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ABSTRACT Motivated by factors such as the reduction in cost and the need for a shift towards achieving
UN’s Sustainable Development Goals, PV (Photovoltaic) power generation is getting more attention in
the cold regions of the Nordic countries and Canada. The cold climate and the albedo effect of snow
in these regions present favorable operating conditions for PV cells and an opportunity to realize the
seasonal matching of generation and consumption respectively. However, the erratic nature of PV brings
a threat to the operation of the grid. PV power forecasting has been used as an economical solution to
minimize and even overcome this limitation. This paper is therefore a comprehensive review of machine
learning-based PV output power forecasting models in the literature in the context of Nordic climate. The
impact of meteorological parameters and the soiling effect due to snow, which is unique to this climate,
on the performance of a prediction model is discussed. PV power forecasting models in the literature are
systematically classified into multiple groups and each group is analyzed and important suggestions are
made for choosing a better model for these regions. Ensemble methods, optimization algorithms, time-series
decomposition, and weather clustering are identified as important techniques that can be used to enhance
performance. And notably, this work proposed two conceptual approaches that can be used to incorporate
the effect of snow on PV power forecasting. Future research needs to focus on this area, which is crucial for
the development of PV in these regions.

INDEX TERMS Artificial intelligence, cold climate, machine learning, Nordic climate, PV power
forecasting.

I. INTRODUCTION
The demand for electrical energy is increasing very signifi-
cantly because of the continued increase in the world popu-
lation. In the International Energy Outlook 2019 (IEO2019)
Reference case release, the US Energy Information Admin-
istration (EIA) projected that world energy usage will grow
by nearly 50% between 2018 and 2050 [1]. This increased
demand requires more energy generation from coal and
other fossil fuels, which not only produce a significant
amount of pollution but also ultimately result in the depletion
of the limited resources. In addition, more generation in
the conventional ways requires up-scaling of the existing
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electric grid to accommodate this huge change, which is
economically demanding and technically inefficient.

This necessitates the need to look for sustainable alterna-
tive measures which can go in line with the UN’s Sustainable
Development Goals (SDG 7: Affordable and Clean Energy).
Motivated by this and the continued advancement in PV
(Photo Voltaic) and wind power technology, large wind
and PV power plants have been deployed throughout the
world. The reduced cost of these technologies is also a
huge contributing factor. According to The Sustainable
Development Goals Report 2020, the share of renewable
energy in total final energy consumption reached 17.3% in
2017, up from 17.0% in 2015 and 16.3% in 2010 [2]. The
largest increase in the use of renewables has come from
the electricity sector, driven by the rapid expansion of solar
and wind power. Unfortunately, these efforts are not on the
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FIGURE 1. PV installation trend in Nordic region and Canada.

scale and more has to be done if it is required to achieve
Goal 7 by 2030.

Wind and solar energy have becomemainstream electricity
sources and are increasingly cost-competitive with fossil fuel
power plants. Nearly everywhere in the world, producing
electricity from new renewables is more cost-effective than
producing it from new coal-fired power plants [3]. Although
several key countries and regions, such as China, South
and Central Europe, and the United States, have driven
these trends and continued to have a large impact in 2019,
renewable power, especially PV is growing in all corners of
the world.

Even in colder and high latitude climate regions such
as the Nordic countries and Canada, solar electricity is
gaining huge interest in recent years. Although the focus
of this paper is on Nordic regions (especially Norway),
Canada is included here since it has relatively similar climatic
conditions. According to the data from the statistics bureau
of the respective countries and Our World in Data,1 the PV
installation trend in these regions for the last 5 years is shown
in Fig 1. PV installed capacity grew by 33%, 56%, 20%,
21%, and 2.5% for Norway, Sweden, Denmark, Finland,
and Canada respectively in 2020 alone when compared
with the previous year. This can possibly be attributed to
the reduced price of PV modules and favorable operating
conditions for the solar cells due to the cold temperature.
These countries have a combined installed PV power capacity
of more than 5800 MW as of 2020 and with the ongoing
promising steps of the government policy in these regions,
solar electricity will grow even at a more significant rate.

Despite the hydro and wind power dominated power
system, solar electricity is gaining momentum in Norway.
Solar energy production in Norway is growing rapidly
(currently 0.1 TWh annually) and it will be an important
component in the power system. Solar electricity has become
more attractive both in new zero-emission housing projects
and for homeowners who wish to be wholly or partly self-
sustained with electricity. According to the Norwegian Water
Resources and Energy Directorate (NVE), a total of 40 MW
new solar power was installed in Norway during the year
2020 alone [4]. By 2030, the annual energy generation from
PV is estimated to be between 1.2 TWh [5] and 4 TWh [6].

1https://ourworldindata.org/

FIGURE 2. Short term PV output variation.

Solar electricity is mainly a distributed resource in Norway,
but recent projects are looking more at the use of solar in
a larger scale, especially in connection with hydro power
reservoirs and larger office buildings. The transition to
renewable energy (PV and wind power) however is not
smooth.

Solar electricity has significant limitations since it is time
reliant and has stochastic nature. This is the result of the high
dependence of PV outout power onmeteorological conditions
and parameters. A typical PV output power variation is
shown in Fig. 2. This figure shows the PV output power
for three consecutive days (from September 24-26,2020)
selected at random for a PV plant located at the rooftop of
the Department of Electric Power Engineering, Norwegian
University of Science and Technology, Norway. It can be
seen from the figure that the power output is highly varying
over a short period, which brings a threat to the operation of
the power grid. Although solar irradiation and temperature
are the two most important meteorological parameters that
directly affect the amount of energy generated from PV
panels, the contribution of the geographical area where the
plant is located is also significant because of a phenomenon
called Soiling Effect.

The soiling effect can result from snow, dirt, dust, and
other particles that cover the surface of a PV module. This
effect is significant especially in areas with extreme weather
conditions. For a desert type PV (arid and semi-arid areas), for
example, a reduction of up to 10 % in energy production was
measured as a result of soiling loss due to dust [7]. Similarly,
the soiling effect of snow and ice coverage in colder climates
is significant on winter days. However, quantification of the
exact reduction in the generation is a complicated process
due to the complex nature of the optical characteristics of
snow [8]. More on factors affecting PV power is covered in
Section III.

Due to the concerns discussed above, high penetration of
PV power into the grid brings a challenge in the operation
of the existing power system. The inherent variability of
solar power creates challenges in matching variable load
with variable supply. Maintaining the instantaneous balance
between production and demand becomes a difficult and
expensive task [9]. This will in turn affect the decision-
making ability of dispatch centers and energy trading
companies on critical issues such as alternate adjustments
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for conventional power sources, scheduling arrangements,
storage requirements, and overall planning [10].

The unique climate of cold regions makes the task of
integrating PV even more challenging. These regions are
generally characterized by heavy snow and short sun hours
during the winter, long sun hours during the summer, and
fast and frequent weather variation over a short period
throughout the year due to fast-moving clouds (especially
Norway). The consequence of fast-moving clouds can be
catastrophic especially when a significant amount of PV
plants is integrated with a low voltage grid. This can cause
fast and large changes in solar irradiance resulting in a
sudden drop in PV output power, which ultimately leads
to disruptions and grid instability. Addressing these issue
is therefore very important to exploit and realize the full
potential of solar electricity in the Nordic region.

The use of storage systems and consumption flexibility
are usually suggested as means to overcome these limita-
tions [11], [12]. However, their success is greatly impacted
by the high cost of batteries and the lack of clear financial
incentives that motivate consumption flexibility. In recent
years, there has been an increasing interest in the use
of energy informatics technologies to reduce the negative
impacts of grid-integrated PV systems.

Energy informatics technologies (AI (Artificial Intelli-
gence) and ML (Machine Learning)) can overcome these
PV power limitations and make solar electricity an equal
contributor to the energy mix. ML and AI methods can
improve the adoption of solar electricity resulting in a
modernized electrical grid supporting the reliability and
resilience of the overall grid. These technologies are usually
used in the forecasting of global irradiance and solar power
output [13]. Accurate PV power output forecasting enables
power system operators to make proper scheduling and
operation planning, allow accurate energy trading decisions
in power markets and significantly reduce the cost and size
of balancing reserves.

Given the unique weather characteristics in these regions,
much uncertainty exists about the design of a PV output
power forecasting model. The commonly available AI/ML-
based PV power forecasting models in the literature could
be inadequate and could result in inaccurate and unstable
forecast results. The optimal size and type of informative
environmental parameters to use and the specific type of AI
algorithm to implement are not fully understood. Very little is
also known about the impact of the forecast horizon, the areal
scale, and timestep on the performance of a forecast model
in these regions. This study offers some important insights
into the above critical shortcomings. Our main objective
in this paper is therefore to quantitatively and qualitatively
assess the role that AI/ML technology play in forecasting the
amount and variation of output power focusing on PV plants
located in cold regions. This work will potentially serve as a
starting point where more area-specific AI-based PV power
forecasting models can be designed to further promote the
deployment of PV in these regions.

