
Received January 21, 2022, accepted February 24, 2022, date of publication March 4, 2022, date of current version March 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3156894

Medical Image Segmentation Using
Transformer Networks
DAVOOD KARIMI 1, HAORAN DOU2, AND ALI GHOLIPOUR 1, (Senior Member, IEEE)
1Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
2Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds LS2 9JT, U.K.

Corresponding author: Davood Karimi (davood.karimi@childrens.harvard.edu)

This work was supported in part by the National Institute of Biomedical Imaging and Bioengineering and the National Institute of
Neurological Disorders and Stroke of the National Institutes of Health (NIH) under Award R01EB031849, Award R01NS106030, and
Award R01EB032366; in part by the Office of the Director of the NIH under Award S10OD0250111; and in part by a Technological
Innovations in Neuroscience Award from the McKnight Foundation. The work of Haoran Dou was supported by the EPSRC Doctoral
Training Partnership (DTP) Studentship. The content of this publication is solely the responsibility of the authors and does not necessarily
represent the official views of the NIH or the McKnight Foundation.

ABSTRACT Deep learning models represent the state of the art in medical image segmentation. Most of
these models are fully-convolutional networks (FCNs), namely each layer processes the output of the preced-
ing layer with convolution operations. The convolution operation enjoys several important properties such
as sparse interactions, parameter sharing, and translation equivariance. Because of these properties, FCNs
possess a strong and useful inductive bias for image modeling and analysis. However, they also have certain
important shortcomings, such as performing a fixed and pre-determined operation on a test image regardless
of its content and difficulty in modeling long-range interactions. In this work we show that a different deep
neural network architecture, based entirely on self-attention between neighboring image patches and without
any convolution operations, can achieve more accurate segmentations than FCNs. Our proposed model is
based directly on the transformer network architecture. Given a 3D image block, our network divides it
into non-overlapping 3D patches and computes a 1D embedding for each patch. The network predicts the
segmentation map for the block based on the self-attention between these patch embeddings. Furthermore,
in order to address the common problem of scarcity of labeled medical images, we propose methods for pre-
training this model on large corpora of unlabeled images. Our experiments show that the proposed model can
achieve segmentation accuracies that are better than several state of the art FCN architectures on two datasets.
Our proposed network can be trained using only tens of labeled images. Moreover, with the proposed pre-
training strategies, our network outperforms FCNs when labeled training data is small.

INDEX TERMS Deep learning, medical image segmentation, self-attention, transformer networks.

I. INTRODUCTION
Image segmentation is needed for quantifying the size and
shape of the volume/organ of interest, population studies,
disease quantification, and computer-aided treatment and sur-
gical planning. Given the importance and the difficulty of
this task in medical applications, manual segmentation by
a medical expert is regarded as the ground truth. However,
manual segmentation is costly, time-consuming, and subject
to inter and intra-observer disagreement. Automatic segmen-
tation methods, on the other hand, have the potential to offer
much faster, cheaper, and more reproducible results.

Classical techniques for medical image segmentation
include region growing [1], deformable models [2], graph
cuts [3], clusteringmethods [4], and Bayesian approaches [5].
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Atlas-based methods are another very popular and powerful
set of techniques [6]. With the introduction of deep learn-
ing methods for image segmentation [7], [8], these meth-
ods were quickly adopted for medical image segmentation.
Deep learning methods have achieved unprecedented levels
of performance on a range of medical image segmentation
tasks [9]–[14]. One can argue that deep learning methods
have largely replaced the classical methods for medical image
segmentation.

Recent reviews of the main lines of research and recent
advancements on the application of deep learning for med-
ical image segmentation can be found in [15], [16]. Most
recent studies have aimed at improving the network archi-
tecture, loss function, and training procedures. Recent works
have shown that standard deep learning models can be
trained using small numbers of labeled training images [17],
[18]. Despite the large variability in the proposed network
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architectures, the one common feature in all of these works is
that they all use the convolution operation as the main build-
ing block. The proposed architectures differ with regard to the
arrangement of the convolutional operations, but they all rely
on the same basic convolution operation. A few studies have
proposed alternative network architectures based on recurrent
neural networks [19], [20] and attention mechanisms [21].
There have also been attempts to improve the accuracy and
robustness of these methods by modeling the statistical vari-
ation in the shape of the organ of interest and incorporating
this shape information in the deep learning method [12],
[22], [23]. However, all of those models still build upon the
convolution operation. Some recent studies have suggested
that a basic encoder-decoder-type fully convolutional net-
work (FCN) can handle various segmentation tasks and be
as accurate as more elaborate network architectures [24].

