has a free motion and one when the robot is interacting
with the workpiece whose value is determined by the TM
algorithm. In this research, the interaction force in the normal
direction to the end-effector is controlled. Thus, D is defined
as follows:

D =
[
0 0 1 0 0 0

]
(35)

In Theorem 1, it is proved that σF and σp are orthogonal.
Hence, if lim

t→+∞
σ = 0, then lim

t→+∞
σF = lim

t→+∞
σs = 0 i.e.,

the objective of the vision/force control is achieved.
Theorem 1: σF and σp vectors are orthogonal.
Proof: Consider the following relation:

σFS = σF · σs = σ
T
F σs (36)

where σFP is the results of dot-product of σF and σs. Substi-
tuting (33) into (36) yields:

σFS = (QeF )T (Kc (I−Q) eP) (37)

Since Kc and Q are diagonal, (37) can be rewritten as:

σFS = eTFQ (I−Q)KceP (38)

In (38), QT (I−Q) = 0, thus σFS = 0 Referring to [29],
if the dot product of two vectors is zero, they are orthogonal,
i.e., σF and σS are orthogonal and the proof is completed.

2) VARIABLE GAIN OF THE VISION TERM
One way to reduce the response time of IBVS is to increase
the gain values in the control law. However, there is a lim-
itation on this value because the high gain in IBVS con-
troller tends to make the robotic system shaky and unstable.
On the other hand, low gains may make the system very
slow [18], [28]. To handle this issue, adaptive variable-gain
IBVS and switch IBVS have been suggested, [18], [28], [39].
In the adaptive variable-gain method, the value of the control
gain changes based on the norm of feature errors. When
the norm is large, the gain sets to a large value to speed
up the convergence rate. On the other hand, when the norm
is small, the control gain is set to a small value to prevent
unwanted oscillation and instability [28]. In the switch IBVS
method, the visual motion is decomposed into translational
and orientational motions of the camera, respectively. Then,
each motion is controlled independently and with different
feedback gains. However, due to the switching nature of this
method, it is only applicable to vision control systems that
are designed for regulation purposes [18]. Hence, it cannot
be utilized in this study.

Based on the two mentioned methods, a novel variable
gain using tangent hyperbolic function is developed for
the vision term in the VGOSM. The continuous nature of
the obtained method makes it possible to be adopted for
vision systems with tracking trajectory purposes. In (33),
Kc is identical to the feedback control gain of switch

IBVS in [18] which is defined as KC =

[
Kt 03×3
03×3 Ka

]
,

where KtεR3×3 and KaεR3×3 are positive definite diagonal
matrices of feedback gains associated with the translational
and orientational motions of the camera, respectively. Also,
translational and orientational errors of the camera motion
are ePtεR3 and ePaεR3, respectively, determined as eP =[
eTPt eTPa

]T. Accordingly, the variable-gain relation is sug-
gested as follows:

Kt =

(
tanh (at ‖ePt‖ + bt)+ 1

2

(
cHt − cLt

)
+ cLt

)
I3×3,

Ka =

(
tanh (aa ‖ePa‖ + ba)+ 1

2

(
cHa − cLa

)
+ cLa

)
I3×3

(39)

where at , aa, bt , and ba are adjustable parameters that deter-
mine the characteristics of the smooth switching function
tanh (.). cHt , cHa , cLt , and cLt are the lower and upper bounds
of the feedback gains. The above equation aims to provide
adjustable gains based on the error. According to this equa-
tion, it can be seen that as the error decreases, the gain values
of Kt and Ka changes from their high-level values cHt , cHa
to their low-level values cLt , and cLa . As a result, the vision
system converges fast when the error is high and avoids
oscillation when the error is low.

B. FILTERED QUASI SLIDING MODE CONTROLLER
FQSMC not only is robust against uncertainties, but also
filters out the noise in the feedback. It exploits a filter within
its control law which is also considered in the procedure of
its stability proof. Additionally, its continuous output leads to
a chattering-free SMC. All of these features make FQSMC a
candidate for the systems subject to large uncertainties and
measurement noises such as the one in this study.