A. OBJECTIVES
The following are some of the important issues that are
addressed in this paper by reviewing recent research works:

1) Identify relevant parameters or inputs that affect
AI-based PV output power forecasting in general and
under a cold climatic condition in particular.

2) Investigate different PV power forecasting model types
and suggest the ‘one’ that works relatively well for
these regions.

3) Identify a forecast time step that can capture all the
variations in the PV output power and identify a
forecast horizon that suits a particular application.

4) And finally, identify and suggest techniques and
methods that can improve the performance of a forecast
model in terms of accuracy and stability.

The rest of this paper is organized as follows. Section II
begins by discussing the general steps that are used in
the design of an AI-based PV output forecasting model.
It will then go on to a brief description of the working
principles of the widely used conventional and deep learning
AI algorithms for PV power forecasting. The impact of
various environmental parameters on PV power forecasting
is addressed in section III. In section IV, special focus is
given to the case of PV in colder climates. Classification
of various PV power forecasting models based on forecast
horizon, model type, time step, areal scale, and approach used
is covered in Section V. Finally, the important conclusions
and observations from this review work are outlined in
Section VII.

II. AI FOR PV OUTPUT POWER FORECASTING
This section addresses the generic AI-based PV power
forecasting procedures and the common AI algorithms that
are used in the design of a typical AI-based PV power output
forecasting model.

A. AI PROCESS IN PV OUTPUT POWER FORECASTING
AI algorithms are currently the most widely used PV output
power forecasting methods in the literature. Their popularity
is due to their ability to effectively map the highly non-
linear relationship that exists between environmental input
parameters and the PV power. A generic flowchart showing
the AI-based PV power forecasting process is shown in
Fig. 3. The whole process can be summarized into three
phases. A closer look at the figure shows that the forecasting
model uses both power and weather parameter measurements
as an input. It should be noted however that several high-
performing AI models exist in the literature that only requires
the measurement of PV power as input, especially for very
short-term forecast horizons.

1) INPUT PHASE
AI is a data-driven method, therefore, an important step in
AI-based PV power forecasting, is data collection and anal-
ysis. This phase involves the collection of input-output data
(environmental and PV power) from the site where the plant
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FIGURE 3. Generic AI based PV power forecasting flowchart.

is located and preprocessing of these data. Environmental
data including solar irradiance and air temperature are usually
gathered from the weather station at or near the plant.
Similarly, PV output power records can be obtained from the
SCADA (Supervisory Control And Data Acquisition) system
in the case of large plants or from data loggers for the case
of small PV plants. An equally important step after data
collection is the preprocessing of the input data.

Preprocessing consists of (but is not limited to) dealing
with missing values, outlier detection, data resampling,
data scaling, and time series decomposition. Widely used
methods to deal withmissing values in PV forecasting include
completely ignoring those rows of data from the training
process (if the missing data are unimportant and/or small)
and data imputation using interpolation techniques. Data
resampling is also required when the different input data have
different granularity.

The presence of outliers in the training data can lead to
inaccurate prediction and may result in requiring a longer
time to fully train the model. It is therefore very important
to filter out the outliers that exist both in the power series
and environmental data. These kinds of data are usually
observed in the early periods of sunrise and sunset. In colder
climates, snow can be the main reason for outliers during
winter. Authors in [14] used the Hampel filter to detect

and remove outliers from the measured PV output power.
To benefit from various filtering algorithms, Pan et al. [15]
used an ensemble filter algorithm to manage abnormally
extreme weather inputs.

Data scaling is important to obtain a high-performing
model both in terms of accuracy and computational resource
requirement. Due to the Gaussian Distribution nature of PV
power and other parameters, the most common data scaling
technique in PV power forecasting is normalization [16],
[17]. This rescales all the input features so that their value
is always between 0 and 1. It is given by (1),

xnor =
x − xmin

xmax − xmin
(1)

where x is the value in SI unit, xmin and xmax are the minimum
and maximum value in feature X respectively, and xnor is the
new scaled value.

Another very significant preprocessing step that is fre-
quently used in AI-based PV power forecasting is time series
decomposition. Common tools that are used for treating time-
series signals are WPD (Wave Packet Decomposition) [12]
and WT (Wavelet Transform) [18]. These methods offer
filtering ability and thus result in better performance char-
acteristics.

2) TRAINING PHASE
The training phase involves selecting a particular type
of AI algorithm and training the algorithm with the
training dataset. Evaluating the model with the validation
dataset and fine-tuning the internal parameters of the
algorithm to further improve performance is also part
of the training process. The common AI algorithms that
are widely used for PV forecasting are briefly discussed
in Subsections II-B1 and II-B2 below.

For conventional ML algorithms, fine-tuning the internal
parameters is usually done using extensive grid searching
and optimization algorithms such as PSO (Particle Swarm
Optimization) [18], GA (Genetic Algorithm) [19], [20], and
ACO (Ant Colony Optimization) [15]. Due to the complex
nature of the network, forecasting models based on DL (Deep
Learning) algorithms use the trial and error approach to adjust
their parameters.

3) FORECASTING PHASE
Once the model is tested and validated to give satisfactory
performance, it will be directly used on a new set of input
test data for forecasting purposes. The input test data, in this
case, is the forecasted weather data (usually from NWP
(Numerical Weather Prediction)) unlike historical weather
data used to train the model. Sometimes, post-processing can
be implemented to further improve the prediction ability of
the model.

B. COMMON AI ALGORITHMS
The common AI algorithms that are widely used in the
literature for PV power forecasting can be broadly grouped
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into conventional ML models and DL models. A brief
description of these models is given below.

1) CONVENTIONAL ML MODELS
These are groups ofML algorithms that have limited ability to
process data in its original form [21]. These methods require
considerable understanding and expert domain knowledge.
Consequently, the selection of features is an important step
and requires careful engineering. The common conventional
ML algorithms that are widely used for PV output power
forecasting are discussed below very briefly.

a: SUPPORT VECTOR MACHINES (SVM)
SVM was originally introduced by Vapnik in 1992 to
solve classification problems but later extended to handle
regression problems too. The input data is first mapped into a
high-dimensional feature space through non-linear mapping
so that a linear or non-linear regression approximation
can be achieved in space. SVM generalization to SVR
(Support Vector Regression) is achieved by introducing an ε-
insensitive region around the function, called the ε-tube [22].
An optimization problem is solved to find the tube that
best approximates the continuous-valued function, which is
a tradeoff between model complexity and prediction error.
The ε-insensitive loss function penalizes predictions that
are farther than ε from the desired output. The value of ε
determines the width of the tube; a smaller value indicates
a lower tolerance for error. This ensures that SVR is less
sensitive to noisy inputs and the model more robust.

b: ENSEMBLE OF TREES
The ensemble is a technique that allows combining multiple
weak machine learning models to create a more powerful
model. The two common ensemble models that have proven
to be effective on awide range of datasets including PV power
forecasting, both of which use decision trees as their building
blocks are random forests and gradient boosted decision
trees [23].

The theory behind an RF (Random Forest) is to average
multiple DTs (Decision Tree) that are slightly different from
each other and that suffer from high variance/overfitting,
to build a more robust model that has a better generalization
ability and is less prone to overfitting [24]. The DTs in an
RF are randomized either by selecting the data points used to
build a tree (bootstrapping) or by selecting different features
in each split test or both.

In contrast to the RF approach which allows parallel
running of DTs, GBDT (Gradient Boosted Decision Tree)
works by building trees in a serial manner, where each tree
tries to correct the errors of the previous step [23]. The
learning rate is the hyperparameter that controls how strongly
each tree tries to correct the errors of the previous trees.

c: MULTILAYER PERCEPTRON (MLP)
MLP is a typical example of a feedforward ANN (Artificial
Neural Network) where each layer serves as the input to the

FIGURE 4. The basic structure of a multilayer perceptron architecture.

next layer without loops and it is an entry point towards
complex neural networks such as CNN (Convolutional
Neural Network). A basic MLP network structure with one
input layer, two hidden layers, and one output layer is shown
in Fig. 4. The number of hidden layers and units in the MLP
are hyperparameters that need to be optimized for a given
problem. However, as more layers are added to a network,
the error gradient that is calculated using the backpropagation
algorithm becomes increasingly small [24]. This vanishing
gradient problem makes model learning more challenging.