The convolution operation is also the main building block
of the network architectures that have successfully addressed
other central computer vision tasks such as image classifica-
tion and object detection [25], [26]. These results attest to the
effectiveness of the convolution operation for modeling and
analyzing images. This effectiveness has been attributed to
a number of key properties, including: 1) local (sparse) con-
nections, 2) parameter sharing, and 3) translation equivari-
ance [27], [28]. In fact, a convolutional layer can be regarded
as a fully connected layer with an ‘‘infinitely strong prior’’
over its parameters [29].

The properties of the convolution operation that we men-
tioned above are, in part, inspired by neuroscience of the
mammalian primary visual cortex [30]. They give convolu-
tional neural networks (CNNs), including FCNs, a strong and
useful inductive bias, which makes them highly effective and
efficient in tackling different vision tasks. However, these
same properties also put CNNs at some disadvantage. For
example, the network weights are determined at training time
and subsequently they are fixed. Therefore, these networks
treat different images and different parts of an image equally.
In other words, they lack amechanism to change their weights
depending on the image content. Furthermore, due to the
local nature of convolution operations with small kernel sizes,
CNNs cannot easily learn long-range interactions between
distant parts of an image.

Attention-based neural network models have the potential
to address some of the limitations of convolution-based mod-
els. In short, these models aim at learning the relationship
between different parts of a sequence [31]. Most importantly,
unlike CNNs, in attention-based networks not all network
weights are fixed upon training. Rather, only a portion of
the network weights are learned from training data and the
rest of the weights are determined at test time based on the
content of the input. Attention-based networks have become
the dominant neural network architectures in natural language
processing (NLP) applications. Transformers are the most
common attention-basedmodels inNLP [31]. Comparedwith
recurrent neural networks, transformers can learn more com-
plex and longer-range interactions much more effectively.
Moreover, they overcome some of the central limitations of

recurrent neural networks such as vanishing gradients. They
also allow for parallel processing of inputs, which can lead to
significantly shorter training time on modern hardware.

Despite the potential advantages of transformer networks,
so far they have not been widely adopted in computer vision
applications. A recent survey of the relevant works on this
topic can be found in [32]. Application of attention-based
neural networks for computer vision applications faces sev-
eral important challenges. The number of pixels in a typical
image is much larger than the length of a signal sequence
(e.g., number of words) in typical NLP applications. This
makes it impossible to directly apply standard attention mod-
els to images. The second main reason has been the training
difficulty. The strong inductive bias of CNNs that we have
mentioned above makes them highly data-efficient. Trans-
former networks, on the other hand, require much more train-
ing data because they incorporate minimal inductive bias.
Recent studies have proposed practical solutions to these
two challenges. To address the first challenge, vision trans-
former (ViT) proposed considering image patches, rather
than pixels, as the units of information in an image [33].
ViT embeds image patches into a shared space and learns
the relation between these embeddings using self-attention
modules. It was shown that, given massive datasets of labeled
images and vast computational resources, ViT could surpass
CNNs in image classification accuracy. One possible solution
to the second challenge was proposed in [34], where the
authors used knowledge distillation from a CNN teacher to
train a transformer network. It was shown that with this
training strategy, transformer networks could achieve image
classification accuracy levels on par with CNNs using the
same amount of labeled training data [34].

In this work, we propose a self-attention-based deep neural
network for 3D medical image segmentation. Our proposed
network is based on self-attention between linear embeddings
of 3D image patches, without any convolution operations.
Given the fact that self-attention models generally require
large labeled training datasets, we also propose unsupervised
pre-training methods that can exploit large unlabeled medical
image datasets. We compare our proposed model with several
state of the art FCNs on two medical image segmentation
datasets.

The specific contributions of this work are as follows:
1) We propose the first convolution-free deep neural net-

work architecture for segmentation of 3D medical
images.

2) We show that our proposed network can achieve seg-
mentation performance levels that are better than or
at least on par with the state of the art FCNs. Even
though prior works have suggested that massive labeled
training datasets are needed to effectively train trans-
former networks for NLP and vision applications, we
experimentally show that our network can be trained
using datasets of only ∼ 20− 200 labeled images.

3) We propose methods for pre-training our network on
large corpora of unlabeled images. We show that when
labeled training images are fewer in number, with these
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pre-training strategies, our network performs better
than a state of the art FCN with pre-training.

