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ABSTRACT A concept map provides a graphic hierarchical means of representing how knowledge is
structured in a domain. It visually organizes a set of concepts showing their mutual relations. An analysis
of the similarities between two concept maps can produce significant results in any fields where Intelligent
Knowledge Management is used, such as Healthcare, Policy Development, Energy and Waste Management,
Resource Consumption Sustainability, Mobility, Safety, Citizen Empowerment, and, of course, Education.
In an educational setting, a concept map conveys the various concepts connected by relations of dependence
that a course must cover. However, the similarity between two concept maps for education has to bemeasured
according to criteria that take into consideration the pedagogical properties of the maps, i.e., not only
considering the structural aspects of the maps themselves. An automated analysis of the similarity between
two concept maps can allow the teacher to reflect on different interpretations of the knowledge domain of
a certain course as well as to assess how existing learning material can be implemented in a new course.
Research into this aspect of concept mapping appears to be relatively scarce. This paper proposes criteria to
assess the similarity of two concept maps, also based on pedagogical features, with the aim of providing
teachers with better support during the course creation process. Each criterion is implemented through
a specific measure function. The measures are then shown to be sensitive to their criterion rationale by
evaluating them against a collection of random case studies.

INDEX TERMS Concept maps, similarity measure, technology enhanced learning.

I. INTRODUCTION
Technology is a major source and motor for change in
how human life is organized. Indeed, the development of
internet-based infrastructures and services has stimulated
unprecedented changes in this respect. Internet based intel-
ligent (or ‘‘smart’’) applications allow us to use knowledge
and create knowledge connections to promote informed deci-
sion making. The development of such technologies is at the
basis of advancements in many fields of human activities
such as Healthcare, Policy Development, Energy and Waste
Management, Resource Consumption Sustainability, Mobil-
ity, Safety, Citizen Empowerment [1], [2], and, of course,
Education [3]–[5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Chia-Wen Tsai.

Using and creating knowledge connections in intelli-
gent applications entails representing a knowledge domain
(KD), and the use of a concept map (CM) is recognized
as a powerful way to obtain such representations. Among
other things, a CM can illustrate relations between con-
cepts such as dependencies, associations, co-occurrences and
correlations [6].

Concept mapping, i.e., the activity of drawing and updating
a CM, allows experts and non-experts to express, clarify
and establish their own understanding of how the knowledge
is structured in a KD. Beside Education, CMs support a
variety of crucial human interaction activities where shar-
ing a common understanding of a KD is essential. Among
such fields are Social Science [7]–[9], Knowledge Manage-
ment [7], Information Systems Development [10], Collabo-
rative Work [11], Ecological Management [12], and many
others.
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In the field of Education, concept mapping is already
widely used to support learning and teaching. For instance,
we find applications in Curriculum Design [13], [14], Con-
cept Organization and Understanding [15], [16], Assess-
ment (examining how learners acquire concepts and organize
these concepts in their minds) [17]–[20], the description and
analysis of teaching strategies [21], and course design and
construction by means of gathering available instructional
material [22].

This paper focuses on the educational uses of concept
mapping. Specifically, we: 1) propose criteria and measures
to appraise the pedagogical similarity of two CMs; 2) show
examples of cases where such similarity measures can help
the teacher design and create their courses; 3) evaluate the
measures showing how they each consistently and accurately
compute the similarity of two CMs against the pedagogical
criterion upon which they are based.

A. RATIONALE AND MOTIVATION
During the process of creating a course, a teacher can refer to
a CM as a means of organizing the concepts that need to be
covered. In a CM, teachers can link these concepts to seman-
tic relationships in accordance with their didactic strategies.
In this study, we focus on just one type of semantic relation-
ship: the prerequisite relationship. This choice simplifies our
account, while not limiting the generality of our approach
to uncovering similarities between CMs. A prerequisite rela-
tionship is defined as follows: one concept is a prerequisite of
another if the former is learned (i.e., learned according to the
teacher’s plan) before the latter. The prerequisite relationship
is fundamental to the planning and sequencing of concepts
delivered within a course.

Where available, the Internet offers several CMs for the
same KD. Teachers can refer to these maps in planning their
courses, not only in terms of the sequencing of concepts, but
also to provide useful input when creating teaching mate-
rials. While this is beneficial for improving and sustaining
effective teaching, the process of looking for similar CMs
on the Internet entails difficulties. On the one hand, see-
ing the work of others can be beneficial for teachers: they
may find inspiration from various pedagogical perspectives,
by considering possible changes to their teaching plans (such
as replacing, relocating, or adding concepts). Moreover,
they might discover learning materials that are suitable for
a new course. On the other hand, analyzing the similarities
between two CMs can be a lengthy process, and, combined
with the amount of potential CMs to assess, the task can
become too time consuming and impractical for the teacher.
Hence, an instrument capable of measuring the similarity of
retrieved CMs with the one proposed by the teacher can be
extremely useful in narrowing down the number of CMs to
be manually assessed. However, any such automated analysis
of similarity needs to be based on a multifaceted analysis of
the pedagogical characteristics of the maps.

The degree of similarity between two CMs derives from
the placement, position, and mutual relationships of all the

concepts, and these factors need to be seen from different
pedagogical viewpoints.

In other words:

• the similarity analysis should not only be based on the
layout of the concepts or limited to the concepts that
the maps have in common. Indeed, it is likely that even
concepts that are not common to the maps are significant
for gauging the similarity of how the common concepts
are used in the maps: common concepts might be used
in different local settings in the two maps, reducing the
similarity between the maps;

• the similarity analysis should also be polarized accord-
ing to different criteria, each taking into account the
pedagogical significance of the concepts present in the
maps.

As we will see in Sec. III, a general framework, or system,
allowing to compare CMs from pedagogical points of view,
is not currently available. In this paper we intend to contribute
to the future development of such systems by defining an
initial set of pedagogical criteria, and related measures of
CMs similarity. To provide a general framework for evaluat-
ing CM similarity, it is crucial to have, and to apply, different
criteria of similarity between pairs of CMs. In this study we
believe that the following criteria play an important role in
running a comprehensive pedagogical similarity measure for
two CMs: i) the commonality of relations between concepts;
ii) the prerequisite relationships between concepts; iii) the
prominence/centrality of the concepts in the CMs.

