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ABSTRACT In practical applications, limited independent and identically distributed training snapshots
brings a serious challenge in space-time adaptive processing (STAP), especially in the nonhomogeneous
environments. Motivated by the significant spatial smoothness and sparsity commonality of weight vectors
among related STAP tasks, we propose a novel STAP algorithm based onmulti-task learning. In the proposed
algorithm, the weight vectors corresponding to neighboring range bins of interest are kept consistent, and
all weight vectors are constrained to share a common feature. Then, an alternating direction method of
multipliers (ADMM) is used to solve the proposed algorithm, and the convergence of the algorithm is
guaranteed. In addition, in case that the feature matrix is unknown or we want to learn a better feature
matrix so that the associations among STAP tasks can be enhanced, we also provide an extension of the
proposed algorithm to jointly optimize the feature matrix and weight matrix. Simulation results demonstrate
the effectiveness of the proposed strategies.

INDEX TERMS ADMM, convex optimization, group-sparsity, multi-task learning, STAP.

I. INTRODUCTION
Space-time adaptive processing (STAP) can improve the
performance of slow-moving target indication effectively
for airborne/spaceborne radar systems in the presence of
strong ground/sea clutter and interference (see, e.g., [1]–[3]).
In conventional STAP algorithms, in order to ensure that
the signal-to-clutter-plus-noise ratio (SCNR) loss is less than
3dB, the required number of independent and identically dis-
tributed (IID) training snapshots should be at least twice the
number of system degrees of freedom (DoFs) [1]. Generally,
this is on the order of several hundreds, which far exceeds
the available training snapshots because of the environment
heterogeneity [4].

Up to now, many strategies have been proposed to get rid of
the limitations of conventional STAP algorithms. Reduced-
rank (RR) STAP strategies can reduce the required number
of training snapshots while sustaining the detection perfor-
mance of conventional STAP algorithms [5], [6]. Neverthe-
less, the prior knowledge of the rank of clutter-plus-jamming
subspace is required, which may be difficult to determine.
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Moreover, eigenvalue decomposition in RR-STAP strategies
is computationally expensive. In order to reduce the number
of snapshots and the computational complexity simultane-
ously, reduced-dimension (RD) STAP strategies have been
presented [7]–[9]. Nonetheless, the nonadaptive construction
of projection matrix, which depends on the selection of intu-
itive experience, degrades the detection performance [1].

Recently, sparsity-regularized STAP methods have been
studied, and the theoretical analysis using the `1-norm
regularization constraint has been established [10], [11].
To effectively solve the sparsity-regularized STAP problem,
the `1-regularized recursive least-squares STAP algo-
rithm [12], the `1-regularized least-mean-square STAP algo-
rithm [13], and the Homotopy-STAP algorithm [14] have
been proposed. Compared with conventional STAP algo-
rithms, sparsity-regularized STAP algorithms exhibit a better
performance [15].

However, the prior knowledge is not taken into
consideration by the algorithms mentioned above. When the
dimension of optimization problem is high, optimization
algorithms which do not use the prior knowledge will per-
form poorly to estimate the parameters reliably. Knowledge-
aided (KA) STAP incorporates a priori knowledge into the
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estimation process to accelerate the convergence of the
covariance matrix [16]–[19]. The acquisition of prior knowl-
edge relies on the digital terrain elevation data, land cover
land use data, synthetic aperture radar data or even hyper-
spectral imagery data of interest area, whereas these data are
sometimes difficult to obtain or might lose their relevance
with time [20].

Motivated by the significant spatial smoothness and spar-
sity commonality of weight vectors among related STAP
tasks, in this paper, we propose two novel multi-task learn-
ing STAP algorithms to accelerate the convergence. Multi-
task learning is especially beneficial when the number of
training sample is small for each STAP task [21], [22].
Fig. 1 illustrates the difference between traditional single
task learning (STL) STAP and multi-task learning (MTL)
STAP. In STL-STAP, each STAP task is considered to be
independent, and the weight vector is learnt independently.
In MTL-STAP, multiple STAP tasks are learnt simultane-
ously. By utilizing task relevance, the number of training
snapshots for each task is increased equivalently, and the
detecting performance can be improved. Specifically, the
contributions of this paper are:

(1) Spatial smoothness and sparsity commonality of weight
vectors among multiple related STAP tasks are analyzed, and
a multi-task learning STAP algorithm is proposed to provide
a better performance with a small number of IID training
snapshots;

(2) Alternating directionmethod ofmultipliers (ADMM) is
used to solve the optimazation problem, and the convergence
is guaranteed;

(3) In the case that the feature matrix is unknown or we
want to learn a better feature matrix so that the associations
among STAP tasks is enhanced, an extension of the proposed
algorithm, i.e., multi-task feature learning STAP algorithm,
is proposed to jointly optimize the feature matrix and weight
matrix, and an equivalent convex optimization problem is
provided.