II. MATERIALS AND METHODS
A. PROPOSED NETWORK
Our proposed transformer network for 3D medical image
segmentation is shown in Figure 1. The input to our network
is a 3D image block B ∈ IRW×W×W×c, where W denotes
the extent of the block (in voxels) in each dimension and c
denotes the number of image channels. Working with image
sub-blocks is a common approach in processing large vol-
umetric images. It enables processing of large images of
arbitrary size on limited GPU memory. Furthermore, it func-
tions as an implicit data augmentation method because during
training sub-blocks are sampled from random locations in the
training images.

The image block B is divided into n3 non-overlapping 3D
patches {pi ∈ IRw×w×w×c}Ni=1, where w = W/n is the side
length of each patch and N = n3 denotes the number of
patches in the block. In the experiments presented in this
paper we choose n ∈ {3, 4, 5}, resulting in N ∈ {27, 64, 125}
patches in each block. The proposed transformer network
embeds each patch into a lower-dimensional space and pre-
dicts the segmentation map corresponding to the image block
B based on the self-attention between these embeddings. The
steps of the proposed method are described below.

Each of the N patches {pi}Ni=1 is first reshaped into a
vector of size IRw

3c and embedded into IRD using a train-
able linear mapping E ∈ IRD×w

3c. This step is similar
to the first step in the ViT model for image classification.
The ViT model appended an extra ‘‘class token’’ to the
sequence of embedded patches. This class token is inherited
from NLP applications. We did not use such a token in the
experiments presented in this work because our preliminary
experiments showed that it did not improve the segmenta-
tion performance of our network in any way. Hence, the
sequence of embedded patches X0

= [Ep1; . . . ;EpN ]+Epos
constitutes the input to our transformer network. The matrix
Epos ∈ IRD×N , which is added to the embedded patches is
intended to learn a positional encoding. This is a common
features of self-attention models because the attention mech-
anism is permutation-invariant. In other words, without such
positional information, the transformer network ignores the
ordering of the patches in the input sequence. In most NLP
applications, the positional encoding has proved to be crucial
for achieving optimal results. For 2D image classification
with the ViT model, positional encoding resulted in relatively
small improvements in performance and a simple 1D raster
encoding was as good as more elaborate 2D positional encod-
ing strategies [33]. Because we do not know a priori what
type of positional encoding would be useful in the application
considered in this work, we leave Epos as a free parameter to
be learned along with the network parameters during training.
In Section III, we present the results of experiments with
different positional encoding strategies for our network.

As shown in Figure 1, our proposed network includes
only the encoder section of the original transformer network

proposed in [31]. The network has K identical stages,
each consisting of a multi-head self-attention (MSA) and a
subsequent two-layer fully-connected feed-forward network
(FFN). All MSA and FFN modules include residual con-
nections, ReLU activations, and layer normalization [35].
Starting with the input sequence of embedded and position-
encoded patches, X0 described above, the k th stage of
the network performs the following operations to map X k

to X k+1:
1) X k goes through nh independent heads in MSA. The

ith head:
a) Computes the query, key, and value sequences

from the input sequence using linear operations:

Qk,i = Ek,iQ LN(X k ), K k,i
= Ek,iK LN(X k ),

V k,i
= Ek,iV LN(X k )

where EQ,EK ,Ev ∈ IRDh×D and LN denotes
layer normalization.

b) Computes the self-attention matrix and then the
transformed values:

Ak,i = Softmax(QTK )/
√
Dh

SAk,i
= Ak,iV k,i

The above equation highlights one of the central
differences between transformer networks and
CNNs. It shows that the mapping (Ak,i) used to
transform the features from one network layer to
the next layer is computed based on the input
itself. Hence, this mapping depends on the con-
tent of the input at test time, rather than being
fixed and the same for all inputs as in CNNs.

2) Outputs of the nh self-attention heads are stacked
together and re-projected back onto IRD:

MSAk
= Ekreproj[SA

k,0
; . . . ;SAk,nh ]T

where Ereproj ∈ IRD×Dhnh

3) The output of the current multi-head self-attention
module is computed using a residual operation:

X kMSA = MSAk
+ X k

4) X kMSA goes through a two-layer FFN to obtain the
output of the k th stage of the network:

X k+1=X kMSA+E
k
2

(
ReLU

(
Ek1LN(X

k
MSA)+b

k
1

))
+bk2

The output of the last stage, XK , is passed through the final
FFN layer that projects it onto IRW

3nclass . This is then reshaped
into IRW×W×W×nclass . Here, nclass denotes the number of
classes (for binary segmentation, nclass = 2).