2) DEEP LEARNING MODELS
The term deep learning refers to artificial neural networks
with multiple layers. The interest in having deeper hidden
layers has recently begun to surpass the performance of
conventional ML methods in various fields [25]. This is also
evident from the literature in PV output power forecasting.
The commonly used DL models for PV forecasting are CNN
and LSTM (Long Short-Term Memory).

a: CNN
CNN can automatically extract high-level features from raw
input data, which are much more powerful than human-
designed features [26]. It is a multi-level representation
learning, where abstract features are learned from raw
data through successive non-linear transformations [27].
Consequently, it has brought significant improvement in
the performance of DL models in various applications. The
basic structure of CNN is shown in Fig. 5 and consists
of convolutional layers, pooling layers, and fully connected
layers.
→ Convolutional layer: A convolutional layer comprises

a set of filters (a grid of discrete numbers) which are
convolved with a given input to generate an output
feature map [28]. The weights of each filter are learned
during the training of CNN through multiple iterations.

→ Pooling layer: A pooling layer operates on blocks of
the input feature map using pooling functions such
as average or max. This operation effectively down-
samples the input feature map and is useful for obtaining
a compact feature representation. It has no learnable
parameters.

→ Fully connected layer: Fully connected layers are typical
feedforward neural network layers like MLP. Each unit
is densely connected to all the other units of the previous
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FIGURE 5. Typical architecture of a convolutional neural network.

FIGURE 6. The internal structure of LSTM memory cell.

layer. They use non-linear combinations of the extracted
features to make the final prediction.

b: LSTM
Unlike feedforward neural networks, RNNs (Recurrent
Neural Network) are ideal candidates for modeling time-
dependent and sequential data problems, such as stockmarket
prediction, machine translation, and time series prediction.
However, conventional RNNs suffer from the problem of
vanishing gradients. The gradients become too small, and
the weight updates become very insignificant. This makes
the learning of long-term dependencies difficult. An LSTM
network is a popular RNN architecture that solves this
problem of vanishing gradient.

LSTM deal with the vanishing gradient problem by not
imposing any bias toward recent observations, but it keeps
constant error flowing back through time [29]. This is
possible by the introduction of gates (input, forget, and
output) into the internal structure of LSTM based neurons
(also called memory cells). This structure allows better
control of the gradient flow and enables better preservation
of long-term dependencies.

The internal structure of a typical LSTM memory cell
is shown in Fig. 6 [24]. Here, � represents element-wise
multiplication and ⊕, element-wise summation. C , H , and
X represent the cell state, the hidden unit and the input
respectively. Similarly, ft , it , gt and ot denotes the forget
gate, input gate, input node and output gate respectively.
Finally, sigmoid and hyperbolic tangent activation functions
are represented by σ and tanh.
Each gate has a specific functionality. The forget gate

decides which hidden unit information to keep or discard
from the previous time step. It is calculated using (2),

ft = σ (Wxf Xt +Whf ht−1 + bf ) (2)

whereWxf is the weight between the input and the forget gate,
Whf is the weight between the hidden unit and the forget gate
and bf is the bias term for the forget gate.

The input gate is responsible for updating the current cell
state based on the updated cell state of the previous unit by
the forget gate (3)-(5),

it = σ (WxiXt +Whiht−1 + bi) (3)

gt = tanh(WxgXt +Whght−1 + bg) (4)

Ct = (Ct−1 � ft )⊕ (it � gt ) (5)

whereWxi is the weight between the input and the input gate,
Whi is the weight between the hidden unit and the input gate,
Wxg is the weight between the input and the input node, Whg
is the weight between the hidden unit and the input node and
bi and bg are the bias terms for the input gate and input node
respectively.

Finally, the output gate updates the value of hidden unit
from the previous time step and this value is used to compute
the hidden unit at the current time step (6)-(7),

ot = σ (WxoXt +Whoht−1 + bo) (6)

ht = ot � tanh(Ct ) (7)

where Wxo is the weight between the input and the output
gate,Who is the weight between the hidden unit and the output
gate and bo is the bias term for the output gate.
A high-level qualitative comparison between the different

AI-based PV power output forecasting algorithms is given in
Table 1. In this table, computational demand, explainability
level, the amount of required fine-tuning and preprocessing,
and time sequence support are demonstrated as key parame-
ters that are used to compare the different AI-based PV power
forecasting algorithms. Explainability here is defined as a
term that indicates the level of understanding of the internal
decision-making rules of a PV output power predictionmodel
as used in [30]. It can vary between the extreme cases of
black-box (not interpretable directly) and white-box (easily
interpretable) models.

As it can be observed from the table, the conventional
ML models generally have the advantages of relatively
low computational demand and require a minimum or
a moderate level of fine-tuning. However, these methods
need a demanding preprocessing step to generate important
features from the input. On the other hand, the DL-based
methods have a high computational requirement, but minimal
preprocessing. They can extract high-level features from the
input by themselves. Computational demand or requirement
of individual AI-based models or tools depends on the
selected AI algorithm, their parametrization details, length of
the training and testing datasets, size of the entire dataset, and
many other parameters. It is also worth noting that almost
all the AI methods in the table have a black-box nature.
Furthermore, it is also important to see that only LSTM-based
models have the ability to support time sequence in the data.
This is one reason that these models and their variations have
emerged as particularly attractive algorithms to design a PV
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TABLE 1. Qualitative summary of AI-based PV power forecasting algorithms.

power forecasting model recently. The choice of a particular
algorithm for a given application should however be made
considering all the parameters given in the table.

III. ENVIRONMENTAL PARAMETERS AFFECTING PV
POWER FORECASTING
Meteorological parameters are the most important factors
that directly determine the performance of any PV power
forecasting model. Solar irradiance, air temperature, wind
speed, wind direction, relative humidity, air pressure, and
cloud cover are some of the parameters that are widely
used as input to a PV power forecasting model. However,
solar irradiance is by far the most significant and universal
(not area-specific) of all the parameters and it is directly
related to PV output power. Sudden and abrupt changes in PV
power production are determined by the movement of clouds.
So, in regions where the weather changes quite frequently
over a short period, cloud coverage can be an equally
important parameter as solar irradiance. Correlation study
between meteorological variables and measured PV power
is, therefore, an important step in the design of a forecasting
model. Selecting an optimum number of informative inputs is
crucial to obtain a high-performing forecasting model which
uses the smallest computational resources.

The relative importance ofmostmeteorological parameters
for PV output power forecasting highly depends on the
geographical area where the plant is located [32]. This can be
observed from the web chart shown in Fig. 7 for randomly
selected locations. This figure shows the correlation of
the different meteorological parameters with the PV output
power. It is possible to see from the figure that solar irradiance
is a very important parameter irrespective of the plant’s
location. This claim is consistent with the observation that in
the majority of literature reviewed in this paper and others,
solar irradiance is used as an important input parameter.
On the other hand, the importance of wind speed and relative
humidity are highly affected by the location of the plant.

In addition to the common meteorological parameters
affecting PV output power forecasting, other location-
specific factors such as snow and dust cover on PV panels
should also be considered for regions with extreme weather
conditions. The impact of snow and ice cover on the yield
of a PV plant in colder climates during winter days is very
complex [8]. It can vary from partial to total obstruction of
solar radiation reaching the PV modules, which results in a
reduced or no generation at all. And in contrast, during the
days where themodules are clear of snow, but the surrounding

FIGURE 7. Relative importance of weather parameters for various
locations based on correlation study with respect to the PV output
power [12], [33]–[37].

area is covered with snow, the consequence is opposite to
the above situation. In this case, the reflectance property of
snow (Albedo Effect) tends to increase the solar radiation
reaching the surface of the PVmodules, and hence increasing
the PV power generation. If these situations are not taken into
consideration in the design of PV output power forecasting
model in these regions, they will lead to huge forecast errors.
Similarly, in arid and semi-arid areas, issues associated with
the accumulation of dust should be taken into consideration.
More on the case of PV in a colder climate is covered in the
following section (Section IV).

Besides the parameters themselves, seasonal variation of
the parameters is also another key aspect worth considering in
the design of a PV power forecasting model. This is because
the performance of a prediction model is directly affected
by the season of the year. This is evident from Table 2 which
shows how the prediction performance (measured in terms
of RMSE (Root Mean Squared Error) and MAPE (Mean
Absolute Percentage Error)) of a forecast model is dependent
on the season of the year. As seen in Table 2, the performance
of the prediction models is better during the winter period
in terms of RMSE. In contrast, the worst performance is
observed during the summer. The RMSE increased by 77%,
994%, 38%, 80% and 157% from winter to summer for [12],
[16], [18], [38], and [39] respectively.

A possible explanation for such observation can be that
the weather changes quite frequently in summer and less
in winter in these regions. The forecast model is unable to
capture the fast and sudden variations. It should be noted
however that this conclusion is only made with a limited
reference and cannot be claimed to be the case for all regions.
Another explanation can be in the definition of RMSE
itself, which magnifies larger errors calculated between the
measured and predicted power. No such conclusive statement
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TABLE 2. The effect of seasonal variation on prediction performance.

can be made from the observation of MAPE across the
seasons.