1) CONTROL LAW DESIGN
To derive the FQSMC control law, the time derivative of σ
is taken. It results in appearing the system input, i.e., u = q̇.
Thus, σ̇ is obtained as follows:

σ̇ = QėF + (diag {eP} (I−Q) JK +KC (I−Q)) ˆ̄L−1s ės
(40)

where JK =
∂md{KC }
∂eP

, in which md {?} is the function that
takes a squared matrix ? and returns its main diagonal as a
vector. Taking time derivatives of (34) and then, substituting
(6) and (9) into it, results in the following relations:

ėF = K̂f Ĵqu+ δF − Ḟd , ės =
ˆ̄LsĴqu+ δs − ˙Sd (41)
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Substituting (41) into (40) yields:

σ̇ = Q
(
K̂f Ĵqu− Ḟd

)
+ (diag {eP} (I−Q) JK

+KC (I−Q)) ˆ̄L−1s
(
ˆ̄LsĴqu− ˙Sd

)
+ δL (42)

where

δL = QδF+ (diag {eP} (I−Q) JK +KC (I−Q)) ˆ̄L−1s δs

(43)

Based on (42), the FQSMC law can be obtained as follows:

u =
(
QK̂f Ĵq + (diag {eP} (I−Q) JK +KC (I−Q)) Ĵq

)−1
×
(
η +QḞd + (diag {eP} (I−Q) JK

+KC (I−Q)) ˆ̄L−1s
˙Sd
)

(44)

where{
η = −3−11 33σC −3

−1
1 sat

(
φ−1σC

)
σ̇C = −32σC +31σ

(45)

sat
(
φ−1σC

)
=

φ
−1σC,

∣∣∣φ−1σC∣∣∣ < K

Ksign
(
φ−1σC

)
,

∣∣∣φ−1σC∣∣∣ ≥ K

(46)

In (45) and (46), ηεR6 is the reaching law and σC is the
filtered value of σ ; φεR6×6 is the positive definite orthog-
onal matrix of the boundary layer thickness; KεR6 is the
saturation threshold whose value is set based on the bounds
of system uncertainties. The schematic of FGSMC is shown
in FIGURE 6.

FIGURE 6. Schematic of the proposed robust hybrid controller.

2) STABILITY AND PERFORMANCE ANALYSIS
The stability proof of FQSMC is presented in Theorem 2.
A necessary assumption for this theory is considered as
follows:
Assumption 1: The following relation holds for δL:

|δL | ≤ DL |DLεR6×1, DL > 0 (47)

Theorem 2: Under the condition of (48), applying the
FQSMC law of (44) to the dynamic system of (42) leads to
its stability with a Quasi-sliding motion, i.e., |σ | < δB for
all t ≥ Tr where δB, εσ > 0 and Tr > 0 [21], provided that
Assumption 1 is satisfied.

31,32,33 > 0, K > 31DL ,

(32 − ωI) > 0,
√
2 (32 − ωI)

1
2
√
2ω3

1
2
3 ≥ |(γ I− ω32−33)| + 2φ,

32
2 − 4

(
33 + φ

−1
)
≥ 0, 0 < ω < 1, γ > 1

(48)

Proof: Substituting (44) into (42) yields:{
σ̇ = −3−11 33σC −3

−1
1 sat

(
φ−1σC

)
+ δL

σ̇C = −32σC +31σ
(49)

By taking the time derivative of the second row of (49)
and substituting it into its first row, the following relation is
obtained:

σ̈C = −32σ̇C −33σC -sat
(
φ−1σC

)
+31δL (50)

Consider the following candidate Lyapunov function:

V = γ σ TC σC + 2ωσ TC σ̇C + σ̇
T
C σ̇C (51)

Based on (48), it can be deduced that ω < γ 1/2. This
inequality results in the following relation:∣∣∣2ωσT

C σ̇C

∣∣∣ ≤ ∣∣∣2γ 1
2 σT

C σ̇C

∣∣∣, ∣∣∣γ σT
CσC

∣∣∣ ≥ 0,
∣∣∣σ̇T
C σ̇C

∣∣∣ ≥ 0

(52)

Additionally, the following relation holds:(
γ

1
2 σc + σ̇c

)T (
γ

1
2 σc + σ̇c

)
= γ σT

CσC + 2γ
1
2 σT

C σ̇C + σ̇
T
C σ̇C ≥ 0 (53)

By comparing (52) with (53), it can be deduced that γ σT
CσC+

2ωσT
C σ̇C + σ̇T

C σ̇C = V = 0 when (σC , σ̇C ) = (0, 0)
and V > 0 when (σC , σ̇C ) 6= (0, 0): the required con-
dition of a Lyapunov function [20], [21]. V̇ is obtained as
follows:

V̇ = 2γ σT
C σ̇C + 2ωσ̇T

C σ̇C + 2ωσT
C σ̈C + 2σ̇T

C σ̈C (54)

To prove the Quasi SMC under the proposed control law,
the attraction towards the boundary layer should be illus-
trated, i.e., when