Ŷ = Softmax
(
EoutXK + bout)

)
.

Ŷ is the predicted segmentation map for the block (as shown
in Figure 1). Since our network predicts segmentation maps
for image sub-blocks, in order to process a test image of
arbitrary size, we apply the network in a sliding window
fashion on the image.
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FIGURE 1. The proposed convolution-free network for 3D medical image segmentation. Left: An overall schematic of the proposed method: (a) an image
block is divided into n3 non-overlapping 3D patches, (b) each patch is reshaped into a vector and embedded into a lower dimension, (c) positional
encoding is added to the embedding, (d) position-encoded signals go through the transformer network, (e) the output of the network is re-projected back
into the shape of the original patches, (f) the network output is the segmentation of the organ of interest for the location corresponding to the location of
the extracted block. Right: One of the K stages of the transformer network.

B. IMPLEMENTATION AND TRAINING
We implemented the network in TensorFlow 1.16 and trained
it on an NVIDIA GeForce GTX 1080 GPU on a Linux
machinewith 120GB ofmemory and 16CPU cores.We com-
pare our model with the following FCN architectures:
• 3D UNet++ [36]. This is a re-design of the UNet
model [37]. The main difference between UNet++ and
the basic UNet is a set of dense skip connections between
the encoder and decoder sections of UNet++.

• Attention UNet [38]. This model is based on attention
gates, which are meant to learn to automatically focus
on the target organ. These attention gates enable the net-
work to suppress irrelevant features and to learn useful
soft region proposals, thereby improving segmentation
performance.

• SE-FCN [39]. This network architecture is based on
incorporating squeeze & excitation (SE) blocks [40] into
FCNs for medical image segmentation. The purpose of
SE blocks is to adaptively adjust the importance given
to different feature maps, i.e., to promote more useful
features and to down-weight less informative features.

• 3D Deeply Supervised Residual Network
(DSRNet) [41]. This is an encoder-decoder FCN archi-
tecture that uses deep supervision [42] and skip connec-
tions between all corresponding encoder and decoder
stages.

We trained the networks using a Dice similarity coefficient
(DSC)-based loss function [43]:

L(Ŷ ,Y ) = −

∑
i ŶiYi∑

i Ŷ
2
i +

∑
i Y

2
i

,

where Y is the ground truth segmentation map corresponding
to the image block B and the index i runs over all voxels in
the block. For training of our own network and the competing
models we used the Adam optimization algorithm [44] with
a batch size of 8. Furthermore, for all models we used blocks
of size 243 voxels. For our own network we used a learning
rate of 10−4. For UNet++ a larger initial learning rate of
3×10−4 was used because that led to the best results with
UNet++. For Attention UNet, SE-FCN, and DSRNet we
used a learning rate of 10−4.

C. PRE-TRAINING
Manual segmentation of complex structures such as the brain
cortical plate can take several hours of a medical expert’s time
for a single 3D image. Therefore, methods that can achieve
high performance with fewer labeled training images are
highly advantageous. This is especially important for trans-
former networks. As we mentioned above, transformer net-
works lack much of the built-in inductive bias that many other
networks such as CNNs enjoy merely by the virtue of their
architectural design. Therefore, compared with those archi-
tectures, transformers typically need much larger labeled
training datasets in order to learn the underlying patterns
directly from data. In NLP applications, a very common
approach is to pre-train the network using unsupervised train-
ing on massive unlabeled datasets [45]. In the same spirit,
we propose pretext tasks that can be used to train our network
on unlabeled 3D medical image datasets.

1) PRE-TRAINING WITH IMAGE DENOISING
In this approach, we add noise to the input image block B
and feed the noisy block Bnoisy to the network. We train the
network to reconstruct the clean image block using an `2 loss:

L(Bnoisy,B) = ‖Bnoisy−B‖2.

The noise added to each voxel is independent and identi-
cally distributed Gaussian noise with SNR = 10 dB.

2) PRE-TRAINING WITH IMAGE COMPLETION/INPAINTING
In this pre-training approach, wemask 10% of the image vox-
els at random. This is done by creating a random mask, M ∈
{0, 1}W×W×W×c, where each element of M is a Bernoulli
random variable with p = 0.1 and multiplying M with B in
an element-wise fashion. The loss function used in this pre-
training approach is similarly:

L(B,M ) = ‖B−M ◦ B‖2.