IV. PV IN COLDER CLIMATE
Since the focus of this paper is about ML-based PV
power forecasting under a Nordic context, it is important to
emphasize the case of PV in a cold climate. This section
covers how this unique climate offers an ideal condition for
PV operation and at the same time how it can also bring
its own challenge. Finally, how it is possible to reduce the
challenge is also covered in this section.

A. HOW COLD CLIMATE IS ‘IDEAL’ FOR PV
Many experiments show that solar cells perform very well
under cold climate conditions. This is due to the low
operating temperature inside the PV modules which is the
direct result of the low temperature of the area where
the plant is located. Manganiello et al. [40] demonstrated
that PV modules located in colder regions result in higher
seasonal energy yield and negligible energy loss. Their
work also indicated that such high latitude climate has the
potential to realize seasonal matching of production and
consumption. This is also evident from thework of [41]. Their
study has shown that by optimally placing PV installation
at a relatively higher tilt angle in colder climates, it is
possible to bring the temporal production profile of PV
into better correlation with typical electricity consumption
patterns. They investigated and quantified the potential of
PV installations that favor high winter irradiance, high
ground-reflected radiation (albedo effect), and steeper panel
tilt angles. Adaramola and Vågnes [42] conducted similar
work for a PV plant in Ås, Norway. An annual yield of
2.55 kWh/kWp obtained from their analysis suggest that PV
installations in this location and similar other locations in
Norway is technically feasible.

B. CHALLENGES OF COLD CLIMATE
Despite the opportunities that come along with PV instal-
lations in colder climates, it has also a few but important
limitations. Lower sun angle, short solar duration hours, thick
clouds, and soiling due to snow are the typical challenges
that PV installations in high latitude climates face during the
winter. The impact of snow is by far the most significant

FIGURE 8. The effect of snow on PV power generation (total obstruction).

one. Modeling the impact of snow is widely reported and
extensively explored in the literature [43]–[45], but it is still
difficult to fully understand and account for snowmelting and
sliding processes. For this paper and better understanding, the
impact of snow on the PV output power can be observed as a
three-stage process.

1) DURING SNOWING
During the time of fresh snow, the solar irradiation reaching
the surface of the PV modules is also significantly reduced
due to the thick cloud. Consequently, the power output from
the PV system is close to zero, if not zero already.

2) DAYS AFTER EXTENDED PERIOD OF SNOWING
This is the most challenging period where the impact of
snow is difficult to quantify precisely. The snow cover acts
as a shading that prevents solar irradiation from entering the
solar cells. The effect can vary from full shading resulting in
zero generation to partial shading which results in a reduced
generation. The impact of snow on yield in such cases
depends on various factors such as snow depth, snow weight,
the tilt angle of themodule, ambient temperature, wind speed,
and surface property of the module. Another important factor
to account for the snow effect is the snow clearing process
and the time required to clear a module completely.

An example of total obstruction of irradiance due to snow
accumulation on the surface of the PV module can be seen
from Figure 8, which is recorded for the same PV plant
described earlier. On 27th November 2020, the PV output
power is zero although there is a significant amount of solar
radiation (a relatively clear sky day during the month of
November in Norway). This can possibly be explained by the
accumulation of snow on the PV modules (total obstruction).
Such kinds of effects will lead to a huge forecast error if
not taken into consideration. For the next two days, it is also
possible to see that the snow is cleared from the modules and
the plant is operating as it should be.

An early example of research into the impact of snow on
the yield of a PV plant includes the work of Becker et al. [43].
They have obtained a strong correlation between the
incidence of freshly fallen snow and a decrease in yield.
An estimated average yearly yield loss between 0.3 and 2.7%
was measured for a 1016 kWp PV plant in Munich, Germany
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between 1999 and 2004. What was surprising in their finding
is the observed sliding procedure of snow from the PV panels.
Even for small values of solar irradiation (less than 100
W/m2) and temperature (less than 0 0c), the snow on the
modules began to slip.

Another important work that quantifies the losses associ-
ated with snow for a PV plant in Colorado and Wisconsin
is the work of Marion et al. [46]. They developed a model
that can estimate yield loss due to snow. The model uses
daily snow depth, plane-of-array irradiance, air temperature,
PV array tilt angle, and the extent of snow coverage on the
PV array. The model performed very well mostly and gave
a result in agreement with the measured values. Similarly,
a simplified two-stage snow modeling method is proposed
in [44]. The estimated hourly solar energy output is first
calculated using module plane-of-array irradiance, module
temperature, and derating factor. And in the second stage,
a binary decision-making matrix is used whether to disregard
the estimated energy depending on the number of days since
last snowfall, snow depth, and ambient temperature. Despite
the simplified nature of this approach, it suffers due to the
binary decision-making process. It also ignores the fact that
snow can be transparent depending on its depth and the time
required for clearing the modules is not also considered.

A snow loss prediction model that takes into consideration
the transmittance property of snow is proposed in [45].
Snow-covered modules are modeled in such a way that they
can generate power based on snow depth. The Bouguer-
Lambert law was used to estimate the amount of insolation
that is received on the surface of uniformly snow-covered
PV modules. The results of their study showed that the
orientation (portrait or landscape) of the modules plays a
significant role in reducing the impact of snow in snowy
conditions. This paper only considered snow sliding as the
dominant snow removal process and did not consider snow
melting and snow removal due to wind. The surface of the
PVmodules is also assumed to be uniformly covered by snow
at every time. Despite the success of this work in bringing
significant improvement in the modeling of snow loss, the
fact that it ignored other snow clearing procedures and the
assumption of uniform snow cover on themodules at all times
can be important constraints.

Due to the complex nature of factors such as the extent
of snow cover, tilt angle, snow transmittance, and snow
clearing processes on snow loss prediction, all the work
we have seen above used at least one or two simplifying
assumptions. Inspired by this limitation, Hashemi et al. [47]
proposed a snow loss prediction model based on machine
learning algorithms for a PV plant located inOntario, Canada.
They designed an algorithm that can capture all the inherent
complexity using the available meteorological data from the
location of the plant. A prediction model based on a gradient
boosted tree resulted in the lowest mean squared error.

Further details on the impact of snow on yield reduction
are beyond the scope of this paper and the reader is directed
to Pawluk et al. [48] for more information. In this paper, they

have discussed the impact of snow, identified factors that
influence the generation loss, examined existing snow impact
estimation techniques, and finally concluded by discussing
various mitigation strategies to reduce the impact of snow.

3) CLEAR MODULES AFTER SNOWFALL
The effect of snowfall on the performance of a PV plant is
not always negative and it can be used to optimize system
design in colder climates [49]. This is due to a phenomenon
called the Albedo Effect. Albedo is the term describing the
reflectance property of snow and plays a huge role for PV
in high latitude and colder climates. The incoming reflected
light from the surrounding can be as high as 3 to 6 times when
it is covered in the snow [8]. By properly choosing a location
with a strong albedo effect and optimally sizing the tilt angle,
it is possible not only to maximize generation but also to
shift the temporal production patterns to match the typical
demand [41]. Solar electricity generation could effectively
be shifted from summer to winter without compromising the
total annual yield.

C. HOW TO COPE WITH THE CHALLENGES
PV output power forecasting models that are designed
for colder climates should take into consideration all the
above limitations. Incorporating short-term hourly snow loss
prediction models is very important as they can play a
key role in the operational management of electric grids in
such locations. Correction strategy is required for PV power
forecasting models to incorporate the loss due to snow or
snow cover and the albedo effect should be considered as
additional input parameters in the design of the forecast
model in the first place.

V. CLASSIFICATION OF PV POWER
FORECASTING MODELS
Various forecast models have been used effectively for PV
output power forecasting. These models can generally be
categorized into multiple groups based on forecast horizon,
type of prediction model, time step, areal scale, and approach
used (Fig. 9). It should be noted however that there is no
universally accepted way to classify PV power forecasting
models and numerous other approaches have been used
widely in the literature.

A. CLASSIFICATION BASED ON FORECAST HORIZON
Based on forecast horizon (length of time into the future
for which forecasts are to be made), PV power forecasting
models can be categorized into three main groups. Short-
term, medium-term, and long-term forecast. Although this
classification is widely used, it is also common to find
a fourth category in many works of literature (i.e. Ultra
short-term forecast). Each forecast horizon is applied for
various purposes and applications. It is worth noting that
there is a lack of consensus among researchers in defining
the boundary between different forecast horizons and usually
overlapping happens between each group. Fig. 10 shows this
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FIGURE 9. Classification of PV power forecasting models.