∣∣φ−1σC ∣∣ ≥ K, V̇ < 0. Substituting (50)
into (54) yields:

V̇ = σ̇T
c (2 (γ I− ω32−33) σc − 2 (Ksign (σC )−31δL))

− 2σ̇T
c (32 − ωI) σ̇C − 2ωσT

c 33σC − 2ωσT
c

× (Ksign (σC )−31δL) (55)

Based on Assumption 1 and (48), the following relations
yield:

−2ωσT
c (Ksign (σC )−31δL) ≤ 0 (56)
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√
2 (32−ωI)

1
2
√
2ω3

1
2
3

≥ |(γ I− ω32−33)| + 2φ

≥

∣∣∣∣((γ I− ω32 −33)−

(
K
|σC |
−
31δL

|σC |

))∣∣∣∣ (57)

Comparing (56) and (57) with (55) yields:

V̇ < −2
(
(32−ωI)

1
2 σ̇c +

√
ω3

1
2
3 σc

)T

×

(
(32−ωI)

1
2 σ̇c +

√
ω3

1
2
3 σc

)
(58)

Accordingly, when
∣∣φ−1σC ∣∣ ≥ K, one has V̇ < 0.

When
∣∣φ−1σC ∣∣ < K, (50) is obtained as:

σ̈C = −32σ̇C − (33 + φ
−1)σC +31δL (59)

Since 31 to 33 and 8 are constants, the relation above
can be transformed to the frequency domain using Laplace
transformation as follows:

6cp2 +326cp+
(
33 + φ

−1
)
6c=311L (60)

where p is Laplace operator, 6c = L {σc} and 1L = L {δL},
where L {?} is Laplace function. Thus, the transfer function
T1 (p) = 6c1

−1
L is obtained as:

T1 (p) = 6c1
−1
L = 31 ((pI+ R1) (pI+ R2))

−1 ,

R1 =
1
2

(
−32 +

(
32

2 − 4
(
33 + φ

−1
))1/2)

,

R2 =
1
2

(
−32 −

(
32

2 − 4
(
33 + φ

−1
))1/2)

(61)

Based on (48), (61) has real poles. Also, taking Laplace of the
second row of (49) results in the following transfer function:

T2 (p) = 6c6
−1
= (pI+32)

−131 (62)

where 6 = L {σ }. Based on (48), (61), and (62) T3 (p) =
61−1L can be obtained as follows:

T3 (p) = T1 (p)T
−1
2 (p)

= 31 ((pI+32) (pI+R1) (pI+ R2))
−1 (63)

Based on (48), the nominator’s coefficients of T3 (p) are
positive and real (there is not nay imaginary roots). Hence,
it is stable. So, it can be seen that the response has its
maximum magnitude in zero frequency [14]. It means that
the response is bounded as |σ | < δB where δB = T3 (0) =
(R1)

−1 (R2)
−131 (32)

−1
= 32

1
(
33 + φ

−1)−13−12 . Thus,
FQMC is a Quasi SMC and the theorem is proved.
Remark 1: T2 (p) in (62) is a low-pass filter that exists in

the reaching law in (45). Thus, it filters out the existing noises
in the orthogonal sliding manifold σ emanated from force
sensor and camera measurement noises. Also, FQSMC does
not exploit a discontinuous switching function in the control
law, it is free of chattering.
Remark 2: Typically, in Quasi SMC, there is a trade-

off between the tracking error and chattering. Hence, if the
control gains are set to large values, chattering increases due

to the existing noises in the sensors’ feedback. If they are set
to small values, the tracking error may increase. However,
in FQSMC, the intrinsic filter smooths the signals and thus the
controller gains can be set to larger values. Consequently, the
tracking precision will increase without generating adverse
chattering.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, several experiments have been conducted to
investigate the performance and feasibility of the proposed
method.

A. EXPERIMENTAL SETUP
The setup consists of a six-DOF DENSO VP6242G robot,
a Quanser open architecture control module, a Logitech C270
digital camera with an EIH configuration, a six-axis ATI
model 200 industrial automation force sensor installed on the
robot end-effector. MATLAB
2011-b software is employed
for implementing the proposed methods. In the tests, the
control process sampling time is set to 1

/
29s. The setup

components are shown in FIGURE 7.a. The values of the
physical parameters of the DENSO-VP6242G robot and
the camera are available in [18]. To show the impact of the
robot kinematic uncertainties on the control process, a slight
change, around 5%, is applied to these values. To extract the
image features to be used in IBVS, a red rectangular object
is mounted on the workpiece. Note that two workpieces
with planar and curved surfaces are provided for the tests
(FIGURE 7.b and c). The constraint relations of the work-
pieces’ surfaces are as follows:

Planar : fS (x, y, z)=z,
Curved : fS (x, y, z)=(z−0.15)2+x2−0.152 (64)

The camera captures the object. Then, by processing the
captured image, the edges of the rectangular object are
detected as the four feature points (FIGURE 7.a- top-right).