For model pre-training with each of the above two strate-
gies, we use a different output layer (without the softmax
operation). In order to fine-tune the pre-trained network for
the segmentation task, we introduce a new output layer with
the softmax activation and train the network on the labeled

VOLUME 10, 2022 29325



D. Karimi et al.: Medical Image Segmentation Using Transformer Networks

data as explained above. We fine-tune the entire network,
rather than only the output layer, on the labeled images
because we have found that fine-tuning the entire network
for the segmentation task leads to much better results.

Pre-training methods are also commonly used for FCNs.
Prior studies have shown that pre-training might lead to sub-
stantial improvements in segmentation performance of FCNs,
especially when the segmentation task is difficult and the
size of labeled training data is small [17], [46]. Therefore,
we will use the same denoising and inpainting tasks described
above to pre-train the FCNs. Moreover, we will also use
the semi-supervised FCN training method proposed in [47].
The method of [47] is based on an alternating optimization
strategy. It alternately updates the network parameters and the
estimated labels for the unlabeled images in parallel.

D. DATASETS AND EVALUATION CRITERIA
Table 1 shows the datasets used for model training and eval-
uation in this work. The images were randomly split into
training and test sets, with no patient data appearing in both
training and test sets. The same training/test splits were used
for all networks. For each dataset, we used approximately
20% of the training images for initial validation experiments
to decide on training settings such as the learning rate for
each network. After choosing the training settings, each
network was trained on all training images. The only data
augmentation was the implicit augmentation via sampling of
image blocks from random locations in the training images.
Voxel intensities of all images were normalized to have a
zero mean and unit standard deviation. Moreover, all images
were interpolated using 3D spline interpolation into isotropic
voxel sizes shown in the table. The corresponding ground
truth segmentations were interpolated using nearest neighbor
interpolation. We compare our proposed method with the
competing networks in terms of DSC, the 95 percentile of the
Hausdorff Distance (HD95), and Average Symmetric Surface
Distance (ASSD).

III. RESULTS AND DISCUSSION
Table 2 compares the segmentation performance of the pro-
posed method with the competing FCNs on the brain cortical
plate and hippocampus datasets. As described in Section II-A,
the proposed network includes several hyper-parameters that
can influence the segmentation results. The results presented
in Table 2 were obtained with: K = 5,W = 24, n =
3,D = 1024,Dh = 256, nh = 4. These are our default
settings for network hyper-parameters that we have used
in all experiments reported in the rest of the paper, unless
otherwise specified. We arrived at these parameters using
cross-validation experiments on the training images in the
brain cortical plate and hippocampus datasets as well as other
datasets not presented in the paper. We present experimental
results on the effects of different hyper-parameters on the
segmentation performance below.

The results presented in Table 2 show that the proposed net-
work has achieved segmentation performance levels that are
superior to the competing FCNs. For each dataset and each of

FIGURE 2. Example segmentations predicted by the proposed method
and the four FCNs. The segmentation legend is shown at the top of the
figure. Three example slices from the brain cortical plate dataset and two
example slices from the hippocampus dataset are shown. In each
example, the first row shows the image slice and the ground-truth
segmentation map. The second row shows the predictions of the four
FCNs and the proposed transformer network.

the three criteria, we performed paired t-tests to see if the dif-
ferences were statistically significant. As shown in the table,
segmentation performance of the proposed convolution-free
network was significantly better than the four FCNs in terms
of DSC, HD95, and ASSD at p < 0.01. Specifically, for
paired t-tests between the proposed model and UNet++ on
the brain cortical plate dataset the p-values for DSC, HD95,
and ASSDwere, respectively, 0.0044, 31×10−5, and 0.0082.
For the hippocampus dataset, the p-values for these compar-
isons were, respectively, 20× 10−6, 0.0032, and 74× 10−6.
The results obtained with the proposed method were espe-
cially superior in terms of the distance metrics, i.e., HD95
and ASSD. Among the FCN architectures, UNet++ per-
formed substantially better than the other architectures on
both datasets, but its segmentation performance was signif-
icantly inferior to that of our proposed method.

Figure 2 shows example slices from test images in each
dataset and the segmentations predicted by the proposed
method and the four FCNs. Visual inspection of the results
shows that the proposed network is capable of accurately
segmenting fine and intricate structures such as the brain
cortical plate. On both datasets, Attention UNet, DSRnet, and
SEFCN often resulted in false positive predictions far away
from the target organ, which is the reason behind their poor
performance in terms of the distance metrics presented in
Table 2.

We further assessed the segmentation performance of our
proposed network with reduced number of labeled training
images. The goal of this experiment was to investigate if
the pre-training tasks proposed in Section II-C could help
the network achieve a good segmentation performance with
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TABLE 1. Datasets used for experiments in this work.