We propose here the definition of such similarity criteria,
as well as the algorithms for their computation, in the form
of measures. Each measure provides a value of similarity for
two given CMs according to one of the criteria. In defining the
criteria, a kind of traditional structural (topological) approach
is enhanced by considering additional pedagogical aspects.

The major contribution of this paper is thus in the pro-
posal, implementation, and evaluation of the three criteria of
pedagogical similarity outlined above. We will demonstrate
that the measures defined in implementing the criteria are
sensitive to the rationale of the base criterion of each by
evaluating them with reference to a number of case studies.

B. STRUCTURE OF THE PAPER
This subsection acts as a guide for the reader throughout the
paper.

In order to focus on the intended use of our similarity
criteria and measures, Section II discusses some motivational
examples, which evidence how a similarity analysis of CMs
could be useful to a teacher. In Sec. III, we present some
aspects of related work, ranging from CM principles to graph
theory, from which several methods of measuring similar-
ity derive. Sec. IV introduces the three proposed criteria.
Sec. V defines the implementation of the three criteria in
three related measures, i.e., JE measure, PC measure and KC
measure. Following the presentation of criteria and measures,
Sec. VI evaluates the measures by comparing an initial CM
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with a sequence of progressively different CMs, obtained by
successive transformations applied pseudo-randomly starting
from the first CM (or seed map). With different seed maps,
and applying different transformations, we obtain several
case studies, which will allow us to examine the behavior of
one measure compared with other measures (those that we
devised and a baseline).

The evaluation is deemed to answer the following research
question:
Is each of the proposed similarity measures sensitive to the

criterion that it is devised to tackle?
Finally, the last section discusses future work and the

potential applications of the proposed new measures.

II. EXAMPLES OF THE APPLICATION OF SIMILARITY
CRITERIA
A CM represents a KD in the shape of a Directed Acyclic
Graph, where the nodes are concepts and the edges are
connections between the nodes representing the relations
between the concepts. An edge can be labeled by a word
or sentence to express the type of relation between the two
connected concepts [6].

In this section we describe the behavior, and line of think-
ing, of teachers when looking for approaches to create a new
course or update an old one. We will assume that the teachers
have planned their course by way of a concept map. They
might now be interested in comparing such a map to other
maps relating to existing (and hence already tested) courses.
Such comparisons could be advantageous for teachers, lead-
ing to significant improvements in their CMs.

For instance, a teacher might be influenced when making
a comparison with certain CMs: (s)he can consider different
pedagogical viewpoints, eventually adopting one or, on the
contrary, strengthening her own. The teacher might then
decide to modify the layout of her course: the role and posi-
tion of certain concepts in the teacher’s map could change,
and other concepts could be added to enhance the learning
process. Moreover, on a more practical note, the retrieved
map might already have been used to implement a successful
course, and the teacher might appreciate the idea of reusing
part of the related learning material that has been tested
effectively for that CM. Finally, we also have to consider
the fact that teachers would probably prefer to analyze just a
small set of relevant CMs. It is essential to provide the teacher
with CMs that are pertinent to their teaching domain, which
is why the similarity scoring methods for CMs are crucial.
The development of a framework that automatically scores
and ranks CMs based on the similarity to the teacher’s CM
is an important step towards incentivizing the reutilization of
learning materials, and providing the teacher with additional
pedagogical approaches.

Several factors contribute in determining whether two
given CMs are generally similar. Concepts that are in one
map might not appear in the other, influencing the way that a
given concept might be learned. Moreover, the same concepts
might be laid out differently or they could have different

FIGURE 1. CM1: a teacher’s concept map on fractions (source:
https://www.mathmatik.com/concept-map-for-fractions-based-on-our-
work.html).

FIGURE 2. CM2: a map found on the Web (source: https://
johnanthoney75.wordpress.com/2013/11/19/concept-map/).

FIGURE 3. CM3: another map from the Web (source: https://slideplayer.
com/slide/10218714/).

prerequisites in the various maps. The same concepts might
also be vested with a different prominence in the maps (e.g.,
being the learning aim of one portion of a map or intermediate
elements in a learning path).

However, let us return to our teacher, and propose that (s)he
has defined a CM (CM1) on fractions, as illustrated in Fig. 1.
Dozens of other maps could have been retrieved in the same
knowledge domain, but for the sake of space, let us assume
that two maps have been retrieved: CM2 (Figure 2) and CM3
(Figure 3).

Let us also assume that only onemap – the onemost similar
to CM1 – should have the teacher’s attention. The maps used
in this example are authentic (as evidenced by the sources
provided).

VOLUME 10, 2022 27657



C. Limongelli et al.: Measuring Similarity of Concept Maps According to Pedagogical Criteria

In the maps there are synonyms (the same concept under
different names), but let us also assume that such synonyms
(which are not the focus of this paper) collapse into homo-
geneous names. This assumption makes the comparison sim-
pler, although selecting the map that is most similar to CM1
would still be fairly laborious: beside the synonyms, the
layout of the maps can mislead the teacher. A major problem
here is that similarity has to be measured with respect to
a criterion, or perhaps criteria, rather than by a one-fits-all
method.

Asmentioned in the Introduction, this paper proposes three
criteria of similarity based on pedagogical considerations.
Tab. 1) provides three similarity scores that result from ana-
lyzing the maps according to the similarity criteria proposed
in this study. The analysis of such data shows that CM3 is
more similar to CM1 than CM2 against two criteria: in partic-
ular, the concepts and associated relations in CM1 ‘‘overlap’’
with CM3 far better (0.778 out of 1) than with CM2 (0.4).
This means that the arrangement of the concepts in CM1 is
markedly more compatible with CM3 than it is with CM2.
Furthermore, if we also consider the factor of the overall
centrality (importance) given to the concepts, CM3 is more
similar to CM1 than to CM2. Regarding the concepts that
are prerequisite in CM1, both CM2 and CM3 are basically
equally compatible with CM1.

In conclusion, the teacher might well consider CM3 more
suitable than CM2 for further comparison.