FIGURE 7. (a) Experimental setup. (b) Planar workpiece. (c) Curved
workpiece.

B. RESULT OF TRAINING THE NEURAL NETWORK
To train the NN, nd is set to 1000 and 20% of the sampling
data is considered for the validation test. The maximum
number of iterations for training is set to 1000. FIGURE 8
shows the results of training the NN for the planar work-
piece. The cost value for training data has converged to zero
after twenty iterations which means the NN is trained well.
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Additionally, the cost value for validation data shows a con-
sistent decrement which means the NN is not over-trained.

FIGURE 8. Training the NN.

C. TUNING THE CONTROLLERS’ PARAMETERS
To compare the performance of the proposed controller to
other traditional well-known methods, P/PI (proportional
controller for vision part and proportional-integral controller
for interaction force part) and traditional SMC are also con-
sidered to be applied to the robot. Note that to have a fair
comparison, the controller parameters must be tuned properly
before applying to the system.

In this study, the optimal tuning method presented in [20]
is employed for the gain tuning of the controllers. In this
method, first, the closed-loop system is modeled using the
proposed control method. Then, a cost function is defined
comprising of several objective functions associated with the
reaching time, chattering level, control effort, sliding variable
value, and tracking error. Finally, MTOA is used to solve the
optimization problem, whose solution is the set of optimally
tuned parameters of the controller [20]. The main advantage
of this tuning method is that it results in the optimality of
the controller not only for a specific path but also for any
arbitrary desired path. The nonlinear terms of the controller
also contain the desired signals that are not considered in the
optimization, and only the terms that are directly influenced
by the controller gains are considered.

Such a tuning method not only results in an optimal con-
trol process but also provides a fair comparison between
the proposed controller and other designated approaches.
FIGURE 9 illustrates the results of the optimization process
for P/PI, SMC, and FQSMC. Referring to this figure, the
best and average cost values have converged to the mini-
mum values (i.e., 0.25, 0.52, and 0.09, for P/PI, SMC, and
QSMC, respectively) after at least 130 iterations. However,
the minimum cost value for SMC is higher than that for
P/PI. Also, the minimum cost value for P/PI is higher than
that for FQSMC. The reason is that the existing filter in
FQSMC allows the optimization algorithm to set the con-
troller gains to higher values. Consequently, higher precision
and lower control effort will be achieved. Furthermore, the
existence of the variable gain in FQSMC results in more
flexibility and hence lower cost value. However, for SMC and
P/PI, setting higher controller gains for increasing the preci-
sion result in amplifying the noise which will appear in the

controller output. The chattering problem in SMC results in
a higher level of control effort and thus its cost value is even
higher than that of the P/PI.

FIGURE 9. Gain tuning using the method suggested in [20].

D. DESIGN OF THE EXPERIMENTAL TESTS
For the experiments, five experimental tests are designed.
In the first four tests, the performance of the proposedMAPF-
CGTSP method and switching between the free-motion and
interacting with the workpiece, along with the proposed con-
troller is investigated for the environments with obstacles.
To this end, four operations labeled as Op.1,. . . , Op.4 are
considered with a different configuration of the number of
tasks and the obstacle positions to analyze the performance
and accuracy of the proposed task-sequence/path planning
usingMTOA in challenging situations. The environment con-
figurations corresponding to each operation are depicted in
the next subsection. The equations Obstacles and tasks of
Op.1 to Op.4 are given in (65).

OP.1 :

Task 1:



Type:2

Pwd (ϑ)=

 0.04cos((ϑ1.6−0.3)π )
0.02 sin ((3.2ϑ−0.6) π)+.1

0


vd = 0.001
Fd (ϑ) = 8,

Task 2:


Type:1

Pwd (ϑ) =
[
.02 .1 0

]T
Tt = 50
Fd (ϑ) = 8,

Task 3:


Type:1

Pwd (ϑ) =
[
−.02 .1 0

]T
Tt = 30
Fd (ϑ) = 8

,

Task 4:



Type:2

Pwd (ϑ)=


0.08 cos

(
1
3
ϑπ+

π

3

)
0.08 sin

(
1
3
ϑπ+

π

3

)
+0.1

0


vd = 0.001
Fd (ϑ) = 8
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No obstacle.