TABLE 2. Comparison of the segmentation performance of the proposed method and several competing FCNs on the brain cortical plate and
hippocampus datasets. Better results for each dataset/criterion have been marked using bold type. We used paired t-tests to find statistically significant
differences; asterisks denote significantly better results at p < 0.01.)

a small number of labeled training images. In this experi-
ment, we compared our model with UNet++, which was
more accurate than the other three FCNs in the experiments
presented in Table 2. For this experiment, we trained our
method and UNet++ using ntrain = 5, 10, and 15 labeled
training images from cortical plate and hippocampus datasets.
We pre-trained our network using either the denoising or
the in-painting tasks described in Section II-C. We pre-
trained UNet++ using the same denoising and inpainting
pre-training tasks and also using the method proposed in [47].
Furthermore, we performed this experiment in two different
ways:

1) Pre-training on data with a similar distribution.
For brain cortical plate segmentation, we used 500 T2
brain images from the developing Human Connectome
Project (dHCP) dataset [14] for pre-training. The sub-
jects in the dHCP dataset range in age between 29 and
44 gestational weeks, which is close enough to the
age range of our in-house dataset: between 16 and
39 gestational weeks. For hippocampus segmentation,
we used the remaining training images (i.e., 220−ntrain)
for pre-training.

2) Pre-training on data with a different distribution.
Sometimes even unlabeled images with the same dis-
tribution are not available. To simulate such a scenario,
we used a pool of publicly available computed tomog-
raphy (CT) images. Specifically, we used 130 liver
CT [48] and 300 kidney CT [49] images to pre-
train our network and UNet++ for both brain corti-
cal plate segmentation and hippocampus segmentation.
As we had done for our target MRI images described
above, we also normalized voxel intensities of these CT
images to have a zeromean and unit standard deviation.

Figure 3 shows the results of this experiment. The results
show that with the proposed pre-training, our convolution-
free network achieves significantly more accurate segmen-
tations with fewer labeled training images. As expected,

on both datasets there was a drop in the segmentation perfor-
mance as the number of labeled training images was reduced.
However, this drop was smaller for the proposed network
than for UNet++. We have observed very similar results
with other FCN architectures. For our network as well as
for UNet++, the proposed inpainting pre-training leads to
slightly better results than the other pre-training methods.
Moreover, overall, pre-training on similar images leads to bet-
ter segmentation performance than pre-training on a dataset
of different images. As shown in Figure 3, for both the
proposed network and UNet++ the segmentation perfor-
mance is, slightly but consistently, higher when pre-training
is performed on a similar dataset. This indicates that both
the proposed network and UNet++ can learn the existing
patterns in unlabeled images and leverage this information
to achieve better segmentation results.

This is a very interesting and promising observation
because it shows that the proposed network can be trained
using a handful of labeled images for segmenting complex
structures in 3D medical images. This result is even more
noteworthy when we consider the results reported by recent
image classification studies. As we explained in Section I,
image classification studies that used a similar approach
(i.e., applying a transformer network on patch embeddings)
required massive labeled datasets [33] or relied on knowledge
distillation from a CNN teacher model [34]. Our results,
on the other hand, show that only a handful of labeled training
images are sufficient to train a similar network for 3Dmedical
image segmentation. This can be attributed to several factors:
1) In image classification there are significant variations in
relevant image features (even among images that belong to
the same class). In the segmentation tasks considered here,
on the other hand, there is significant similarity across sub-
jects and even among different patches in the same image.
2) There are far fewer class labels (only two) in the segmen-
tation tasks considered here compared with image classifi-
cation applications. 3) Working with image sub-blocks acts
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FIGURE 3. Segmentation performance (in terms of DSC) for the proposed network and UNet++ with reduced number of
labeled training images on the brain cortical plate dataset (left) and the hippocampus dataset (right). The top two plots
are for the experiment where the images used for pre-training have a distribution that is similar to the target test images.
The bottom two plots are for the experiment where the images used for pre-training (liver and kidney CT images) are very
different from the target test images.

as a strong data augmentation strategy and enables optimal
utilization of labeled training images. As a result, despite their
minimal inductive bias, transformer networks appear to be
well suited for medical image segmentation tasks.