FIGURE 10. Overlapping nature and application areas of forecast horizons.

overlapping nature and the different application areas of each
forecast horizon.

1) SHORT-TERM FORECAST
This includes a forecast horizon of up to one hour, several
hours, one day, or even a week. This kind of forecast allows
power system operators to ensure unit commitment, schedul-
ing and dispatching. It is also crucial in PV-integrated energy
management systems and in energy market operation [50].
Ultra short-term forecasts (from minutes to hours) on the
other hand are highly beneficial to electricity pricing, power
smoothing, and monitoring of real-time electricity dispatch.

2) MEDIUM-TERM FORECAST
Medium-term PV power forecasting is usually done for one
week to one month. However, some also consider the forecast
between one day and one week ahead as being in this group.
This type of forecast is particularly important to schedule the
maintenance of PV integrated power systems by considering
the availability of generation in the future.

3) LONG-TERM FORECAST
Long-term PV power forecasting includes a forecast horizon
of a month and up to a year. Typically used by power system
owners and operators for long-term planning of the electricity

generation, transmission, and distribution. The interested
reader is directed to the work of [50] for further reading on
forecast horizons for PV power output forecasting.

As weather parameters are usually difficult to forecast with
acceptable accuracy beyond a certain short period, PV power
forecasting also suffers as the horizon is increased. Table 3
shows how the performance of a predictionmodel degrades as
the forecast horizon is increased. It can be seen from the data
in the table that there is a significantly noticeable difference
in the value of the evaluation metrics as the forecast horizon
is increased. For example, in [18], the RMSE error increased
by 37.5%, 87.5%, and 212.87% when the forecast horizon is
increased from 3 hours to 6, 12, and 24 hours respectively.

Such kinds of performance discrepancies can be par-
ticularly huge in areas where the weather changes quite
frequently over a short period. Norwegian climate can be
a good example for this. Due to the frequent movement
of clouds; cloud coverage and solar irradiance cannot be
forecasted with high accuracy beyond a certain very short
period. Poorly forecasted weather parameters directly result
in inaccurate PV power output prediction. So, emphasis
should be given to the choice of forecast horizon before
starting to design a prediction model. Based on this point
and closer examination of the discussion above, a short-term,
or ultra-short-term forecast could be a good choice for the
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TABLE 3. The effect of forecast horizon on the performance of a prediction model.

Nordic climate. This is also evident from the work of [51].
Their result suggest that for a PV plant in Norway, PV output
power forecast cannot be made for forecast horizon longer
than 1 hour ahead without introducing a significant error.

Comparative study of the performance of PV power
prediction models in all the forecast horizon categories has
received limited attention in the literature. This issue has been
addressed by recent work of [53]. Here the authors evaluated
the performance of variousML algorithms such as LR (Linear
Regressor), PR (Polynomial Regressor), DTR (Decision Tree
Regressor), SVR, RFR (Random Forest Regressor), MLP,
and LSTM for short-term (24 hours ahead), medium-term
(1 week ahead), and long-term forecast (1 year ahead). Their
overall analysis shows that a PV power forecast model based
on RFR resulted in a better performance. Such kind of study
is very helpful to identify a forecast horizon that specifically
matches the weather condition of a given area.

B. CLASSIFICATION BASED ON THE TYPE MODEL USED
Based on the particular type of model they use, PV power
forecasting methods can generally be categorized into four
groups: Physical, Statistical, AI-based, and Hybrid models.
The first group depends on physical modeling of the PV
plant and weather system, but the remaining are data-driven
methods that rely only on the measurement of PV power and
other environmental parameters. It is important to note that
there is no universally suitable approach for classifying PV
power output forecasting based on the type of models they
use. Different approaches have been proposed in different
works of literature.

Authors in [50] classified PV power forecasting models
into three groups consisting of a physical model, persistence
model, and statistical models. The statistical model included
both the traditional time-series forecasting methods (ARIMA
(Auto Regressive Integrated Moving Average) and SARIMA
(Seasonal ARIMA)) and models based on conventional
AI/ML algorithms. A simplified classification approach is
proposed in [54] where PV power forecasting models are
classified into two groups. Model-based and data-driven
approaches. An alternative and comprehensive approach
which is also similar to the one used in this paper is
developed by [32]. Here they classified PV power forecasting

models into physical, statistical, ML, persistence, and hybrid
methods. To summarize, PV output power forecast model
classification is usually a matter of subjective opinion with
which the authors of this paper agree and we believe that
the system of classification adopted in this paper satisfies the
needs of the study.

1) PHYSICAL MODELS
In this approach, the PV plant is first modeledmathematically
with plant-specific parameters such as module inclination
angle and module efficiency. Then this model is used directly
to calculate the PV generation with forecast information of
solar irradiance and temperature obtained from NWP. This
approach is particularly important as part of a feasibility
study to determine the amount of PV generation before it is
constructed. Due to its dependence on the forecast of NWP,
which has poor resolution for short periods, this approach is
usually used for long-term forecast purposes [55], [56].

2) STATISTICAL MODELS
Statistical models assume that the future value of the target
variable is a linear function of past observations and random
errors. Popular statistical forecasting methods for PV output
prediction include ARIMA and SARIMA. SARIMA is an
improved version of ARIMA, and it is designed to support
seasonality which is an important characteristic of PV power
data.

Kushwaha and Pindoriya [57] implemented SARIMA for
very short-term PV power forecast and concluded that despite
the satisfactory performance of the model during clear sky
days, the performance degraded significantly on cloudy
days where frequent weather changes are quite common.
To overcome such shortcoming, SARIMA is usually used
in a combination with other techniques (Wavelet-SARIMA)
and models. Implementing this approach is the work of [58],
where SARIMA is used together with ANN in a parallel
structure. In doing so, they showed that both the accuracy
and resilience of the prediction model are improved. Based
on the work of [57] and others, statistical methods are not
recommended forecasting models for Nordic climate, given
the high variation of weather parameters over a very short
period.
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3) AI-BASED MODELS
The majority of works in PV output power forecasting in
the literature are implemented using AI algorithms. These
methods rely on the ability of a model to learn from historical
data and to further refine its predictive ability through train-
ing. AI-based PV output power forecasting models in this
section include both the conventional AI/ML algorithms and
the DL algorithms as described in Sections II-B1 and II-B2
respectively. Here we give an overview of how these
algorithms are used in the design of a PV power forecasting
model. The ensemble method is also discussed as a technique
that improves the performance of a prediction model.

The performance of various ML models including ANN,
Linear Regression, M5P Decision Tree, and GPR (Gaussian
Process Regression) is compared in [59] for a PV plant
in Qatar. CFS (Correlation feature selection) and RFS
(Relief Feature Selection) techniques are used to identify
the relevant features for the models. A forecast model based
on the ANN network outperformed all the other models
in terms of RMSE and R2. The prediction accuracy and
error distribution of SVM and ANN are compared in [10].
This information is in turn used to estimate the capacity of
the energy storage system required to absorb mismatch in
energy trading applications. Both methods gave satisfactory
results, but ANN marginally outperformed SVM. Authors
in [60] assessed the performance of ANN, SVR, and RT
for predicting the power output of a PV plant against a
PM (Persistence Model) model. Their comparative analysis
shows that the ANN outperformed the other models, resulting
in the lowest normalized RMSE andMAPE error of 0.6% and
0.76% respectively.

Three commonly used conventional AI/ML models in
PV output power forecasting, i.e., MLR (Multiple Linear
Regression), GB (Gradient Boost), and ANN are compared
in [61]. These models are tested with different training
windows and features for a PV site in the state of Florida.
The forecast model based on GB resulted in the lowest RMSE
and lowest variance. ANN produced the lowest performance
in terms of both accuracy and variance of forecast results.
Similar work that implements conventional ML algorithms
for PV output power forecasting has also been pursued
by others. SVM [62], BNN (Binarized Neural Network),
SVR, and RT [63], and ANN [64], [65] are few examples.
An important limitation of implementing the above methods
arises when they are used for a PV plant located in a region
where large and sudden weather variations over a short period
are frequent. Both the forecast accuracy and stability of
the prediction model suffer in these conditions. To reduce
this effect, an ensemble technique is usually applied. The
predictions of individual ML models are combined to make
a model that has a characteristic of better generalization and
robustness.

Ensemble of optimized ANN models is used in [54].
Here, they used the bagging technique to create diversified
base estimators that can capture different aspects or char-
acteristics of the PV power series. Statistical aggregation

strategy (median) was used to make the final prediction.
The ensemble approach showed superior performance in
comparison with the individual ANN models and a smart
PM. Conceptually identical work, utilizing DT instead of
ANN as a base estimator, was proposed by [66]. Two tree-
based ensemble methods, i.e., RF and ET (Extra Trees) were
compared with the SVM model. The significance of their
ensemble approach is marginal at most in terms of improved
accuracy over SVM, but much better forecast stability was
achieved.