OP.2 :

Task 1:



Type:2

Pwd (ϑ) =

 0.02ϑ − .06

0.1

0


vd = 0.0005

Fd (ϑ) = 8

,

Task 2:



Type:1

Pwd (ϑ) =
[
0.07 0.12 0

]T
Tt = 30

Fd (ϑ) = 8,

Task 3:



Type:2

Pwd (ϑ) =

0.07[
0.07 0.14 0

]T
0.01045

vd = 0.0005

Fd (ϑ) = 8,

Two obstacles

OP.3 :

Task 1:



Type:2

Pwd (ϑ) =

 0.055

0.111− .03ϑ

−.01045


vd = 0.0005

Fd (ϑ) = 8,

Task 2:



Type:1

Pwd (ϑ) =
[
−.055 0.111 −.01045

]T
Tt = 30

Fd (ϑ) = 8

One obstacle

OP.4 :

Task 1:



Type:2

Pwd (ϑ)=



.02sin
(
1
2
ϑπ+

π

2

)
+.03

.02 cos
(
1
2
ϑπ+

π

2

)
+.125

(.152−
((
.02sin

(
1
2
ϑπ+

π

2

)
+ .03)

)2
).5
−.15


vd = 0.001

Fd (ϑ) = 8,

Task 2:


Type:1

Pwd (ϑ) =
[
−.055 .111 −0.01045

]T
Tt = 50
Fd (ϑ) = 8

Two obstacles (65)

The objective of the fifth test is to evaluate the perfor-
mance of the proposed hybrid control method and compare
the results with other aforementioned well-known schemes
in terms of tracking error, convergence rate, control effort,
and chattering level. An infinity-shaped path on the planar
workpiece is defined as the desired path and a sinusoidal
desired signal is defined as the desired interaction force as:

Pd (t) = [ 0.05 cos (0.025t)+ 0.02 0.025sin(0.05t) 0

0 0 0 ]T, Fd (t) = 1.5 sin (0.15t)+ 6

(66)

E. RESULTS AND DISCUSSION OF THE
EXPERIMENTAL TESTS
1) HYBRID TASK SEQUENCE/PATH PLANNING
(TESTS 1 TO 4)
In these tests, a set of four operations is presented. The
performance of the proposed optimal task sequence/path
planning method using the MAPF strategy is compared to
that of the traditional APF. Furthermore, a comparative study
of solving the MAPF-CGTSP by the mix-integer MTOA
against the PSO, GWO, membrane-inspired evolutionary
algorithm (memE) is presented to compare the performance
of the proposed optimization algorithm. Please note that the
parameters of the optimization algorithms are set in a way
that their overall populations are almost 10, 20, 20, and 20 for
Op. 1 to Op.4, respectively.

As mentioned before, this problem is composed of two
various problems including finding the optimal task sequence
and also the parameters of the proposed MAPF method to
have an optimal collision-free path between the tasks. In the
first row of TABLE 1, the result of solving the task sequence
part of the optimization problem for each operation, using
the MTOA, and the direction of Type 2 tasks is listed in two
different subsets. For each case, MTOA is executed thirty
times (30 independent runs) to reach the solution. The first
subset defines the sequence of the tasks for each operation
and the second subset shows the direction of entering to a
Type 2 task and exiting from it. Note that, in the second
subset, 0 is corresponding to the endpoint A for a Type 2
task and 1 is corresponding to the endpoint B. The other
parameters listed in TABLE 1 are obtained by MTOA for the
MAPF to reach an optimized collision-free path between the
tasks while the sequence of the starting and ending points of
each path has already been obtained.

Based on this table, in the first operation, four different
tasks, two Type 2 tasks and two Type 1 tasks, are defined on
a planar workpiece. Based on the optimal task sequences of
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TABLE 1. The optimized parameters for MAPF-CGTSP using MTOA.

the first operation, it can be observed that this operation starts
with the second task (T2) which is a Type 1 task or a point
and moves towards the first task (T1) which is a Type 2 task
or a path. The direction of Type 2 tasks affects achieving an
optimal general path for the operations. Based on the obtained
direction for the Type 2 tasks in this table, the first Type 2
task (T1) starts from the end-point A (T1A) and exits from
the endpoint B (T1B). Then, the robot moves to the third task
(T3) which is the other Type 1 task. Finally, the robot moves
towards the last one which is the fourth task (T4). This task
is also a Type 2 task with two endpoints which based on the
second element of the second subset, the robot will enter from
its endpoint B (T4B). The desired tasks and the paths between
each two tasks are depicted in FIGURE 10. From this figure,
it can be seen that the first operation is free of obstacles.
Therefore, the path between the tasks can be considered as
a straight line. Hence, this operation does not require to use
MAPF for obtaining the path between the tasks. The robot
carrying out the tasks for the first operation is shown in
FIGURE 11. The results of the vision/force control system in
performing the first operation are presented in FIGURE 12.a
and b. According to FIGURE12.a, which shows the trajectory
tracking of Op. 1 on the image plane, it can be seen that the
robot tracks the two paths and regulates on each point of the
tasks one-by-one until the entire operation is done. Referring
to FIGURE12.b, the effectiveness of the force control process
for each task and also the feasibility of the proposed method
for switching between the free motion and interaction with
the workpiece is demonstrated.