The experimental results presented above show that
the proposed method can achieve segmentation perfor-
mance on par with or better than FCNs with as few as
10-20 labeled training images. This is an important and
encouraging result because in the medical imaging domain
manual labels are not easy to obtain. Nonetheless, in order
to assess the performance of the proposed method on larger
datasets, we conducted another experiment with the new-
born brain scans in the developing Human Connectome
Project (dHCP) dataset [14]. This dataset includes 558 T2
MRI brain scans with cortical plate segmentation. We ran-
domly selected 58 of these scans as test images. We then
trained our model and UNet++ on all 500 remaining images
as well as subsets of 100 and 10 images. In addition to the
implicit data augmentation caused by sampling patches from
random locations in the training images, we applied random
flip and rotation and we added random Gaussian noise to
the images. We also experimented with random down/up-
scaling of the images and random elastic deformation, but
these augmentations had a negative impact on segmentation
performance because they reduced the accuracy of train-
ing labels for fine and complex cortical plate segmentation.

Therefore, we did not use these latter augmentation methods.
The results of this experiment are presented in Table 3. The
results indicate that the proposed method achieves better
segmentation results than UNet++ with either 10, 100, or
500 labeled training images. Paired t-tests on the 58 test
images showed that, with 500 labeled training images, the
proposed method achieved significantly higher DSC (p =
0.0015) and significantly lower ASSD (p = 84× 10−6).

In Figures 5 and 4, we have shown example attention
maps of the proposed network for two different datasets.
As mentioned above, in order to process a test image of
arbitrary size, we apply our network in a sliding window
fashion. To generate the attention maps for the whole image,
at each location of the sliding window the attention matrices
(which are of size IRN×N ) are summed along their columns to
determine the total attention paid to each of the N patches by
the other patches in the block. Performing this computation
in a sliding window fashion and computing the voxel-wise
average gives us the attention maps shown in these figures.
They indicate how much attention is paid to every part of the
image in the process of generating the segmentation map.

The attention maps shown in Figure 4 were generated
on pancreas CT images from the Medical Segmen-
tation Decathlon challenge (https://decathlon-10.grand-
challenge.org/). The attention maps show that, overall, the
early stages of the network have a wider attention scope.
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TABLE 3. Results of an experiment to investigate the performance of the proposed network with different numbers of training images. This experiment
was performed on brain cortical plate segmentation labels from the dHCP dataset [14]. Asterisks denote statistically significant differences at p = 0.01,
computed using paired t-tests.

TABLE 4. Effect of some of the network hyperparameters on the segmentation performance on the brain cortical plate dataset. The baseline network
(shown in the first row of this table) corresponds to these settings: K = 5, W = 24, n = 3, D = 1024, Dh = 256, nh = 4, which are the hyperparameter
values that we used in all experiments reported in this paper other than in this table. In the remaining rows of this table, we have changed the
hyperparameters, one at a time, and trained the network.

They attend to other structures and anatomical features that
surround the organ of interest (here, the pancreas). The deeper
stages of the network are more focused on the pancreas itself.
A rather similar pattern can be observed in the segmentation
maps for brain cortical plate segmentation that are shown in
Figure 5. In the earlier stages, the network attends to the entire
brain, while in the deeper layers the network’s attention tends
to be more focused to the regions around the cortical plate.

Another observation from these figures, especially
Figure 4, is the variability among the attention patterns of
different heads in a multi-head self-attention (MSA) module.
In each stage, the four separate heads of the MSA module
adopt quite different attention strategies. This may suggest
that the multi-head design of the MSA module gives the
network more flexibility, enabling it to learn more com-
plex attention patterns that help improve the segmentation
performance. The importance of multi-head design is well
documented in natural language processing applications [31],
and our results show that it is important for 3D medical
image segmentation as well. We further show this below by
quantifying the effect of the number of attention heads on
segmentation performance.

Table 4 shows the results of a set of experiments on the
brain cortical plate dataset to investigate the effects of some of
the network hyper-parameters on segmentation performance.
In this table, the baseline network (first row) corresponds to
the settings that we have used in the experiments reported
above, i.e., K = 5, W = 24, n = 3, D = 1024, Dh = 256,
and nh = 4. We chose these settings based on preliminary
experiments and we have found them to work well for differ-
ent datasets.

The results presented in this table show that, overall,
the performance of the network is not very sensitive to

the hyper-parameter settings. For example, changing the
number or the size of the patches typically leads to slight
changes in performance. We have also observed that a
network depth of K ∈ [5, 7] leads to best results,
whereas much deeper or shallower networks were not bet-
ter. Furthermore, using a fixed positional encoding or no
positional encoding slightly reduces the segmentation per-
formance compared with free-parameter/learnable positional
encoding. Finally, using a single-head attention significantly
reduces the segmentation performance, which indicates the
importance of the multi-head design to enable the net-
work to learn a more complex relation between neighboring
patches.