The rest of paper is organized as follows. Section II briefly
recalls the system model of sparsity-regularized STAP, intro-
duces the spatial smoothness and sparsity commonality of
weight vectors among related STAP tasks. Section III devel-
ops a multi-task learning STAP algorithm, and ADMM is
used to tackle the optimization problem. An extension of the
proposed algorithm to jointly optimize the feature matrix and
weight matrix is provided in Section IV. Section V provides
some numerical simulations to demonstrate the effectiveness
of the proposed algorithms. Finally, we draw the conclusions
in Section VI.
Notations: Throughout this paper, variables, vectors, and

matrices are represented by lowercase letters, lowercase
bold letters, and uppercase bold letters, respectively. Trans-
pose, complex conjugation, and conjugate transpose are
denoted by (·)T, (·)∗, and (·)H, respectively. The sym-
bol ⊗ denotes the Kronecker product. The symbol ‖·‖n
denotes the `n-norm operator, and the `r,p-norm is defined as

FIGURE 1. Illustration of STL-STAP and MTL-STAP.

‖X‖r,p =
(

D∑
d=1
‖xd‖

p
r

) 1
p

, where xd denotes d-th row in

X. Hence, the `2,1-norm enforces row-wise sparsity. E (x)
denotes the expected value of x. |x| indicates the absolute
value of x, and (x)+

1
= max (0, x). sign(·) is the component-

wise sign function. I and 0 refer to the identitymatrix and zero
vector/matrix (their sizes are determined from the context).
Finally, diag(x) is the diagonal matrix whose i-th diagonal
element is the i-th entry of x.

II. BACKGROUND AND PROBLEM FORMULATION
A. SPARSITY-REGULARIZED STAP
Consider a radar platform equipped with a uniform linear
array (ULA) consisting of N receiving elements, and the
speed of radar is vp. K pulses are transmitted at a constant
pulse repetition frequency fr in a coherent processing interval
(CPI). The received signal from the range bin of interest is
represented by [23]

x =
Nc∑
n=1

σc,nv
(
fd,n, fs,n

)
+ n, (1)

where Nc and σc,n denote the number and the complex
reflection coefficient of clutter patches, respectively. fd,n
and fs,n are the Doppler frequency and spatial frequency
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for the nth clutter patch, respectively. v
(
fd,n, fs,n

)
is the

space-time steering vector, which is defined as a Kronecker
product of the temporal and spatial steering vectors [24],
i.e., v

(
fd,n, fs,n

)
= vd

(
fd,n

)
⊗ vs

(
fs,n
)
, where

vd
(
fd,n

)
=
[
1 ej2π fd,n · · · ej2π(K−1)fd,n

]T
vs
(
fs,n
)
=
[
1 ej2π fs,n · · · ej2π(N−1)fs,n

]T
. (2)

n is the thermal noise vector.
The generalized side-lobe canceler (GSC) form of STAP

algorithm is presented in Fig. 2. vt is the steering vector of the
moving target, andB is the featurematrix, whose columns can
be regarded as bases of clutter subspace. The feature matrix
transforms the original signal data into a feature space, and it
is also called signal blocking matrix and satisfies BHvt = 0
and BBH

= I.

FIGURE 2. GSC form of the STAP.

After the transformation by b = BHx, NK − 1 data are
available to suppress the clutter. The output of the GSC-STAP
is

y = d0 − wH
b b. (3)

The aim is to minimize |y|2, which can be rewritten as

min
wb

wH
b Rbwb − wH

b rb − rHb wb, (4)

whereRb is the clutter-plus-noise covariance matrix, rb is the
cross-correlation vector between d0 and b, and d0 = vHt x.
Consequently, the weight vector is

wb = R−1b rb, (5)

In practice, Rb and rb are unknown. Normally, they

can be estimated as Rb =
L∑
l=1

b (l)bH (l)
/
L and rb =

L∑
l=1

b (l) d∗0 (l)
/
L, respectively, where L denotes the number

of snapshots. However, a large number of IID training snap-
shots are required to achieve a satisfactory performance in
this case.