Similarly, an ensemble of DTs but with a boosting
algorithm is implemented in [16]. Unlike bagging which
randomly selects subsamples from the data set and train each
estimator, boosting uses the same data set but each estimator
learns from the last prediction sequentially. This ensemble
model outperformed both the statistical model (ARMA)
and SVM in all seasons of the year. Other literature that
implements an ensemble approach for PV power forecasting
includes the work of [67] and [68] where they used NN
(Neural Network) and KDE (Kernel Density Estimation)
respectively as base estimators.

A closer look at the above works and other pieces
of literature, reveals an important gap and shortcoming
of PV output power forecasting models based on the
conventional ML algorithms. That is, even though these
methods have better performance when compared to the
statistical approaches, they still suffer from the problem of
over-fitting and insufficient generalization to fully capture the
highly non-linear characteristics of PV power. They are more
effective in a region where the weather stays relatively stable.
In other words, they result in a great performance when used
only in the cases where the deterministic component (which
is explained by the location of the sun) of the PV power
is more dominant than the stochastic component (which is
explained by the movement of clouds). In an area where
the weather changes quite frequently over a short period
(i.e. when both the stochastic and deterministic components
are equally important), like Norway for example, there is a
need for a better approach. Motivated by this, several DL
models are proposed for short-term PV power forecasting.
A concise summary of some of the work in the literature
implementing conventionalML algorithms is given in Table 4
in Appendix A. The key finding, the forecast horizon, and the
input parameters are important points to notice here. The term
conventional ML algorithms here represent all AI algorithms
(including shallow NN) except those based on deep learning
networks.

The performance of three DL PV power forecasting
models (LSTM, CNN, and CLSTM (Convolutional LSTM))
is compared in [69] for a 23.4 kW PV plant in Alice Springs.
For a smaller data set (half-year data), the performance
of all three models was poor. A possible explanation for
this result can be the lack of adequate training samples to
extract the spatial and temporal features required to make
a good forecast. The LSTM model was able to extract the
temporal features for an input data size of one and half years.
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Hence, LSTM outperformed both CNN and the hybrid model
(CLSTM). As the size of the data set is further increased (3
years), the CLSTMmodel which incorporates the advantages
of both LSTM (temporal features) and CNN (spatial features)
showed a superior performance. An important finding of this
work is that the input sequence length (training dataset size)
plays a huge role in the performance of a DL prediction
model. A longer input sequence doesn’t necessarily result in
a better performance.

For a location where the weather changes (especially solar
radiation) quite frequently over a short period, PV out-
put power prediction becomes even a more challenging
task. To address this issue, Zhang et al. [70] proposed
Autoencoder-LSTM. The autoencoder reduced the uncertain-
ties between perceptron mapping in the training process in
response to complex weather conditions. The performance
of this architecture was compared with conventional LSTM,
FNN (Feedforward Neural Network), and PM models for
various locations with different weather conditions. The
autoencoder-LSTMbasedmodel resulted in the best accuracy
for a day ahead PV power forecast on 15-minute time steps.

Another work involving the LSTM network, similar in
principle to [70] but using an attention mechanism instead,
was proposed in [38]. Here an ensemble of two LSTM neural
networks is proposed for power and module temperature time
series data. The attention mechanism is added so that the
forecast model can adaptively focus only on input features
that are more important to the current output. In comparison
with other forecast models such as conventional LSTM,
PM, ARIMAX, and MLP, the proposed method has the
best accuracy for various forecast horizons. The performance
improvement is more apparent in a forecast horizon longer
than 15minutes. Similar works involving DL algorithms have
also been pursued by others. LSTM [71]–[73], CNN [74],
[75], and GRU (Gated Recurrent Unit) [76]. A brief summary
of some of the works in PV output power forecasting using
DL algorithms is given in Table 5 in Appendix A. One
apparent thing to observe from this table is that LSTM is
the most widely used DL algorithm for PV output power
forecasting.

4) HYBRID MODELS
Due to the complex nature of PV output power forecasting,
a single ML/DL model is usually unable to fully capture
the highly non-linear characteristics between the inputs and
output. Inspired by this, there are many works in the literature
where more than one technique or model is used for PV
power forecasting. This approach is commonly known in
the literature as a hybrid model. The definition of a hybrid
model has not been consistent throughout different works of
literature. Here it is used to represent a model which can be a
combination of the above three PV power forecasting models
or techniques from multiple other domains.

One way to form a hybrid model is to use an opti-
mization algorithm to fine-tune the internal parameters of
a conventional ML model. Pan et al. [15] used SVM as

a base forecasting model and I-ACO (Improved ACO)
optimization technique to fine-tune the internal parameters
of the model. The R2 score, RMSE, and MAE of the hybrid
model are significantly improved to 0.997, 0.1868 kW,
and 0.1569 kW respectively. Conceptually identical work,
utilizing SVM, is proposed in [20]. Here, the authors used GA
instead of I-ACO for optimization purposes and significant
performance improvement is achieved as compared with
the base SVM model without optimization. The RMSE and
MAPE reduced from 680.85 W and 100.47% to 11.23 W and
1.7052% respectively.

The performance of a hybrid model can be further
improved by including time series decomposition algorithms
on the above approach (i.e. using optimization techniques).
A hybrid forecast model combining the SVM model, signal
decomposition (WT), and optimization technique (PSO)
is proposed in [18] for a 480 kW PV plant in Beijing,
China. The WT decomposes and filters historical PV power
measurements and weather parameters into subcomponents
and these noise-treated subcomponents are used to train
the SVM model. The PSO is used to optimally tune the
internal parameters of the SVM. Their result demonstrated
the adequacy of the proposed method in terms of higher
forecasting accuracy. A similar approach that combines
WPD and LSTM is implemented in the work of [12].
WPD decomposes the power series into four low (represent
the power output trend) and high (represent varying and
random output) frequency components. These components
are trained by four LSTM neural networks and the final
prediction is made by the linear weighting method. Their
result showed significant forecast accuracy improvement
over other methods such as LSTM, GRU, RNN, and MLP in
all four seasons of the year. The RMSE improved by 77.3% as
compared with the forecast model involving LSTM without
WPD.

Another technique where a hybrid model can be imple-
mented to increase the forecast accuracy is to use a weather
classification algorithm at the initial stage of the forecasting
process. Based on the classification result, two approaches
can be implemented. First, eachweather cluster can be trained
with a separate model and the final prediction will be the
aggregate of the prediction from each model. Second, only
a subset of the original data set that is similar to the forecast
day will be used to train a common model for all clusters.

Implementing the first approach is the work of authors
in [77]. They trained separate RF models for each cluster
that is obtained using historical PV power data. Each model
predicts on a new test sample, and the final prediction is
made by integrating the prediction results from each cluster
according to the assigned weight by the ridge regression
algorithm. A PV forecasting model that implements the
second approach is proposed by Jiang et al. [78]. Here,
the authors used PCC (Pearson Correlation Coefficient) to
measure the similarity between different days based on
meteorological variables, and only samples similar to those
from the target forecast day are selected as the training set to
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FIGURE 11. Multiple time step forecast [52], [79].

train GA-optimized ELM (Extreme LearningMachine). They
were able to achieve an accurate forecast model that is also
stable and computationally efficient. What can be seen from
their work is that clustering analysis can effectively improve
the prediction accuracy and stability of solar output power
forecasting. A comprehensive summary of various hybrid
PV output power forecasting models is given in Table 6 in
Appendix A.

C. CLASSIFICATION BASED ON FORECAST TIME STEP
PV power forecasting models can be divided into two
groups depending on the number of future time steps under
consideration [52]. A forecast model that requires only the
prediction of the next immediate time step is called a single
time step forecast. On the other hand, a forecast problem that
requires the prediction of more than one time-step is called a
multiple time-step forecast. The number of time steps to look
into the future depends on the specific application area where
the forecasting will be implemented. The more time steps to
be predicted into the future, themore challenging the task will
be. This is the direct result of both the compounding nature
of uncertainty on each forecast time step and the stochastic
nature of input weather parameters.

1) SINGLE TIME STEP FORECAST
Most PV power forecasting models in the literature fall in this
category. This involves forecasting a single time step into the
future on a minute, 5 minutes, 15 minutes, or hourly basis.
This category of forecast is relatively simple and accurate.
It is more appropriate and ideal especially in areas where the
weather changes frequently in a short interval.