Many of the above observations are consistent with the
experimental results that have been reported in other appli-
cations. For example, our results show that increasing the
number of MSA heads (nh) or the network depth (K ) beyond
a certain limit has a negative impact on segmentation per-
formance. This observation is similar to some of the exper-
imental results reported in [33], [50], where networks with a
larger number of MSA heads and/or larger number of layers
resulted in lower image classification accuracy on several
datasets. Similar results have been reported in natural lan-
guage processing applications [51]. For example, one study
showed that it was possible to prune 50-72% of the atten-
tion heads without a significant reduction in model accuracy
in a machine translation application [52]. This is because,
depending on the application, a certain number of heads are
sufficient to learn the attention patterns between the signals
in a sequence (i.e., patch embeddings in our application).
Further increasing the number of heads will only increase the
number of network parameters without providing any useful
capacity to the network.
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FIGURE 4. Example attention maps for two pancreas images. In this
experiment, a network with a depth K = 7 was used. Attention maps for
depths 1, 4, and 7 are shown. Each row shows the attention map for one
of the four heads.

There may be other factors that can influence the relative
advantages of the proposed transformer network compared
with FCNs. Some of these factors are image resolution, size of
the organ/volume of interest, and patch size. Our experiments
show that these factors do not affect the superiority of the
proposed method over FCNs. For example, we resampled
the brain cortical plate and hippocampus datasets to isotropic
voxel sizes of 0.5 mm and repeated our experiments. The
results showed that the proposed network achieved signifi-
cantly higher DSC and significantly lower HD95 and ASSD
than UNet++ on both datasets. We also applied UNet++
on larger patch sizes of 483 and 643 voxels. This change
did not improve the performance of UNet++ on the brain
cortical plate dataset. It slightly improved the segmentation
performance of UNet++ on the hippocampus dataset (DSC:
0.877±0.029, HD95: 1.448±1.430mm, and ASSD: 0.502±
0.201 mm). However, these were still statistically inferior to
those obtained with our proposed network (Table 2). Increas-
ing the input image block size to 483 or 643 voxels did
not significantly improve the performance of our proposed
network either.

Table 5 shows the number of learnable parame-
ters, number of floating point operations (FLOPS), and

FIGURE 5. Example attention maps for a cortical plate image. In this
experiment, a network with a depth K = 7 was used. Attention maps for
depths 1, 4, and 7 are shown. Each row shows the attention map for one
of the four heads.

TABLE 5. The number of free parameters (nparam), number of floating
point operations (FLOPS), and frames per second (FPS) for each of the
FCNs and the proposed network. FLOPS and FPS are computed for
processing patches of size 243 voxels.

frames per second (FPS). FLOPS and FPS are reported for
processing patches of size 243 voxels. We computed the FPS
for all models on an NVIDIA RTX 2080TI GPU. Overall,
the models have relatively similar number of parameters and
computational costs. Our proposed network has a slightly
smaller number of parameters than the compared FCNs.
On the other hand, the number of FLOPS for the proposed
network is higher, which is due to the large matrix multipli-
cations involved in the attention modules. In terms of training
time, our network converged in approximately 24 hours
of GPU time, whereas the FCNs converged in approxi-
mately 4 hours of training. This might be due to the fact that
transformer networks need additional training time in order to
internalize the spatial patterns in the image, whereas FCNs’
architecture makes this learning easier.

IV. CONCLUSION
The convolution operation has a strong basis in the structure
of the mammalian primary visual cortex and it is well suited
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for developing powerful techniques for image modeling and
image understanding. In recent years, CNNs have been shown
to be highly effective in tackling various computer vision
problems. However, there is no reason to expect that no other
model can outperform CNNs on a specific vision task. Med-
ical image analysis applications, in particular, pose specific
challenges such as 3D nature of the images and small number
of labeled images. In such applications, other models could
bemore effective than CNNs. In this workwe presented a new
model for 3D medical image segmentation. Unlike all recent
models that use convolutions as their main building blocks,
our model is based on self-attention between neighboring
3D patches. Our results show that the proposed network can
outperform state of the art FCNs on three medical image
segmentation datasets. With pre-training for denoising and
in-painting tasks on unlabeled images, our network also per-
formed better than an FCN when only 5-15 labeled training
images were available. We expect that the network proposed
in this paper should be effective for other tasks in medical
image analysis such as anomaly detection and classification.
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