In fact, the columns in B can be regarded as bases of
clutter-plus-jamming subspace. It is known that the rank of
clutter-plus-jamming subspace is far less than system DoFs,
therefore there is no need to use all the columns in B to con-
struct the subspace. In other words, the weight vector should
be sparse, and the minimization problem can be expressed as
a least absolute shrinkage and selection operator (LASSO)
problem [13]:

min
wb
− rHb wb − wH

b rb + wH
b Rbwb + λ‖wb‖1, (6)

(6) is convex, and can be solved by the interior point
method (IPM). The sparsity-regularized constraint moves
most elements in w̃b toward zero, and only few nonzero
elements are selected as the best auxiliary data for clutter sup-
pression. Consequently, the number of DoFs is reduced, and
the snapshot limitation for estimating the clutter covariance
matrix can be relaxed.

Nevertheless, the weight vectors corresponding to different
range bins are assumed to be independent with each other.
Indeed, the performance by simply restraining the sparsity of
weight vector can be improved further if we learn the STAP
tasks jointly compared with learning them independently.

B. SPATIAL SMOOTHNESS
There could exist spatial relationship among related STAP
tasks. For example, if the radar system works in the squint
mode, then the normalized Doppler frequency for the clutter
patch with the angle of arrival (AOA) ψ is

fd =
2vp
λfr

cos (ψ) = 2vp
λfr

cos (θ + α) cos (ϕ) , (7)

where λ represents the wavelength. θ , α, and ϕ represent
the azimuth angle, the squint angle, and the elevation angle
of the clutter patch, respectively. Because the slant ranges
of range bins are different, the elevation angles are different
as well. Hence, the clutter environment is nonhomogeneous,
and clutter powers of different range bins are distributed in
different areas, as shown in Fig. 3.

FIGURE 3. The clutter power distributions of different range bins.
R denotes the slant range of range bin.

Although the clutter environment is nonhomogeneous, the
weight vectors corresponding to neighboring STAP tasks can
be similar and do not differ too much. To illustrate this, a sim-
ulation is given in Fig. 4. The weight vector corresponding
to each range bin is trained by its ideal CCM. It can be
seen that the deviation increases smoothly as spacing distance
increases, i.e., there exists a spatial smoothness among related
STAP tasks.

C. GROUP SPARSITY
In existing sparsity-regularized STAP algorithms, the spar-
sity commonality of weight vectors among related STAP

28006 VOLUME 10, 2022
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FIGURE 4. The deviation of weight vectors versus the spacing distance
between two range bins. The deviation of weight vectors is defined as∥∥w1 − w2

∥∥2
2.

tasks has not been considered. Nevertheless, they are actu-
ally associated with each other. An example is illustrated in
Fig. 5, which shows the selection results of auxiliary beams in
different sparsity-regularised beam-space (BS) STAP tasks.
In the BS-STAP task, vt is regarded as the beam of interest
in the angular-Doppler beam domain, and all other angular-
Doppler beams are used to form the feature matrix B [9].
In RD BS-STAP algorithms, only a small portion of beams
(i.e., auxiliary beams) are required to suppress the clutter and
jamming. Apparently, in Fig. 5(a) and Fig. 5(b), the distribu-
tions of clutter/jamming in the angular-Doppler domain are
not the same.Whereas, even though the clutter/jamming envi-
ronments are nonhomogeneous in two STAP tasks, it can be
seen that the auxiliary beams selected by sparsity-regularised
STAP algorithm are almost the same, i.e., different STAP
tasks share the same sparsity commonality.

III. MULTI-TASK LEARNING STAP
Motivated by the significant spatial smoothness and
sparsity commonality of weight vectors, we propose a
multi-task STAP algorithm by ensuring that the weight
vectors corresponding to neighboring range bins are
consistent and constraining all weight vectors to share
a common feature selection. Explicitly, the problem
is formulated as

min
Wb

L (Wb)+ λ

T−1∑
t=1

∥∥wb,t − wb,t+1
∥∥2
2 + γ ‖Wb‖

2
2,1 , (8)

where Wb =
[
wb,1,wb,2, · · · ,wb,T

]
denotes the weight

matrix, L (Wb) =
T∑
t=1

(wH
b,tRb,twb,t−rHb,twb,t−wH

b,trb,t )

denotes the total mean square loss, and T denotes the number
of STAP tasks. wb,t , Rb,t and rb,t denote the weight vec-
tor, the covariance matrix and the cross-correlation vector
of the t-th task, respectively. The second term, i.e., spatial
smoothness term, penalizes large deviations of weight vectors
corresponding to neighboring range bins of interest. This term

can be expressed as

T−1∑
t=1

∥∥wb,t − wb,t+1
∥∥2
2 = ‖WbH‖2F , (9)

where H is defined by

Hi,j =


1, i = j
−1, i = j+ 1
0, otherwise.