2) MULTIPLE TIME STEP FORECAST
In some applications such as scheduling and dispatching,
the prediction of the next immediate time step will not be
sufficient. In such circumstances, multiple time step forecast
becomes very important. The two widely used approaches
for multiple time step forecast are direct and iterative
methods (Fig. 11). In the direct approach, multiple models are
developed for each time step and if it is an NN-based model,
multiple output units representing each time step are used
in the output layer. In contrast, the iterative approach uses
a single model and appends the prediction from a previous

time step as an input for the next step. Although this approach
is relatively less complex, it suffers from error accumulation
from each previous prediction step. If the true observation of
the power is available (which is the case in PV output power
forecasting), this value can be used instead of the predicted
value as part of the input for making the prediction on the
next time step. This way it is possible to eliminate the error
propagation problem.

Rana and Rahman [52] proposed a new hybrid approach
formultiple time step forecast that integrates data re-sampling
technique with an ML algorithm. For every prediction step,
the time-series input data is first re-sampled to a new
representation that is ideal for that particular step. Then a
single step ML model is trained on the new re-sampled
data avoiding the error at higher prediction steps. They
have shown that their approach is a better alternative to the
conventional approaches in the literature for multiple steps
ahead prediction. The technique proposed in their work is
very inspirational, but an important constraint can be when
downsampling the original time series, a piece of important
information describing the true variation in PV power can be
lost, especially for higher time steps.

The performance of the three multiple time step forecast
approaches discussed above was compared in [79] for
a PV plant located at the University of Queensland in
Brisbane, Australia. They used a heterogeneous ensemble
model which dynamically assigns weight to the individual
predictions based on the error information from the previous
and current time steps. Their result shows that multiple-
step forecast based on the approach proposed by [52]
result in better accuracy. This approach achieved a 12.2%
and 24.8% performance improvement in terms of MAE
when compared with the direct and iterative approaches
respectively.

D. CLASSIFICATION BASED ON AREAL SCALE
PV output power forecasting models can also be grouped
into single-field and regional forecasts based on the number
of PV plants and areal coverage considered in the study.
All the PV power forecasting models discussed so far
in this paper involve a single plant, thus belong to the
single-field category. On the other hand, regional forecast
involves a group of PV plants spread in a wider area.

VOLUME 10, 2022 26417



B. D. Dimd et al.: Review of Machine Learning-Based Photovoltaic Output Power Forecasting: Nordic Context

FIGURE 12. Regional forecast. (a) Bottom-up approach (b) Scaling based on weather aggregation and virtual PV plant and
(c) Up-scaling based on sample PV plants [81].

This kind of forecast is particularly important for large grid
operators for planning unit commitment, determining reserve
requirements, contingency analysis, and energy storage
dispatch [80].

1) SINGLE-FIELD FORECAST
Single-field forecast implies the prediction of solar output
power from a single PV plant. This approach is more
accurate and effective because the weather condition of the
geographical area where the plant is located can be precisely
represented by localized parameters.

2) REGIONAL FORECAST
Integrating PV plants spread over different locations to a grid
that connects many regions is a major technical challenge
for system operators that have to ensure the balance between
production and consumption at all times. This has also
major economic implications for energy trading companies
operating acrossmultiple regions (ex. Nord Pool in the case of
Europe). It is therefore important to have a regional PV power
forecast that aggregates the PV power prediction of individual
plants located in various geographical areas. Two common
approaches exist in the literature for regional PV power
output forecasting: Bottom-up and Up-scaling approaches
(Fig. 12).
• Bottom-up Approach: In this approach, prediction for
each PV plant in the regional area under consideration
is made first, and then the results are aggregated
statistically to obtain the regional forecast. This is
shown in Fig. 12 (a). This approach is not widely used
practically as it requires large computational resources

and detailed knowledge about each plant in the region.
Its application is limited to the cases where there are few
PV plants in the area under consideration.

• Up-scaling Approach: This can be implemented in two
ways. In the first approach, the various PV sites in the
forecast region are replaced by a virtual power plant,
and prediction is made directly at the regional level by
using input data aggregated at a lower level (Fig. 12(b)).
In the second approach, representative PV sites are
sampled carefully and then the PV power forecast of
such plants is re-scaled to obtain the regional power
prediction according to the total capacity in the area
(Fig. 12(c)). Choosing the right PV plant subsets that
represent the spatial distribution of the overall region
is equally important as the prediction itself in this
approach [82].

A regional PV power forecast implementing a bottom-
up approach for PV plants located in Luxembourg is
proposed in the work of Koster et al. [83]. The hourly
regional power generation is predicted using exogenous input
(solar irradiance) obtained from NWP and a physical PV
performance model. The prediction results from the proposed
approach were compared with the true measured values and
high accuracy is achieved with an average RMSE value
of 7.4%.

Authors in [81] compared the performance of different
ML-based regional forecasting methods using the up-scaling
approach for PV plants located in the regions of Italy and
the Netherlands. The forecast model based on an analog
ensemble algorithm outperformed all other models including
RF and GBDT. Aillaud et al. [84] used nationally aggregated
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PV generation data and meteorological inputs from NWP for
regional PV power output forecast in Germany. A forecast
model based on CNN-LSTMgave the best performancewhen
compared with other conventional and DL models. This is
directly attributed to the ability of this hybrid model to extract
both spatial (CNN) and temporal (LSTM) features from the
input.

An up-scaling approach using a sample of reference
plants is the practical and economic way of estimating PV
output power on a regional level. However, this approach
has its own challenges and introduces some uncertainties.
These uncertainties arise from the sparsity of reference
plants, the number of unknown plants, and most importantly
on the difference in characteristics between the reference
and unknown plants in the area. Saint-Drenan et al. [85]
addressed and quantified these uncertainty issues for 366 PV
plants in the regions of Germany. Their analysis shows
that the RMSE decreased as the number of reference plants
increased and when the number of unknown PV plants
decreased. Another interesting finding of their work is that
a variation of RMSE between 0.01 and 0.025 kW/kWp is
measured depending on the choice of the reference plants.

To improve the performance of the regional PV output
power forecast model using the up-scaling approach, authors
in [86] used module orientation as an additional input vari-
able. They determined themodule orientation of the unknown
PV plants using GIS-based (Geographic Information Sys-
tem) data sources and spatial interpolation techniques.
Their approach resulted in an improvement of the RMSE
by 5% when compared with the conventional up-scaling
approaches.

The impact of local variability of weather parameters
is ‘minimal’ in the regional PV power forecast due to
the spatial smoothing effect. However, it can still be very
challenging to make regional forecasts for some locations
such as Norway. Norway is an elongated country where the
southern and western part is fully exposed to the Atlantic
ocean and experiences very different weather characteristics
than the eastern and northern areas. Furthermore, the inland
regions of Norway also have their unique climate. This
significant weather variation across the county makes the task
of determining sample PV plants that will be used in the up-
scaling approach very difficult. Anothermajor bottleneck that
makes regional forecasting challenging in Norway can be the
uneven distribution of PV plants across the country which
again directly affects the choice of reference samples for the
up-scaling approach. According to the data from NVE [4]
for 2020, this uneven distribution is shown in Fig. 14 which
is based on Fig. 13 which shows the Norwegian electricity
market. These figures show the spatial distribution of PV
plants across the country in different electricity power market
zones. From these figures, it is possible to see that almost
all (≈ 98%) the PV capacity in Norway is concentrated
in the south and west part of the country which would
negatively contribute for PV power prediction on regional
level.

FIGURE 13. Norwegian electricity market.

FIGURE 14. Distribution of PV plants in Norwegian electricity market.

E. CLASSIFICATION BASED ON APPROACH
In this classification category, the term ‘approach’ has been
used to refer to the nature or type of output a particular PV
power prediction model returns. Depending on this, forecast
models can be grouped into two categories. Point forecast and
Probabilistic forecast.

1) POINT FORECAST
Most works in the literature fall in this group. In this
approach, the goal is to determine the precise value of the
power production for each forecast step. The limitation of
this approach is that it ignores information such as upper and
lower bounds of possible forecasts that are very valuable for
system operators and energy trading companies [55].

2) PROBABILISTIC FORECAST
The probabilistic forecast provides prediction intervals in
addition to precise values with which the forecast is expected
to fall with some predefined confidence level or probability.
The additional information about the uncertainty of the
prediction is very important to decision-makers such as
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PV-based electricity market operators [87]. This knowledge
is used to provide a precise generation schedule for the day-
ahead and real-time market.

A day ahead probabilistic PV output power forecasting
model based on QRNN (Quartile Regression Neural Net-
work) is proposed in [87] for a 7 MW PV plant in South-
East of Spain. The internal settings of the NN and the size of
informative inputs are optimized using GA algorithm. Their
analysis shows that a point forecast corresponding to the
QRNN for quantile 0.5 has lower RMSE compared with a
persistence reference model and with the best MLP model.