When designing an intelligent system to support teachers
in the retrieval of CMs, a corner stone is the automatic scoring
of similarity between CMs based on pedagogical criteria.
Such a system can suggest CMs that contain valuable ped-
agogical stimuli for teachers in terms of learning materials
and teaching plans.

TABLE 1. Comparison between the concept map proposed by the teacher
and the two maps taken from the Web. JE, PC and KC are the proposed
measures.

III. RELATED WORK
As stated earlier, CMs are graphical renderings of structured
and interconnected knowledge [23]. Advances in the fun-
damentals of CM similarities date back to 1980s/early 90s.
This is when Novak presented CMs as a means of studying
the development – carried out over more than a decade – of
children’s understanding of scientific knowledge [24]–[27].
From the perspective of cognitive psychology, Novak’s work
was grounded in the learning theories of Ausubel [28], where:
1) learning takes place by assimilating new concepts; 2) such
assimilation occurs by integrating and harmonizing the new
concepts in the cognitive structure of the concepts the learner
already possesses.

A CM is effective in representing the learner’s orga-
nization of concepts regarding a subject matter, and
so it is also effective in supporting the integration of

new concepts in such a cognitive structure, allowing the
learner to achieve meaningful learning (as opposed to rote
learning) [6], [11], [27].

A. USE OF CMs
CMs can be used for a wide range of tasks in many fields
of education [24], [29]. CMs can foster critical thinking in
an educational setting and generally support the social col-
laborative development of knowledge [30]–[32]. They can
be used to support the development and representation of
learning strategies (improving learner autonomy) as well as
instructional strategies (empowering the teacher with a suit-
able instrument for managing the teaching and learning flow).
CM usage has also been shown to help learner interaction and
peer learning [33].

Other educational applications of concept mapping relate
to assessment and performance prediction: essentially,
an analysis of CMs derived or directly drawn from learners
can help in evaluating their comprehension (and mis-
comprehension) of scientific concepts [20], in interpret-
ing student response where knowledge is lacking [34],
and exploiting previous assessments to predict future
performance [35].

CMs have been seen as a way of empowering students,
offering them negotiating and ‘‘idea exchanging’’ skills that
can be used both inside and outside the classroom [36]. In [22]
the use of CMs (‘‘simple diagrams of instructional concepts’’)
supports the organization of class materials, and helps the
teacher to reduce the occurrence of rote knowledge. In partic-
ular, Cliburn’s paper deals with an example of the sequencing
of learning material concerning the nervous system. In the
1990s, we find research that validates the CM approach to
education and its advantages in assessment [29]. This tackled:
1) the reliability of CM assessment (by comparing six dif-
ferent assessment methods); 2) its validity (i.e., the accuracy
of the conclusions that can be drawn from the assessment);
3) the practical applicability of CMs to the classroom sit-
uation. Regarding reliability, it was concluded that scoring
methods do have an effect on assessment, but that they should
be structured so as to favor neither a fully holistic scoring
approach (where everything is based on the response of the
individual rater) nor a totally structured scoring approach
(painstakingly extracting hierarchies and cross-links from the
learner’s CM). In contrast, an intermediate approach is to be
preferred. A comparison of the learner’s CM with a master
CM (i.e., teacher’s CM) appeared to be the most suitable
assessment method.

Ionas and Geana propose graphed, a collaborative cloud
system to compose CMs [37]. By this web platform, users
can create a new CM and save it on the cloud storage. The
system allows the definition and naming of concepts and the
construction of semantic links among them. In particular,
the user can connect two concepts with different semantic
relationships, to be selected from a predefined standard set.
However, it is not possible to compare different CMs to check
their similarity.
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In [38] a method is proposed to be used as the first step in
the ontology acquisition process. The method is based on the
use of concept maps as a means of expression for the expert,
followed by an application that assists the expert in detailing
the structure of the knowledge represented in the map.

Adding a final observation concerning validity, in [29] the
authors concluded that the scores given to learners’ CMs cor-
relate to the measure of similarity that they have to the master
CM: this observation provides an effective introduction to
the notion of grading a learner’s map simply by computing
a similarity measure. Nevertheless, analysis of CM similarity
is not a frequently discussed topic in the literature.

B. PEDAGOGICAL SIMILARITY
A study that explicitly relies on graph comparison for edu-
cational purposes is presented in [17], where the Pathfinder
Scaling Algorithm [39] computes the ‘‘closeness’’ between
graphs of concepts (nodes) connected by relations (edges).
Closeness is computed by the measure C, based on neighbor-
hood sets [40]. The following quotation describes C and the
idea of closeness as similarity [17]:
The C measure is a set-theoretic method of quantifying the

configural similarity between two networks having a common
set of nodes. Very briefly, C examines the degree to which
the same node in two graphs is surrounded by a similar
neighborhood of nodes. This neighborhood comparison is
performed for each node in the two graphs and the results
averaged across the nodes to compute an overall index of
similarity.

The values of C range from zero (for complementary
graphs) to one (for identical graphs).

A comparison of CMs is involved in [41], which proposes a
way of suggesting additional concepts and learning materials
to the instructional designer during the creation of the CM.
The method presented is based on detecting and evaluating
concept similarities between the CM that is being developed
and other CMs that are used for comparison. Topological
similarity between CMs is computed by a usefulness mea-
sure, which evaluates the structural (i.e., contextual) corre-
spondence between the CMs, and assesses the viability of the
connections between the concepts (i.e., between the related
learningmaterials) in themaps. In [42]Marshall et. al. present
a method for matching elements or parts of CMs, based on
a similarity flooding algorithm with the aim of supporting
the comparison and merging of maps. Another research area
that is very close to the present study regards the scoring
methods for the similarity/dissimilarity of ontologies. CMs
are very similar to ontologies as they both describe a domain
of concepts (classes) and relationships. Moreover, ontologies
are more expressive than CMs, so it is possible to obtain a
CM from an ontology [43], and it is also reasonable to modify
some of the similarity checks used for ontologies and to apply
them to CM similarity. For ontologies, a similarity measure
based on a rough set/concept lattice is presented in [44].
Furthermore, [45] describes a graph-based similarity mea-
sure using similarity graphs to represent domain ontologies,

while [46] proposes a feature-based approach to ontology
similarity and also discusses a classification method. In [47],
[48] the authors propose the use of Competence Mapping
in aviation training. They developed the training modules
using CMs that required students to draw visual maps of
a troubleshooting strategy. Afterwords, students’ CMs are
compared to the ones built by domain experts on the same task
to gauge students’ mastery of the desired diagnostic skills
and areas of improvement. CMs are compared by combining
the Similarity Flooding Algorithm and semantic similarity
among strings.