(10)

The third term encourages a row-wise sparsity in Wb, which
is equivalent to a common feature selection. λ and γ control
the spatial smoothness and group sparsity regularizations,
respectively.
The objective in (8) can be considered as a combination of

a smooth term and a non-smooth term. The ADMM [25] can
be applied to solve the optimization. The variableWb is split
into a pair of variables Wb and Z, and the two variables are
equal:

minL (Wb)+ λ ‖WbH‖2F + γ ‖Z‖
2
2,1

s.t.Wb = Z. (11)

As in theADMMmethod, the augmented Lagrangian func-
tion is written as

Lρ = L (Wb)+ λ ‖WbH‖2F + γ ‖Z‖
2
2,1

+ 〈6,Wb − Z〉 +
ρ

2
‖Wb − Z‖2F , (12)

where ρ > 0 is the augmented Lagrangian parameter deter-
mining the penalty for the equality violation, and 6 is the
Lagrangemultiplier matrix. Define the residual and the scaled
dual variable as R = Wb − Z and D = 1

ρ
6, respectively.

Then, we have

Lρ = L (Wb)+ λ ‖WbH‖2F + γ ‖Z‖
2
2,1

+
ρ

2
‖R+ D‖2F −

ρ

2
‖D‖2F . (13)

Subsequently, the solution can be rewritten in the following
form:



W(k+1)
b = argmin

Wb
L (Wb)+ λ ‖WbH‖2F

+
ρ

2

∥∥∥Wb − Z(k) + D(k)
∥∥∥2
F

Z(k+1) = argmin
Z
γ ‖Z‖22,1 +

ρ

2

∥∥∥W(k+1)
b − Z+ D(k)

∥∥∥2
2

D(k+1) = D(k) + R(k+1),
(14)

whereR(k)
=Wb

(k)
−Z(k) is the residual at the kth iteration,

and D(k)
= D(0)

+

k∑
j=1

R(j) is the summation of the residuals.
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FIGURE 5. Selections of auxiliary beams under different circumstances. The black bins represent the beam of interest,
and the grey ones represent the selected auxiliary beams for clutter/jamming suppression.

A. UPDATING Wb WITH FIXED VARIABLES Z AND D
The first optimization problem in (14) has an analytical solu-
tion, as shown below. First, the first optimization problem
in (14) can be rewritten as a quadratic function:

min
wb

wH
b

(
Rb + λH̃H̃H

+
ρ

2
IT×(NK−1)

)
wb

−

[
rHb +

ρ

2

(
z(k) − d(k)

)H]
wb

−wH
b

[
rb +

ρ

2

(
z(k) − d(k)

)]
, (15)

where

Rb =

 Rb,1 0 0

0
. . . 0

0 0 Rb,T

 , rb =

 rb,1
...

rb,T

 , (16)

and H̃ = H ⊗ INK−1. wb, z and d are the vectorization
operations ofWb, Z andD, respectively. Hence, the objective
is to minimize a quadratic function, and the solution can be
directly obtained as

wb=

(
Rb+λH̃H̃H

+
ρ

2
I
)−1 [

rb +
ρ

2

(
z(k) − d(k)

)]
. (17)

However, the inversion of
(
Rb + λH̃H̃H

+
ρ
2 I
)

has a

high computational complexity of O(T 3 (NK − 1)3), espe-
cially in the case that the number of tasks is large.
Whereas, the computational complexity can be reduced
to O((2T − 1) (NK − 1)3), and a detailed method is pre-
sented in APPENDIX A. Note that T tasks are solved
simultaneously, hence the computational complexity is
O
(
2T−1
T (NK − 1)3

)
for each STAP task.