In the second operation, three different tasks, a Type 2
task and two Type 1 tasks, are defined on a planar work-
piece. Based on the optimal task sequences of the second
operation, the robot performs the whole operation. The
desired tasks and the paths between each two tasks which
are obtained by APF and MAPF methods are depicted in
FIGURE 13.a and b, respectively. From these figures, it can
be observed that two obstacles are placed between three
defined tasks. In FIGURE 13.a, using the APF method, the

FIGURE 10. Op. 1-Desired paths and points of four tasks on the
workpiece.

FIGURE 11. The robot operating Op. 1.

robot moves from the NAEP towards the AEP of the first task
sequence selected byMTOA (T2) through Path 1. Then, using
APF method, the robot moves from T2 to T3 (the second
task sequence selected by MTOA) through Path 2 which is
depicted in FIGURE 13.a. However, the APF method does
not work properly in reaching the third task sequence (T1).
Hence, the robot will be trapped and could not continue its
trajectory to reach the target. FIGURE 13.b shows that when
using the MAPF method, the robot successfully reaches the
target. So, the proposed method outperforms the traditional
APFmethod, since it gives a minimum collision-free traveled
distance in performing this multi-task operation in presence
of obstacles. The robot carrying out the tasks for the second
operation using MAPF is shown in FIGURE 14. The results
of the vision/force control system in performing the second
operation are presented in FIGURE 15.a and b. According
to FIGURE 15.a, which shows the trajectory tracking of
Op. 2 on the image plane, it can be seen that the robot tracks
the defined path and regulates on each point of the tasks
one-by-one until the entire operation is done. Referring to
FIGURE 15.b, the effectiveness of the force control process
for each task and also the feasibility of the proposed method
for switching between the free motion and interaction with
the workpiece is demonstrated.
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FIGURE 12. Path tracking in the image space and force control of all the
tasks of OP. 1. (a) Tracking the paths and points in the image space of
Op. 1. (b) Controlling the force of Op. 1.

In the third operation, two different tasks, a Type 2 task
and two Type 1 tasks, are defined on a curved workpiece to
show the effectiveness of the proposed method in performing
the multi-task operation on more complicated workpieces.
Based on the optimal task sequences of the third operation,
the robot performs the whole operation. The desired tasks and
the paths between each two tasks which are obtained by APF
andMAPFmethods are depicted in FIGURE 16, respectively.
From these figures, it can be observed that one obstacle is
placed between two defined tasks. In FIGURE 16.a, using
the APF method, the robot moves from the NAEP towards
the AEP of the first task sequence selected by MTOA (T1)
through Path 1. After completing T1, the robot is required to
move towards the other task (T2) from the other endpoint of
the first task (T1B).

However, theAPFmethod does not work properly in reach-
ing T2. Hence, the robot will be trapped and could not con-
tinue its trajectory to reach the target. FIGURE 16.b shows
that when using the MAPF method, the robot successfully
reached the target. So, the proposed method outperforms the
traditional APF method, since it gives a minimum collision-
free traveled distance in performing this multi-task operation
in presence of obstacles. The robot carrying out the tasks for
the third operation is shown in FIGURE 17. The results of the
vision/force control system in performing the third operation
are presented in FIGURE 18. According to FIGURE 18.a,
which shows the trajectory tracking of Op. 3 on the image
plane, it can be seen that the robot tracks the defined path and
regulates the desired point of the task until the entire operation

FIGURE 13. Op. 2 (a) Desired paths and points of three tasks on the
workpiece using APF method. (b) Desired paths and points of three tasks
on the workpiece using MAPF method.

FIGURE 14. The robot operating Op. 2.

is done. Referring to FIGURE 18.b, the effectiveness of the
force control process for each task and also the feasibility of
the proposed method for switching between the free motion
and interaction with the workpiece is demonstrated.
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FIGURE 15. Path tracking in the image space and force control of all the
tasks of OP. 2. (a) Tracking the paths and points in the image space of
Op. 1. (b) Controlling the force of Op. 2.