An example of a different approach to the evaluation of
the learning process is in [49], where the CMX evalua-
tion framework is used for Multiplayer Online Role Playing
Game. A significant correlation is found between students’
high performance and the students that found the system’s
response during their interactions with the game’s elements
as very satisfactory. In this work, CMs are used to describe
the CMX logic structure.

C. GRAPH MATCHING PROBLEMS
As is evident from the above, the issue of CM similarity
relates to the family of graph matching problems. Graph
matching has applications in many fields of research, includ-
ing computer vision [50], handwriting and fingerprint image
recognition [51] as well as applications in medicine [52] and
chemistry [53]. We find several algorithmic techniques for
scoring graph similarity such as subgraph isomorphism [54],
computation of the Maximum Common Subgraph (MCS)
through maximum clique [55], min-max [56] and Expecta-
tion Maximization [57]. The distance between two graphs is
usually computed as 1 minus the ratio of a similarity measure
(such as the MCS cardinality, or the number of nodes in the
larger graph, or in the union of the graphs [58]). Unfortu-
nately, both subgraph isomorphism and MCS problems are
known to be NP-complete [59], [60]. However, it is still pos-
sible to compute the MCS when graphs have a small number
of nodes and edges. Given this assumption, and with some
further requirements, it has been proven that MCS-based
distances can enjoy the properties of metrics. Other proposals
based on MCS have combined it with the minimum common
supergraph, the former being obtainable from the latter and
vice-versa. This allows us to take into account both redundant
and missing structural information when measuring the simi-
larity between graphs as, for instance, in the case of attributed
relational graphs that represent objects [61]. Since MCS
determination is a NP-complete problem, different classes
of matching problems have been defined under the name
of inexact or error-tolerant graph matching [62]. Studies in
the literature include the RASCAL algorithm [63], which
consists of a two-step procedure: first it is determinedwhether
the two graphs may actually be similar; then, and only if a
threshold of similarity is exceeded, the MCS is computed.

Other methods focus on the common nodes of two graphs
obtaining a so-called matching graph. One such method is
the similarity flooding algorithm, used to verify the validity
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of XML or RDF files against schemas [64]. This is also
applied to the computation of similarity for labelled graphs
representing cases in Case-Based Reasoning [65].

An alternative way of dealing with graph similarity is com-
puting an edit distance. An edit distance evaluates the cost of
performing edit operations, such as the insertion and deletion
of nodes and edges, to make the structure of a graph exactly
the same as the other graph. Each edit operation may have a
different cost. When a sequence of operations is defined, all
possible permutations should be explored in order to find the
minimal edit cost, which is eventually what makes two graphs
different [66]. On the problem of distance between graphs,
recent studies indicate the need to consider nodes and edges
locally rather than globally [67], [68]. This finding makes it
possible to achieve a sub-optimal distance with a computation
cost that is polynomial rather than exponential. The efficacy
of the final function depends on the technique used for dis-
covering locally dominant sets of nodes and edges [68].

The presentation of literature in this section shows that
research work on similarity between CMs is active and well
established, yet it still only superficially meets the needs
of teachers. In our opinion, the chance to compare CMs
according to specific pedagogical criteria would significantly
help teachers, allowing them to focus on aspects of interest,
and eventually to use their time more efficiently. With these
considerations in mind, the proposals for similarity criteria
and measures are presented in the sections that follow.

IV. THE SIMILARITY CRITERIA
Similarities in teaching expressed by two CMs can be deter-
mined by: i) looking at the arrangement of the common
edges; ii) the prerequisite knowledge required by the com-
mon concepts; iii) the key concepts expressed by the maps.
Consequently, we propose the following three criteria to eval-
uate the similarity between two CMs with respect to their
pedagogical features: 1) Overlapping Edges Degree (JE), 2)
Prerequisite Constraints (PC), 3) Knowledge Commonality
(KC). The three criteria focus on different aspects of the
teaching approaches that are highlighted in the CMs being
compared.
JE compares the layouts of edges (relations between

nodes) in the maps. Evidently, the occurrence of common
nodes in the maps indicates similarity, but the occurrence
of common edges (i.e., of nodes common to both maps and
connected by the same relations) strengthens this similarity
also from the prerequisite point of view.

Furthermore, given a set of common concepts between
two CMs, the two maps might present very different learn-
ing paths that students might follow in acquiring the same
concepts. These are the ‘‘learning paths of prerequisites’’ for
the given concepts and PC analyses of how close they are: the
closer they are, the more similarly the concepts are reached
in the CMs, and the more pedagogically similar the CMs are.

The third criterion, KC , deals more generally with the
cognitive load borne by the CMs by considering the extent

to which the same concepts are central (‘‘important’’) in the
CM learning paths.

A. THE OVERLAPPING EDGES DEGREE (JE) CRITERION
Given two CMs, say CM1 and CM2, a means for assessing
their similarity is provided by the Jaccard measure, which is
directly proportional to the number of common nodes [69].

This measure is widely used to compute similarity between
graphs. It may also be used for concept maps and can indicate
to what extent two CMs offer the same concepts. How-
ever, it is not able to deal with more in-depth pedagogical
approaches, such as how the common concepts are related
(possibly in different ways) in the CMs. From a didactic view-
point this deficiency is a limitation as learning paths built on
the same set of concepts can provide very different learning
experiences, and so the learning materials that implement
such paths are likely to be very different.

To define the Overlapping Edges Degree criterion we sug-
gest revising the Jaccardmeasure (JE) so that we can take into
account the ratio of common edges against the total number
of edges in the two CMs. Note that implicitly JE does take
into consideration the nodes in common. This is because an
edge can be common in the maps if it links the same concepts.
JE captures the co-presence of the learning contents (the
concepts) in the maps together with the learning paths along
which the student will follow these concepts.