B. UPDATING Z WITH FIXED VARIABLES Wb AND D
The second optimization problem in (14) can be decomposed
into NK − 1 independent optimization problems, which can

Algorithm 1 Multi-Task Learning STAP Algorithm
Input: training snapshot sets {Xt } , t = 1, · · · ,T
Parameters: regularization parameters λ, γ , ρ, and stop-
ping threshold tol
Output: weight matrix Wb
Initialization: set Z = 0 and D = 0
Compute

(
Rb + λH̃H̃H

+
ρ
2 I
)−1

according to (34)

while
∥∥∥W(k+1)

b −W(k)
b

∥∥∥2
F
≥ tol do

1. Update Wb according to (15)
2. Update Z according to (19)
3. Update D via D(k+1) = D(k) + R(k+1)

end while

be rewritten as

min
Z

NK−1∑
d=1

(γ ‖zd‖2 +
ρ

2

∥∥∥w(k+1)b,d − zd + d(k)d
∥∥∥2
2
), (18)

where zd , wb,d and dd are the d-th row of Z, Wb and D,
respectively. The closed-form solution is given by

z(k+1)d =

1− γ

ρ

∥∥∥w(k+1)b,d +d
(k)
d

∥∥∥
2


+

(w(k+1)b,d +d
(k)
d ). (19)

We summarize the proposed algorithm in Algorithm 1.
A proof of the convergence is presented in APPENDIX B.

IV. MULTI-TASK FEATURE LEARNING STAP
In our previous discussions, the feature matrix B is assumed
as prescribed or known. For example, B can be obtained by
singular value decomposition [12], or formed by angular-
Doppler beams [9]. However, these prescribed feature matri-
ces are not necessarily the optimal ones for the multi-task
learning STAP, and it might be better to learn a feature matrix
so that the associations among STAP tasks can be enhanced.
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FIGURE 6. Normalized beampattern versus normalized Doppler and spatial frequency.

Thus, a multi-task feature learning STAP algorithm is pro-
posed to jointly optimize Wb and B:

min
Wb,B

L (Wb,B)+ λ
T−1∑
t=1

∥∥Bwb,t − Bwb,t+1
∥∥2
2

+ γ ‖Wb‖
2
2,1

s.t. BHB = I, (20)

where L (Wb,B) equals to
T∑
t=1

(wH
b,tB

HRx,tBwb,t − rHt Bwb,t − wH
b,tB

Hrt ). (21)

Rx,t = E
(
xtxtH

)
and rt = E

(
xtd∗t,0

)
are the input covari-

ance matrix and cross-correlation vector of the t-th STAP
task, respectively.

The optimization problem (20) is challenging. Different
from the convex problem in (8), it is non-convex. However,
inspired by the method in [26], an equivalent convex opti-
mization problem can be obtained:

min
W,V

L (W)+ λ ‖WH‖2F + γ
T∑
t=1

wH
t V
−1wt

s.t. V � 0, trace(V) ≤ 1, (22)
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Algorithm 2 Multi-Task Feature Learning STAP Algorithm
Input: training snapshot sets {Xt } , t = 1, · · · ,T
Parameters: regularization parameters λ, γ , and stopping
threshold tol
Output: weight matrix W
Initialization: set V = INK

NK

while
∥∥W(k+1) −W(k)

∥∥2
F ≥ tol do

1. Compute
(
Rx + λH̃H̃H

+ γ Ṽ−1
)−1

via the acceler-
ation method in APPENDIX A
2. Update W according to (25)
3. Update V according to (29)

end while

where L (W) =
T∑
t=1

(wH
t Rx,twt − rHt wt − wH

t rt ). In particu-

lar, if (Wb,B) is an optimal solution of (20), then

(W,V)=

BWb,Bdiag

( ∥∥wb,d
∥∥
2

‖Wb‖2,1

)NK−1
d=1

BH

 (23)

is an optimal solution of (22). The proof of equivalence can
be seen in [26].

The problem can be solved by alternating minimization
algorithm. In the first step, we keep V fixed and minimize
overW, i.e., we solve the unconstrained problem

min
W

L (W)+ λ ‖WH‖2F + γ
T∑
t=1

wH
t V
−1wt , (24)

which can be rewritten as a quadratic problem:

min
w

wH
(
Rx + λH̃H

+ γ Ṽ−1
)
w− rHw− wHr, (25)

where

Rx =

 Rx,1 0 0

0
. . . 0

0 0 Rx,T

 , r =

 r1
...

rT

 , (26)

and Ṽ−1 = IT ⊗ V−1. Hence, the solution can be directly
obtained as

w =
(
Rx + λH̃H̃H

+ γ Ṽ−1
)−1

r. (27)

Similarly, the inversion operation can be accelerated by the
method in APPENDIX A.