The fourth operation is also accomplished on a curved
surface with a different obstacle configuration. Two different
tasks are defined for this operation. The results obtained
in FIGURE 19.a and b, show that the APF method can-
not finish the operation successfully. However, using the
MAPF method, the operation is performed properly. The
robot carrying out the tasks for the fourth operation is shown
in FIGURE 20.

The results of the control process for the intended tasks
are presented in FIGURE 21. According to FIGURE 21.a,
the robot has tracked the desired features for each task when
interacting with the workpiece and between the tasks by
free-motion properly to complete the operation. Referring to
FIGURE 21.b, it can be seen that the interacting force is
controlled properly as well. These results show not only the
effectiveness of the proposed path/task sequence planning,
but also the feasibility of the proposed hybrid control method
for different workpieces.

Each test was independently executed 30 times for each
operation. The results provided in TABLE 2., show the arith-
metic best, mean, worst, and standard deviation of the path
length in the image plane for the 30 individual tests on each
operation. From this table, it can be concluded that theMTOA
method outperforms the other optimization algorithms. The
best path obtained using the MTOA for the first operation
is the same as the other methods, since the environment is
free of obstacles which leads to a simple CGTSP problem.
Therefore, in this operation, the optimization problem con-
verts to a simple problem of finding the integer sequence
of the tasks which is obvious that all provided algorithms
have successfully reached the desired sequence to minimize
the path length. For the other operations, it can be observed
that the MTOA method overcomes the drawback of PSO

FIGURE 16. Op. 3 (a) Desired paths and points of two tasks on the
workpiece using APF method. (b) Desired paths and points of two tasks
on the workpiece using MAPF method.

FIGURE 17. The robot operating Op. 3.

and GWO which are easy to be trapped into local optimum
on average. The result also tells that MTOA has a better
performance than memE in dealing with environments with
obstacles.
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FIGURE 18. Path tracking in the image space and force control of all the
tasks of OP. 3. (a) Tracking the paths and points in the image space of
Op. 1. (b) Controlling the force of Op. 3.

TABLE 2. Results of the different optimization algorithms for all
operations.

FIGURE 22 provides a graphical summary of the improve-
ment percentage of the task sequence/path planning results
in terms of path length for the methods GWO, MemE, and
MTOA compared to the PSO. The result in this figure shows
that solving the MAPF-CGTSP using MTOA method pro-
vides the highest improvement percentage compared to the
other methods.

2) TEST 5: COMPARISON OF THE PERFORMANCE OF THE
PROPOSED HYBRID CONTROLLER TO OTHER
WELL-KNOWN METHODS
Using NN sd in (28), the desired image feature signal of the
second test (FIGURE 23.a) can be extracted as illustrated
in FIGURE 23.b.

FIGURE 19. Op. 4 (a) Desired paths and points of two tasks on the
workpiece using APF method. (b) Desired paths and points of three tasks
on the workpiece using MAPF method.

FIGURE 20. The robot operating Op. 4.

The results of tracking the image feature and inter-
action force and joint velocities are demonstrated in
FIGURE 24-FIGURE 26, respectively. In FIGURE 24, the
FQSMC tracks the desired image feature signals with higher
precision, lower chattering, oscillation, and faster conver-
gence speed compared with SMC and even P/PI. SMC tracks
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FIGURE 21. Path tracking in the image space and force control of all the
tasks of OP. 4. (a) Tracking the paths and points in the image space of
Op. 1. (b) Controlling the force of Op. 4.

FIGURE 22. Improvement percentage of the optimization methods.

FIGURE 23. Test 5 (a) Desired path on the workpiece. (b) Corresponding
feature.

the signals with higher precision relative to P/PI. However,
the chattering level of the P/PI is much lower. FIGURE 25
shows the superiority of the FQSMC to P/PI and SMC in
terms of chattering level, tracking precision, and conver-
gence speed. The chattering issue is highlighted in the con-
troller output, i.e., joint velocities, presented in FIGURE 26.

FIGURE 24. Tracking image features of the third test (a) x. (b) y . (c) af .
(d) Sx . (e) Sy . f) θf .

FIGURE 25. Force control of the third test.

SMC suffers from a high level of chattering, while the
P/PI produces less chattering, and FQSMC’s output is rather
smooth. Note that, for SMC, the chattering is emanated from
the switching function in the control law and the existing
noise of the sensors’ feedbacks. Whereas the chattering in
the P/PI’s output is only due to the noises. The reason is
the level of chattering in P/PI is lower compared with that in
SMC. FQSMC, on the other hand, has an intrinsic filter and
does not employ any switching function in its control law.
Consequently, it generates a smooth control command.