For example, Fig. 4 shows two CMs with the following
common nodes set CN : CN ≡ {B,C,E,H} without any
common edge. In other words, the CMs have the same con-
cepts, but they are present in completely different learning
paths.

B. THE PREREQUISITE CONSTRAINTS (PC) CRITERION
The decision regarding where to place a concept c in a CM is
part of the didactic strategy that the teacher establishes.When
a learner reaches c, (s)he has been through specific concepts
along the learning path: these concepts are prerequisites for
c in CM. The learning path defined in a CM is part of the
teacher’s learning plan: while learning c, the learner is meant
to have already acquired the prerequisite concepts for c.

Let us assume that the same concept c is taught in two
CMs, and the learning path to c in one map is different to
what it is in the other. Common concepts in the two CMs
can be positioned very differently in the two maps as well
as there being non-common concepts in the learning paths.
The more the learning paths to common concepts vary, the
more the CMs reflect the teaching of those concepts dif-
ferently. We believe that such a disparity leads to different
teachingmethods on the part of the teachers who designed the
two CMs.

For example, Fig. 4 shows maps CM1 and CM2 with the
following common concepts set: {B, C, E, H}. In particular,
B has A as a prerequisite concept in CM1, whereas it has
C as a prerequisite in CM2. From a learning perspective,
CM1 suggests that the knowledge acquired before B is dif-
ferent from what it would be in CM2. To acquire concept B
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FIGURE 4. Two sample CMs.

in CM1, it would be assumed in the learning material that
the learner is already familiar with concept A. In contrast, the
material in CM2 addresses concept B referring to concept C .
Consequently, the learning paths elicited by the two maps
may suggest a different arrangement of the learning mate-
rial. This consideration also aligns with Pedagogical Content
Knowledge in teaching, where teachers plan and organize
the learning of a concept according to their students’ prior
knowledge [70].

C. THE KNOWLEDGE COMMONALITY (KC) CRITERION
A CM is a graph representing a possible arrangement of
concepts to be learned. In such an arrangement the position of
a concept can indicate something about its prominence in the
CM, which is essentially the importance of the concept itself.
The Knowledge Commonality Criterion takes into account
the extent to which the CM is directly or indirectly connected
to the concept C . In defining the predecessors of node C as
all the nodes that are part of a path to C , the larger the set of
the predecessors of C is, the more important C is in the CM.
We consider the importance of a conceptC in a CM as the size
of the cognitive load required by the map in order to learn
C . This criterion can be effective in revealing the different
pedagogical prominence of the concepts being compared in
the CMs, and it allows us to consider the CMs by adopt-
ing other criteria from those described earlier. In Sec. V-C,
we will provide an operational definition of the KC-based
measure by means of the Spread Activation algorithm [71].

D. SUMMARY
A common aspect of the three criteria is that they analyse
the common nodes of two CMs. The criterion OD purely
look into the structural difference of placement of common
concepts between the two maps. Instead, PC considers differ-
ent prerequisites (perhaps not shared between the two maps)
required for the common concepts. This criterion establishes
a more pedagogical meaning to the structure of the concept
maps, since delivering a concept with different prerequisites
can influence the teaching strategy for that concept. Finally,
KC considers the purpose and relevance of common concepts
between two maps. When looking at the common concepts,

even if they are arranged similarly, their cognitive load might
be different. For example, the common concepts can be
placed at the beginning of the learning path in a concept
map, while they appear at the end in the other map. This
criterion focuses on detecting such a difference, so that it can
identify maps with different knowledge load (or relevance) of
the common concepts.

V. SIMILARITY MEASURES
In this section we present the measures used to implement the
similarity criteria. Before launching into the implementation
of the measures, we will present some definitions that are
essential to the measures in question. In the following defi-
nitions CM , CM1, and CM2 are generic CMs represented as
graphs, i.e., a set of nodes and edges, where the nodes are
concepts and the edges between nodes indicate a prerequisite
of relationship between the concepts. In particular, the edges
are oriented, so that if we have two nodes, c and c, the former
is called a direct predecessor of the latter if there is an edge
from c to c. A path between nodes c and c′ is a set of nodes in
the graph, n1, n2, . . . , nk−1, nk , where n1 = c, nk = c′, and
for all i ∈ [1, k − 1] ni is a direct predecessor of ni+1.
Definition 1: Given CM1 and CM2, the set of their com-

mon nodes is defined as:

CN = CM1 ∩ CM2 (1)
For instance, the CMs in Fig. 4 have CN = {B,C,E,H}.
Definition 2: The set of predecessors of node c in CM is

Predecessors(c,CM ) = {cj ∈ CM s.t. ∃ at least one path
between cj and c}.
In the example in Fig. 4, we have:

Predecessors(E,CM1) = {A,B,C}.
We can now proceed by defining the measures that imple-

ment the similarity criteria discussed in Sec. IV. These sim-
ilarity measures will be defined as functions over CMs:
JE(CM1,CM2), PC(CM1,CM2), and KC(CM1,CM2). Such
functions will be shown to fulfil the ‘‘measure proper-
ties’’ [46] given in definition 3:
Definition 3: A function dist(), over pairs of CMs, is a

measure if it verifies the following properties (where CM1 and
CM2 are two generic CMs):

i) dist(CM1,CM2) ≥ 0 (positiveness)
ii) dist(CM1,CM1) = 0 (minimality)
iii) dist(CM1,CM2) = dist(CM2,CM1) (symmetry)

We define a distance for each of our measures as
distJE (CM1,CM2), distPC (CM1,CM2) and
distKC (CM1,CM2) by

distmeasure(CM1,CM2) = 1− measure(CM1,CM2) (2)

with measure ranging over {JE,PC,KC}.
Given two CMs, the higher their similarity measure is, the

lower the distance is.

A. THE JE MEASURE
This measure implements the Overlapping Edges Degree
criterion described in Sec. IV-A.
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Definition 4: Given two CMs, CM1 and CM2, with
|CM1| 6= 1 and |CM2| 6= 1, and given their respective set
of edges, TE1 and TE2

JE(CM1,CM2) =
|TE1 ∩ TE2|
|TE1 ∪ TE2|

(3)

Note that |S| is the size of set S, and that two edges are the
same when they connect the same nodes in the same direction
(a CM is a directed graph).