In the second step, we keepW fixed and minimize over V,
i.e., we solve the problem

min
W

T∑
t=1

wH
t V
−1wt

s.t. V � 0, trace(V) ≤ 1. (28)

The analytic solution is given by

V =

(
WWH

) 1
2

trace
(
WWH

) 1
2

. (29)

FIGURE 7. Output SCNR versus the number of training snapshots. (a) The
normalized doppler frequency of the moving target is 0.4 (b) The
normalized doppler frequency of the moving target is −0.2.

We summarize the proposed multi-task feature learning
STAP algorithm in Algorithm 2. Algorithm 2 can be inter-
preted as two steps. In the first step, we learn task-specific
functions using a common representation across the tasks.
In the second step, we learn the common representation.

V. SIMULATION RESULTS
In this section, the performance of the proposed algorithm is
verified by numerical simulations. Consider an airborne radar
system equipped with N = 10 receiving elements, and the
elements are spaced half a wavelength apart, i.e., d = λ/2.
The radar works in large squint mode where the squint angle
is α = 45◦, hence the clutter environment is nonhomoge-
neous. The radar transmits K = 10 pulses during a CPI,
and the flight height H is 8000m. Additive noise is modeled
as spatially and temporally independent complex Gaussian
noise. Let fr = 4vpλ, hence, 2vpTr/d = 1. The signal of the
moving target impinges the array from a AOA ofψt=0◦, and
the signal-to-noise ratio is 0dB.

To demonstrate the superior performance of the pro-
posed algorithm, some popular algorithms including the
conventional fully-adapted STAP, SR-STAP [13] and
ACP-STAP [27] are compared in the following simulations.
In themulti-task learning STAP, T = 5 STAP tasks are jointly
optimized, and the t-th STAP task aims to obtain a weight
vector for the clutter suppression when we detect the moving
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FIGURE 8. Output SCNR versus the target Doppler frequency. (a) The
number of training snapshots is 20 (b) The number of training snapshots
is 30.

target in the t-th range bin of interest. The slant ranges of T
range bins of interest are 10km, 10.5km, 11km, 11.5km and
12km, respectively. The sparsity regularization parameters λ
and γ are set to 1000 and 1, respectively. All the results are
obtained from the average of 100 independent Monte-Carlo
simulations.

A. BEAMPATTERNS IN ANGLE-DOPPLER
The normalized beampatterns of different STAP algorithms
are shown in Fig. 6. The normalized Doppler frequency of
the moving target fd,t is set to 0.4, and 10 training snapshots
for each STAP task is used to train the weight vector in a
small number of samples. First, as shown in Fig. 6(a), the
fully-adapted STAP algorithm cannot work normally due to
the lack of sufficient training snapshots to estimate the CCM
precisely. The sidelobe level is high, and there is no response
peak value and deep null in the areas of target and clutter,
respectively. Second, as shown in Fig. 6(b) and Fig. 6(c),
although a deep null is formed in the area of clutter, but the
sidelobe level is still high, which increases the false alarm
probability and deteriorates the output SCNR performance.
Moreover, as shown in Fig. 6(d) and Fig. 6(e), the sidelobe
levels of the proposed MTL-STAP and MTFL-STAP algo-
rithms are low, and the mainlobes are capable of correctly
pointing towards the target. Also, the deep nulls are placed in
the area of clutter. This means that the proposed algorithms

can extract useful information in a small number of samples
to estimate the clutter-plus-noise power spectrum accurately.

B. OUTPUT SCNR PERFORMANCE
The output SCNR performances versus the number of train-
ing snapshots and the target Doppler frequency are compared
in Fig. 7 and Fig. 8. As shown in these figures, we can
see that: (i) the output SCNR performances of the proposed
MTL-STAP and MTFL-STAP algorithms are superior to that
of the SR-STAP and ACP-STAP algorithms. Due to the fact
that the correlated information among different STAP tasks
can be used to improve the learning of each task, MTL-STAP
and MTFL-STAP algorithms can reliably estimate the filter
parameters within a few snapshots; (ii) the output SCNR
performance of the MTFL-STAP algorithm can outperform
that of the MTL-STAP algorithm in some cases, which sup-
ports the conclusion that the prescribed feature matrix is not
necessarily the optimal one, and it might be better to learn
a feature matrix simultaneously to enhance the associations
among STAP tasks.