Authors in [54] used the bootstrap technique to quantify
uncertainties associated with each forecast. This technique
allowed predictions to be made with a wider prediction
interval with a confidence level of 84%. Such kind of
forecast is very important for proper planning, scheduling,
and generation control of the available energy sources. It is
also crucial information for ensuring power system reliability
and for an efficient energy market operation.

Thus far, this work has attempted to claim that solar
electricity can be a good and economical alternative to
conventional ways of generating electricity even in the colder
climates of the Nordic regions and Canada. The cold climate
can provide a unique opportunity in terms of seasonal
matching of generation and consumption, and improving the
efficiency of the PV modules. However, the cold climate also
brings an important challenge to the operation of PV plants in
these regions, such as the soiling effect due to snow. Frequent
and abrupt change of weather parameters over a short period
is also another important challenge that is worth considering
in these regions. Despite these limitations, this work argued
that accurate PV output power forecasting that considers the
needs of this region’s climate can improve the adoption and
deployment of PV plants further.

Section II addressed the basic procedures and steps that
are commonly followed in the design of AI-based PV
power forecasting models. The discussion of the common
AI algorithms that are widely used in relation to PV power
forecasting was also part of this section. The different
environmental parameters that directly affect PV power
forecasting are discussed in section III. A more focused
discussion on the case of PV in a cold climate is covered in
section IV. Both the merits and demerits of the cold climate
are thoroughly covered. It is argued that the advantages that
come alongwith the cold climate outweigh the challenges and
a PV power forecasting model that takes into consideration
this can result in a more efficient system. And finally,
the classification of PV power forecasting models based
on multiple criteria was presented in section V. In the
two sections that follow, a thorough discussion on the
main findings from this review paper, together with a final
comment and conclusion is provided.

VI. DISCUSSION
In recent years, solar electricity is gaining huge interest
in the cold and high latitude climate regions such as the

Nordic countries and Canada. Although the cold climate
offers many opportunities, the unique climate in these regions
also makes the task of integrating PV into the existing grid
more challenging. Accurate PV output power forecasting
can overcome this limitation and make PV power an equal
contributor to the energy mix in these regions. This paper
presented a comprehensive review and evaluation of the state
of the art in the use of AI/ML algorithms for PV output
power forecasting in the Nordic region. Themain goals of this
review paper were to identify relevant input parameters and
evaluate their importance in PV power forecasting and assess
the performance of various PV output power forecasting
models. The analysis of the impact of the forecast time step,
forecast horizon, and areal scale on the performance of a
prediction model was also the point of interest in this review.
This review was also aimed at qualitative assessment of
some of the techniques that are used to enhance the accuracy
and stability of a prediction model. The following are some
of the important issues that are discussed in this review
work.

The selection of weather parameters as an input to a
PV output power forecasting is a vital step to achieving a
good model. Proper feature selection and using an optimum
number of informative inputs ensure a high-performing
model with minimal computational resource requirement.
This is one of the important required characteristics of a PV
forecast model for practical deployment. Since the Nordic
region’s weather, especially Norway’s, vary very frequently
over a short period, it results in fast and abrupt changes in PV
output power. This study indicates that such variations can
only be precisely accounted for by including solar irradiance
and cloud coverage information as inputs in the prediction
model.

The impact of the soiling effect due to the accumulation of
snow on PV modules is another significant issue that should
be taken into consideration in the design of a PV output power
forecast model in the Nordic region. This effect can vary
from partial to total obstruction of solar irradiance reaching
the surface of the PV module resulting in a reduced or zero
generation of PV power. In general, prior works are limited
to the calculation and prediction of yield reduction due to
snow cover. To the author’s knowledge, no previous study has
investigated how to directly incorporate the impact of snow
on PV output power forecasting.

This study suggests two possible strategies that can be used
to incorporate this effect in the design of a PV output power
forecast model. The first strategy is to consider snow depth
and snow cover as additional inputs in the initial stages of the
design process of a forecast model. In this way, the algorithm
learns how to associate snow depth and snow cover with
PV output power. In the second approach, a strategy can be
designed in such a way that during the days with significant
snow cover, a correction term can be added to the forecast
output that is obtained without taking snow accumulation as
an input feature. These strategies provide new insight into
the problem and can serve as the first step towards a more
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TABLE 4. Conventional ML models for PV output power forecasting.

profound understanding of PV output power forecasting in
Nordic regions.

The success of the two proposed approaches above
however depends greatly on the precise measurement of snow
depth and snow cover on the surface of the PV modules. This
can be of major concern and the authors believe that this
information may be currently unavailable from most or all
PV plants in the Nordic region. This, therefore, suggests a
definite need and effort to be directed towards installing a
measurement station for monitoring the snow effect. It is also
very important to bear in mind that these approaches require
addressing the issues related to the snow clearing process
due to snow sliding and snow melting. More research is also
needed to understand and consider the reflective property of
snow and ice (albedo effect) in PV output power prediction
in Nordic regions.

The forecast time step and forecast horizon are also
important parameters that directly affect the accuracy of
a prediction model. These parameters should be chosen
considering the stability of the weather condition where the
plant is located. This study shows that for a relatively stable
weather condition, a prediction model with a forecast time
step of up to 1 hour and a forecast horizon of up to one week
or more can be designed without significantly compromising
the accuracy. On the other hand, if the weather condition of
the PV plant’s location is frequently changing over a short
period, such as in Norway, a prediction model with a forecast
time step and a forecast horizon of more than one hour could
lead to substantial forecast error.

This review also shows that the choice of a particular
type of ML algorithm to apply for PV output power
forecasting depends on the weather condition of the area
where the plant is located similar to the forecast time step
and horizon. For stable weather conditions, the deterministic
component (which is explained by the movement of the

sun) of the PV output power is more dominant than the
stochastic component (which is explained by the movement
of cloud). In such cases, conventional ML algorithms such
as RF and SVM can result in a sufficiently good-performing
prediction model. However, in areas where the stochastic
component is equally important as the deterministic com-
ponent, the conventional ML algorithms are found to be
mostly inadequate. In cases like this, DL algorithms such as
LSTM and CNN have been implemented to overcome this
inherent limitation. It was found in our analysis that such
approaches can fully capture highly complex input-output
relationships and result in a high-performing prediction
model.

This research has identified several techniques and
approaches that have been implemented to improve the
performance (accuracy and stability) of a PV power predic-
tion model. One such technique is the use of an ensemble
approach. Ensemble techniques such as bagging and boosting
which aggregate the prediction ability of multiple base
estimators are found to improve the poor generalizing ability
and the over-fitting problem of conventional ML methods
considerably. Such an approach can be particularly beneficial
to enhance the performance of conventional ML-based PV
power forecasting models in a region with highly varying
weather conditions.

Time-series decomposition is another technique that is
mostly applied to improve the performance of a PV power
forecast model. WT andWPD are the two commonly utilized
and efficient time-series decomposition tools that are used as
preprocessing steps to treat time series data against noise.
In this way, the algorithm can be trained on the noise-
treated data which is found to improve the training speed and
prediction accuracy substantially.

This research work has also shown that for PV out-
put power forecasting models based on DL algorithms,
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TABLE 5. Deep learning models for PV output power forecasting.

TABLE 6. Hybrid models for PV output power forecasting.

auto-encoder and attention mechanism techniques can be
included to improve performance. These approaches denoise
the input time series data and ensure that the algorithm
adaptively focuses only on the input features that are more
important to the current prediction and avoid interference
from other features. This enables the prediction model to
handle uncertainties in the training process and deal with
complex and unstable environmental conditions.

Weather clustering is another approach that this study
has identified as a useful tool that has enormous potential
in improving the performance of a prediction model. This
approach ensures that the model is trained and subsequent
prediction is made by considering data only on days which
have similar characteristics as the target forecast day. This
method not only results in higher accuracy and stability but
also needs small computational resources which is a required
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attribute in the practical deployment of a PV power prediction
model.

VII. CONCLUSION
In general, the findings in this research suggest the need
to adapt the available AI/ML algorithms in the literature
for the design of PV output power forecasting to match the
unique climate of the Nordic region. More emphasis should
be given to the impact of the soiling effect due to snow during
the winter season in addition to the highly varying weather
conditions. This ensures an accurate PV power forecasting
model which potentially is a better and economical alternative
to other methods to stabilize a grid with high penetration
of PV. This work therefore can serve as a groundwork for
further research into the design of a high-performing AI/ML
PV power forecast model and can contribute in several ways
to the limited current literature available for PV in the Nordic
region. Although the focus of this work has been in the Nordic
regions, it can easily be extended and be applicable in other
areas that have similar weather characteristics, for example,
Canada.

APPENDIX A
SUMMARY OF REVIEWED PAPERS
See Tables 4–6.
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