The range of this measure is [0, 1]. JE(CM1,CM2) is
0 when the maps have no common edges and 1 when the two
maps are identical.

The similarity distance based on this measure is:

distJE (CM1,CM2) = 1− JE(CM1,CM2) (4)

Such a formulation enjoys the properties of Positiveness,
Minimality and Symmetry and this is why we can call it a
measure.
Theorem 1: distJE fulfils the properties of Def. 3.

Proof: (Positiveness). From formula (4) we have that 0 ≤
distJE ≤ 1 and consequently, following Def. 4, the property is
verified because the JE measure is in the range of JE ∈ [0, 1].
(Minimality). From Def. 4, it follows that when two CMs

are identical, the ratio is equal to 1 and consequently, fol-
lowing Def. 4, this property is satisfied because the distance
measure is 0.
(Symmetry). All the operators of the JE measure are sym-

metric and, consequently, it follows that:
distJE (CM1,CM2) = distJE (CM2,CM1) �
The next section discusses whether or not the JE measure

is sensitive to changes in the map according to its relative
criterion. Note that this measure is not applicable if the two
CMs have only one node.

B. THE PREREQUISITE CONSTRAINTS MEASURE
This measure is designed to reveal the similarity of two CMs
with regard to teaching by means of the prerequisite knowl-
edge needed for the common concepts. Given two CMs,
namely CM1 and CM2, we define the following two sets:
Definition 5: P1 = Predecessors(c,CM1) ∪ c
Definition 6: P2 = Predecessors(c,CM2) ∪ c
For example, looking at concept E in the CMs in Figure 4

we have: P1 = Predecessors(E,CM1) ∪ E = {A,B,C,E}
and P2 = Predecessors(E,CM2) ∪ E = {C,E,L} (refer to
Def. 2).

To fulfil the PC criterion, the new measure has to take
into account three main aspects of the prerequisite knowledge
for each node in CN : i) the number of prerequisite concepts
required by both CMs; ii) the number of prerequisite concepts
not required by the two CMs belonging to set CN (some
prerequisite knowledge not available in one of the two maps);
iii) the extent of the required knowledge, shared or not, by the
two CMs.

Therefore, we propose the Prerequisite Constraints simi-
larity measure (PC) as a combination of the following three

factors computed for each common concept C :

a =
|P1 ∩ P2|
|P1 ∪ P2|

(5)

a is the ratio between the common predecessors and the total
number of predecessors of concept C .

b =
|CN ∩ (P1 ∪ P2)|
|P1 ∪ P2|

(6)

b is the number of predecessors of the node C that are
available in the two CMs, even if they do not appear as
prerequisites in one of the two.

c =
min{|P1|, |P2|}
max{|P1|, |P2|}

(7)

c tends to zero if, for a given nodeC , there is a large difference
in the number of predecessors.

Given maps CM1 and CM2, based on the related P1, P2, a,
b, c, and CN (set of common nodes of the CMs), we define
the PC measure as follows:
Definition 7:

PC(CM1,CM2) =
1
|CN |

∑
∀ci∈CN

aci + bci + cci
3

(8)

For each common concept, this measure represents the
amount of common knowledge expressed by its predecessors.
The associated distance function is

distPC (CM1,CM2) = 1− PC(CM1,CM2) (9)

which fulfils the three properties required by a measure.
Theorem 2: distPC fulfils the properties of Def. 3.

Proof: (Positiveness). PC is a ratio of absolute values so:
0 ≤ PC ≤ 1.
As PC(CM1,CM2) = 1 − distPC (CM1,CM2) we have:

0 ≤ distPC ≤ 1.
(Minimality). Let n be the number of nodes of CM1. ak =

n/n, bk = n/n and c = 1, so PC(CM ,CM ) = 1
n

∑n
k=1 1 =

n/n = 1 H⇒ distPC (CM1,CM1) = 0.
(Symmetry). All the operators are symmetric. �
For the example in Fig. 4 we have: PC(CM1,CM2) =

0.571 Thismeasure is not applicable in cases where both CMs
have only one node.

C. THE KNOWLEDGE COMMONALITY MEASURE
According to Sec. IV-C, the importance of a concept in a
CM should reflect how much effort the CM requires for it
to be learnt. Such effort can be defined by the number of
concepts leading to the concept in question. The KC mea-
sure is based on the Spread Activation algorithm, a widely
used technique with applications in information retrieval and
social recommendations [71], [72], as well as to highlight
important concepts in ontologies [73]. Basically, all concepts
leading to a given concept c are said to activate c, and spread
some flux of information to c. c, in turn, spreads some of the
received flux over its successors. This means that if c has
many predecessors, it will be activated multiple times, and
so it retains much flux. In contrast, if c does not have many
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FIGURE 5. The Spreading Activation algorithm of the flux running through a concept map CM. Each concept is activated once
with 1 unit of flux. The incoming flux is then spread to the child concepts if it exceeds θ , which, in our case, has been set at
θ = 0.3.

predecessors, it will not be activated frequently, and so it will
end up with a low amount of flux. From the amount of flux
retained by c, we can determine the importance of c: the more
flux remaining in c, the greater importance c has in the CM.
The spread activation algorithm proposed in this study is

described in greater detail in Fig. 5. In the first step of the
algorithm, each concept c ∈ CM is activated, receiving a
flux amount of 1. Each concept then retains θ amount of the
incoming flux and the rest of the flux is equally spread to
its child concepts. By such ‘‘spreading’’, each node receives
flux from its direct predecessors as well as from the direct
activation that occurs in the previous step. Every time there
is incoming flux to concept c, the same logic applies: part
of the flux is retained (up to θ ), and the rest is spread to the
child concepts equally. Following [74], we allow c to retain a
maximum of θ = 0.3 units of received flux. (The exception
is for the leaves – nodes without successors – which retain

all the incoming flux). The flux remaining in c, ϕ(c,CM ) is
called knowledge-load: in short, it represents the amount of
knowledge required to learn c.