In addition to the plots, several numerical indicators such
as integral absolute error (IAE), integral time absolute error
(ITAE), standard deviation (STD), and root mean square
error (RMSE) indicators are selected for quantitative com-
parison in terms of vision and force errors [20]. On the other
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FIGURE 26. Robot joint velocities (test 3) (a) SMC. (b) P/PI. (c) FQSMC.

TABLE 3. The computed values of the indicators for the norms of system
errors of the third test.

TABLE 4. The computed values of the indicators for the controller output
of the third test.

hand, STD and integral square controller output (ISCO) indi-
cators are evaluated for the joint velocities (controller output).
These indicators are computed for the third test and tabulated
in TABLE 3 and TABLE 4. Note that since the dimension of
the vision and joint velocity results is higher than one (it is
six), the weighted norms of the vision and joint velocity are
used to compute those indicators.

Referring to TABLE 3, for the vision control, FQSMC
has decreased the values of IAE, ITAE, STD, and RMSE by
51.29%, 40.79%, 69.09%, and 66.96% compared to SMC,
respectively. Compared to P/PI, these values are over 68.10%,
81.23%, 88.67%, and 93.67%. For the force control, FQSMC
has decreased the values of IAE, ITAE, STD, and RMSE by
59.91%, 58.41%, 39.44%, and 40.58% compared to SMC,
respectively. Compared to P/PI, these values are over 68.43%,
71.36%, 30.88%, and 32.45%. The results show that the
proposed hybrid controller results in improvement of the
control performance in terms of chattering, precision, and
convergence rate to a significant extent.

Furthermore, according to TABLE 4, the values of STD
and ISCO for FSMC are 81.1% and 73.19% lower in com-
parison with SMC, and 69.85% and 45.02% lower than those
of the P/PI. These results show that FQSMCoutperforms both
SMC and P/PI in terms of chattering level and control effort.

VI. CONCLUSION
In this study, a novel image-based task-sequence/path
planning method (MAPF-CGTSP) along with a robust
vision/force control method is presented for industrial robots

to perform multi-task operations while interacting with a
workpiece. The proposed MAPF-CGTSP algorithm com-
bines a novel modified artificial potential field and a con-
strained generalized traveling salesman problem to achieve
an optimal sequence of performing the tasks while gener-
ating a feasible and safe path between tasks for a multi-
task operation. A mix-integer MTOA is developed to solve
the proposed MAPF-CGTSP problem to achieve the inte-
ger sequence of performing the tasks and the continuous
parameters of the MAPF method. Different test scenar-
ios are employed to evaluate the MAPF-CGTSP algorithm
combined with the vision/force control method. The results
obtained in the different environments demonstrate that the
proposed method can perform the multi-task operations using
vision/force control method in different environments which
makes it a suitable algorithm to be employed in industrial
applications dealing with complex and real scenarios. The
experimental results demonstrate that the MTOA algorithm
yields better solutions in all the test environments compared
to the other optimization methods. Also, the path planning
results of the MAPF method are improved compared to the
traditional APF. Another advantage of the proposedmethod is
developing the FQSMC for vision/force control of industrial
robots exploiting an intrinsic low-pass filter which leads to
filtering out the measurement noises associated with the cam-
era and force sensor. Also, the proposed controller results in
Quasi-motion and elimination of chattering compared to the
other provided methods which make it reliable in real-world
scenarios. The experimental results show the benefits of the
proposed MAPF-CGTSP algorithm for task sequence/path
planning combined with the vision/force control in multi-task
operations. The performance of the proposed MAPF-CGTSP
method has been assessed in the first test using the test envi-
ronments composed of different configurations and several
obstacles. Also, the performance of the proposed vision/force
control approach is compared with that of the other con-
trol methods to show its effectiveness. The results show the
effectiveness of the proposedMAPF-CGTSPmethod in terms
of collision avoidance and provide a safe and feasible path
compared to the other methods. Also, the superiority of the
proposed vision/force method to other well-known methods
is evaluated in terms of precision, convergence rate, robust-
ness, control effort, and chattering.

In future work, it could be interesting to focus on the
problem of the camera’s field-of-view limitation, since this
work assumes that the features are always in the field of view.
Another future work is considering the use of the proposed
MAPF-CGTSP method for multi-robot task sequence/path
planning since this work only considers one robot. However,
in real applications, it may be required to make cooperation
between several robots.
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