VI. CONCLUSION
Due to the strong associations among STAP tasks, in this
paper, we proposed a novel multi-task learning STAPmethod
via spatial smoothness regularization to accelerate the conver-
gence speed of STAP, and the problemwas solved by ADMM
effectively. Furthermore, in the case where the feature matrix
was unknown, a multi-task feature learning STAP method
was proposed to jointly optimize the feature matrix and the
weight matrix. The numerical results demonstrated that the
proposed methods with the shared information among multi-
ple related STAP tasks can effectively decrease the required
number of training snapshots and provide a better perfor-
mance.

APPENDIX A
ACCELERATION METHOD FOR THE INVERSION
OPERATION
Denote R̃0 = Rb +

ρ
2 I. Note that

R̃0 =


Rb,1 +

ρ

2
I 0 0

0
. . . 0

0 0 Rb,T +
ρ

2
I

 . (30)

Hence,

R̃−10 =


(
Rb,1 +

ρ

2
I
)−1

0 0

0
. . . 0

0 0
(
Rb,T +

ρ

2
I
)−1

 , (31)

which has a computational complexity of O(T (NK − 1)3).
Then, note that H̃H̃H can be rewritten as

H̃H̃H
=

T−1∑
t=1

UtUH
t , (32)
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where

Ut =


0t−1
1
−1

0T−t−1

⊗ INK−1 ∈ CT (NK−1)×(NK−1). (33)

Denote R̃t = R̃0 + λ
t∑̃

t=1
Ut̃U

H
t̃ , then it is clear that

R̃t = R̃t−1 + λUtUH
t . According to the matrix inversion

lemma [28], we obtain

R̃−1t = R̃−1t−1

− R̃−1t−1Ut

(
UH
t R̃
−1
t−1Ut +

1
λ
INK−1

)−1
UH
t R̃
−1
t−1. (34)

Through T − 1 iterations, R̃−1T−1 is obtained, which equals

to
(
Rb + λH̃H̃H

+
ρ
2 I
)−1

. Because the matrix multiplica-

tion can be efficiently performed in parallel, the com-
putational load is mainly determined by the inversion of
UH
t R̃
−1
t−1Ut +

1
λ
INK−1. Hence, the computational complexity

of iterations is O((T − 1) (NK − 1)3).
Consequently, the total computational complexity is

reduced from O(T 3 (NK − 1)3) to O((2T − 1) (NK − 1)3).

APPENDIX B
CONVERGENCE ANALYSIS OF ALGORITHM 1
We begin our proof by presenting the following theorem.
Theorem 1 (Eckstein-Bertsekas, [29]): Consider the

problem

min
u
f1 (u)+ f2 (v)

s.t. v = Gu (35)

in the case where the functions f1(·) and f2(·) are closed,
proper, and convex, and G has a full column rank. Let
{ηk ≥ 0, k = 0, 1, · · ·} and {γk ≥ 0, k = 0, 1, · · ·} be two
sequences such that

∞∑
k=0

ηk <∞ and
∞∑
k=0

γk <∞. (36)

Assume that there are three sequences {uk , k = 0, 1, · · ·},
{vk , k = 0, 1, · · ·}, and {tk , k = 0, 1, · · ·} that satisfy

ηk ≥

∥∥∥∥uk+1−argmin
u

{
f1 (u)+

(
ρ
/
2
)
‖Gu−vk−tk‖22

}∥∥∥∥
γk ≥

∥∥∥∥vk+1−argmin
v

{
f2 (v)+

(
ρ
/
2
)
‖Guk+1−v−tk‖22

}∥∥∥∥
tk+1 = tk − (Guk+1 − vk+1) (37)

Then, if (35) has an optimal solution u†, the sequence {uk}
converges to this solution, i.e., uk → u†.
First, since (11) is a particular instance when G = I, the

full-rank condition in Theorem 1 can be satisfied. Second,
it is clear that f1 (Wb) = L (Wb)+ λ ‖WbH‖2F and f2 (Z) =
γ ‖Z‖22,1 in (11) are closed, proper, and convex. Moreover,
the sequences W(k)

b , Z(k), and D(k) generated by (14) satisfy

the conditions of (37) in a strict sense (ηk = γk = 0). Hence,
the convergence is guaranteed.
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