Given two CMs, we define the Knowledge Commonality
measure KC as the quantity computed taking into account all
the differences between the knowledge-load of all the nodes
in the CMs in question:

KC(CM1,CM2) (10)

= 1−

∑
c∈CM1∪CM2

abs(ϕ(c,CM1)− ϕ(c,CM2))

|CM1| + |CM2|
(11)

Note that if c 6∈ CMi, ϕ(c,CMi) = 0 (i = 1,2). Moreover,
it is 0 ≤ ϕ(c,CM ) ≤ 1,∀c ∈ CM , so we have 0 ≤ KC ≤ 1.
The associated distance function is

distKC (CM1,CM2) = 1− KC(CM1,CM2) (12)

which fulfils the three properties required by a measure.
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Theorem 3: distKC fulfils the properties of Def. 3.
Proof: (Positiveness). From Def. (10), the minuend is

always less or equal to 1. In fact, it is always positive and
the numerator can be 1 at most. In cases where the two CMs
are disjoint graphs, i.e., CM1 ∩ CM2 = ∅, each concept C
either belongs to CM1 or to CM2. In this case the numerator
is equal to |CM1| + |CM2| and the minuend is equal to 1.
Consequently, we have: distKC (CM1,CM2) = 1.
(Minimality). If the two CMs are exactly the same, i.e.,

CM1 ≡ CM2, we have: ϕ(c,CM ) = 0,∀c ∈ CM
and the minuend is equal to 0. In this case, we have:
distKC (CM1,CM2) = 0.
(Symmetry). In Def. 10 the symmetry is provided by the

union operator. �
The KC value for the sample CMs shown in Fig. 4 is

distKC (CM1,CM2) = 0.5.

VI. CASE STUDIES
Evaluating similarity measures between CMs is not a simple
task due to the lack of benchmarks and standard test sets.
The literature proposes various studies on similar topics.
In the case of ontology matching measures, the evaluation
of new similarity measures is based on piloted changes to
a seed ontology and comparing it vs. a set of piloted mod-
ifications [75]. In this way, differences between measures
are highlighted. Following this approach, we present three
ad-hoc groups of case studies where a seed CM is incre-
mentally modified by changing its structure step by step. The
incremental modifications proceed by applying sequences of
atomic changes selected from the following: 1) removing an
edge; 2) adding an edge; 3) removing a node; 4) adding a
node; 5) swapping two nodes.

Each case study is dedicated to one of the measures we
propose: starting from a seed map, several new maps are
derived by progressive atomic changes and comparedwith the
seed one. To analyze better whether our measures accurately
capture the changes relating to the pedagogical criterion they
refer to, we use the Jaccard measure as a baseline. We expect
our measures to be more significant than Jaccard when
changes to the seed CM refer to the pedagogical criterion
behind the measure.

Our experimental goal is to run three case studies, one
for each criterion (and thus measure). For each case study,
we need to generate pseudo-random variations of the seed
CM to reflect pedagogical changes within the scope of a spe-
cific criterion. To run such experimentation, we developed a
web application1 called ConceptMapExperimentation [76] to
generate pseudo-random CMs from a seed CM, and compare
them with the seed CM. ConceptMapExperimentation allows
us to import a seed map, select options relating to the number
of new maps to generate from the seed CM, define the atomic
changes to be used, and select the measures to experiment
with. It then pseudo randomly applies the changes to the i-th
map to produce the next one. The first map is the seed CM.

1http://18.198.178.195/ConceptExp/

FIGURE 6. The web application ConceptMapExperimentation.

For each new map, ConceptMapExperimentation automat-
ically evaluates the distance between the newly generated
CM and the seed CM by computing the selected similarity
measures.

A. CREATING THE Seed CM
The construction of the seed map, i.e., the case study starting
point, is a crucial step in our process. We created it based on
the following didactic and operational criteria: (i) simplicity:
it has to consist of a small yet sufficient number of nodes
and edges; (ii) didactic significance: it should derive from an
authentic educational context.

Fig. 6 shows an example of ConceptMapExperimentation
in use. As a seed CM we selected the map in Fig. 1: it
consists of 19 concepts renamed with integer labels for easier
reference for the present discussion. In Fig. 6 we see the
seed map, the selected measures and the atomic changes to
apply. For instance, ‘‘Add source’’ instructs the system to
create a new map by adding prerequisite nodes, rather than,
say, swap two nodes, or add leaves. The figure also shows
that we requested a sequence of four maps to be produced by
means of adding two concepts each time. Since the addition
of a node involves the addition of a new edge, the ‘‘Num-
ber of Operations’’ is four. Fig. 7 shows the four randomly
generated CMs.

Fig. 6 also depicts the variations of the measures computed
when comparing the seed CMwith the newmaps. In this case,
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FIGURE 7. The randomly generated maps. Each map was generated by adding the highlighted nodes to the previous one.

the figure highlights that the PC measure is very much more
reactive than the others, clearly demonstrating the reduction
in similarity between the maps. If the teacher is interested in
the similarity of maps from the prerequisite viewpoint, then
the PC measure seems to be more relevant than the Jaccard
baseline as it captures the changes more substantially than the
latter. Fig. 7 shows that there are eight concepts of difference
between the seed CM and the last generated map, which,
as we would expect, causes the similarity score to decrease
more with PC than with Jaccard.

B. THE FIRST CASE STUDY: JE
Here the seed map is CM0, as shown in Fig. 6. To evaluate
the JE measure, we instructed a new map to be created by
swapping pairs of nodes from the previous map. This was to
highlight how the role of the same – and derived – concepts
changed in the maps.

Fig. 8 shows the diagrams with the distance (y axis) of each
generated map (x axes) and the seed map.

Note that the Jaccard baseline measure is always 1,
since the number of nodes never changes. The graph
shows a marked tendency towards zero for the value of
JE(CM0,CMi), with i ∈ [1, 30], together with the values
from the other measures. The JE curve then becomes more
irregular, which can be explained by the fact that the edges
that disappeared previously (due to a swap) may well reap-
pear if the same nodes are swapped again later.

In particular, the similarity between the first and the second
map decreases abruptly. In fact, if we look at the second map,
as illustrated in Fig. 9, we note that the root of the map has
changed. Concept 1 has been swapped with concept 12 and
concept 11 with 18. Common edges are highlighted in yellow

FIGURE 8. Generation of 30 pseudo-random maps: each new map is
created by swapping two pair of nodes from the previous map.

(ten edges), and the cardinality of the union of all the edges
of CM0 and CM1 is 24. We thus have: JE = 10/24 = 0.42.
In this case study we see that while a measure based solely

on the nodes present in a map fails to pick up on the changes
in the relationships between the nodes, JE is reactive accord-
ing to the Overlapping Edges Degree criterion and produces
reliable results. After as many as twelve, or more, node swaps
performed on a seed map of 19 nodes, it is to be expected that
the similarity would be reduced as Fig. 8 shows.

C. SECOND CASE STUDY: PC
The PC measure captures the similarity between two CMs
based on an analysis of the prerequisite knowledge required
by the common nodes.

In the second case study, a sequence of 30 maps is created
from the same seed map as above (CM0), by adding two
nodes to each new map. These are positioned as new roots
(nodes without predecessors) in the graph. The addition of
roots is meant to maximize the effect of the modifications
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FIGURE 9. The difference between the first and the second generated maps.

FIGURE 10. Generation of 30 pseudo-random maps obtained by adding
two nodes and two edges as source nodes.

(a new root will be a prerequisite for all the nodes in the map
that can be reached along a path from the new root). There are
four elementary operations here, as adding two nodes implies
adding two edges and connecting them to the map.

Fig. 10 shows the similarity values computed for
PC(CM0,CMi), with i ∈ [1, 30] together with the values
from the other measures. In this case, we observe that Jaccard,
JE, and KC measures decrease monotonically since Jaccard
and JE, which are essentially a ratio between the intersection
of nodes (or edges) with respect to the union of nodes (or
edges) of the maps, maintain the same numerator while the
denominator increases regularly by two nodes (or edges).
KC also decreases regularly, since the amount of knowl-
edge that has to be acquired before learning a given concept
increases regularly with the addition of sources. The PC
measure clearly highlights a different behavior with reference
to the other measures. In particular, we can observe that while
the similarity between CM0 and CM1 rapidly decreases, the
similarity between CM1 and CM2 does not change greatly
compared to the previous one. In fact, we see that while
the nodes are added to the root of CM0 in CM1, so that
all the nodes change their prerequisites, the nodes are added
closer to the leaves in CM2 and this addition influences a few
descendant nodes. Fig. 11 illustrates the CM1 and CM2maps
generated by ConceptMapExperimentation.

D. THIRD CASE STUDY: KC
TheKC measure captures the similarity of two CMs based on
the amount of knowledge load implied by the same concepts
in the maps. We represent the knowledge load through the

FIGURE 11. The first two maps obtained by adding two nodes and two
edges as roots in the maps.

FIGURE 12. 30 pseudo-random maps obtained by adding leaves
everywhere in the map.

flux computed by a spread activation algorithm, as illustrated
in Sec. IV-C. From Fig. 12 we note that the PC measure does
not change, as adding leaves does not affect the prerequisite
relations of the existing nodes. On the contrary, Jaccard and
JE decrease monotonically, because at each step the denomi-
nator of the ratio increases by a fixed quantity corresponding
to the two new nodes (and edges).

In a fairly similarly way, the KC measure decreases to
the baseline, so in this case we cannot claim that there is
a dramatic difference: the measure seems reliable, at least
as the baseline. However, as with the other two measures
proposed in this paper, the use of a polarized measure, such
as KC , is beneficial for the teacher as it allows the decrease in
similarity to be identified as a distinct pedagogical criterion
rather than a general observation.

This third case study reveals the nature of the proposed KC
measure: it comprises the effort needed to learn a concept as
a function in the learning path that a learner is required to
follow. We can say for this measure too that the addition of
leaves close to the root of the map does not greatly affect the
workflow, while adding nodes in the deepest branch of the
map decreases the measure considerably.
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E. DISCUSSION
To confirm that our similarity measures behave as per the
defined rationale, we carried out an experiment to compare
a seed map with its progressive pseudo-random transfor-
mations. The results of experiment solidly show that the
measures behave following the criterion they refer to, each
one with different sensitivity as defined in Section IV. The
JE measure is more sensitive than the other measures to
changes made on edges and swapping of two concepts. This
behavior conforms to the criterionOverlapping EdgesDegree
(Section IV-A) which is the design of the JE measure. The
PC measure shows higher fluctuation than the others when
changes affect the learning paths by the modification of
prerequisite relationships. This outcome is aligned to the
criterion Prerequisite Constraints (Section IV-B) which is the
design of this measure. Finally, the KC measure detects more
effectively modifications to the knowledge relevance of the
concepts (and of the related cognitive load) in two maps. This
sensitivity reflects the definition of the criterion Knowledge
Commonality (Section IV-C).

VII. CONCLUSION AND FUTURE WORK
In this paper we have presented a family of criteria devised
to assess the similarity of two CMs from different view-
points. The common ground on which we worked in defin-
ing the criteria was accomplished with the aim of taking
into account the pedagogical characteristics of the maps in
addition to the more usual structural/topological concerns.
Being interested in the didactic strategies represented by
CMs, we considered the advances made in the literature
regarding ontology similarity, and eventually defined three
criteria.

The first (JE) takes into account the common knowledge
shared by two CMs through their common concepts and
relationships. The second (PC) analyses the prerequisite rela-
tionships occurring among concepts. The third (KC) qualifies
the similarity of two CMs by considering how close is the
weight (in terms of knowledge flow) of the same concepts in
the two maps.

In order to implement the above criteria, we have created
three corresponding similarity measures, and tested them
alongside three case studies, each one emphasizing the effec-
tiveness of the related criteria.

In terms of future work, we aim to make use of the distance
functions devised here in order to offer teachers support
when they need to create a new course. In the system we
intend to develop a CM retrieval process would automatically
collect several CMs, rank them differently, according to our
pedagogical distance measures and thus enable the teacher to
potentially make use of already existing CMs.

In studying the proposed measures and their educational
value, we did not consider in this first phase the semantic
issues relating to the possible occurrence of the same concept
in the maps through synonymy. Future work will enhance
these measures with semantic comparison metrics. This will
allow for the semantic similarities and educational aspects

of the CMs to be discerned simultaneously in order to min-
imize the need for human intervention in their classification
and use.
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