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ABSTRACT Fault diagnostics and prognosis are vital functions of engineering systems, mainly fault
prognosis, which is a relatively novel area and requires further development. By applying these methods,
the system can be enriched with the ability to detect and isolate faults before they result in failures; in
addition, fault propagation can be predicted, and maintenance can be considered to reduce the risk of
severe failure. This paper focuses on the problem of satellite formation fault diagnosis and prognosis in
the literature. Multi-satellite networks that cooperate as multi-agent systems are primarily used to implement
cutting-edge technologies and improve future Earth and space observing missions. Space systems constantly
encounter numerous failures due to the hazards and challenges of the space environment that need to be
tackled. The current starts with an overview of the main concepts and motivations behind the deployment of
small satellites in constellation settings and the detection and prediction of their faults. Next, recent papers
on fault diagnosis and prognosis of single and multiple agent(s) or satellite(s), working individually or in
collaboration, are reviewed. Comprehensive comparisons and categorization of the reviewed literature are
included throughout the paper leading to existing research gaps for future work.

INDEX TERMS Fault, diagnosis, prognosis, multi-agent systems, satellite formation flying.

I. INTRODUCTION
Multi-Agent System (MAS) refers to the concept that
several vehicles work together to meet the objective of
a much more complex single vehicle. The most common
cooperative control problems involve consensus, formation
control, flocking, coverage control, and distributed estima-
tion. By considering the example of satellite formation flying
(SFF), we can see multiple small satellites cooperate to
reach the goals of one larger, more equipped, and more
expensive satellite. Therefore, this area has become one of
the most renowned research subjects among many complex
systems to be simplified and effective. The MASs are
popular in satellite formation control and consensus and well-
received in other fields such as multiple robotics distributed
control and geological investigation [1]–[3]. One of the
main drawbacks of utilizing the MASs strategy is a higher
risk of being faulty compared to a single system. Besides
that, the fault in one vehicle might spread to its neighbours
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through topology connections and finally deteriorate the
whole system performance [4], [5]. So, it is crucial to detect
and isolate the faulty agent or component before propagation.

Multiple satellites in orbit working together as a MAS
are primarily used to implement cross-cutting technologies
and improve future Earth and space observing missions.
Satellite systems are continuously under threat of various
failures, such as structural degradation, sensor faults, actuator
faults, connection loss, or component damage, due to the
dangers and challenges of the unknown space environment.
Therefore, the fault diagnosis for detecting and isolating
failures source and fault prognosis for predicting the future
behaviour of faulty components can be considered the vital
role of space systems’ health management process.

Fault diagnosis and, beyond that, Condition-based main-
tenance (CBM) and prognostics and health management
(PHM), which are components of the diagnosis, prognosis,
and health monitoring (DPHM) framework, have evolved
in recent decades to address the shortcomings of tradi-
tional complex system maintenance practices. Consequently,
formulating and deploying autonomous systems capable
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FIGURE 1. Nanosatellite lunches history [11].

FIGURE 2. Satellite operator trends [10].

of self-monitoring and maintenance is critical. This paper
provides a comprehensive review of recent studies on DPHM
for MASs, followed by DPHM for small satellites in
constellation under an undirected/directed communication
graph.

The remainder of this paper is structured as follows. The
motivation for this literature survey is explained in Section II.
In Section III and IV, the model and problem formulation
are described in both fault-free and fault-prone scenarios.
In Section V, the available literature on the topic is discussed.
Finally, the conclusion and suggestions for future work are
given in Sections VI and VII, respectively.

II. RESEARCH MOTIVATION
In themodern engineeringworld, the development and launch
of a spacecraft formation mission are complex and require
various resources and experts. Scientists and technicians from
many disciplinesmust be employed to performmany research
and tests. Systems must be monitored and maintained
to prevent any risk of damage and failure in launching
a spacecraft, starting from the first stages of design to
manufacturing and assembly. Eliminating the risk of mission
failure and reducing its probability is essential for researchers
and investors.

Satellites can be categorized into three classes in terms of
mass: a) large spacecraft, b) medium spacecraft, and c) small
spacecraft. When a spacecraft’s mass is less than 500 kg, it is
classified as a small satellite. TABLE 1 shows each class of
satellites with their corresponding mass. As can be observed

TABLE 1. Satellite classification by mass [6]–[8].

TABLE 2. Satellites cost of design comparison [8], [9].

in TABLE 1, the small satellites category involves several
types of satellites [6]. Because CubeSats are classified as both
nanosatellites and microsatellites, the terms are frequently
interchanged [7].

The benefits of using smaller satellites in constellations
instead of a heavier single satellite encourage researchers to
use the cooperation of small satellites to operate tasks of
a single heavy agent. First of all, smaller satellites require
lower-end launch vehicles and can be launched in multiples.
Secondly, they offer the possibility of gathering data at
multiple points [9]. Furthermore, the mentioned strategy can
improve mission robustness, reduce cost, bring exceptional
image resolution, and enhance redundancy. A comparison
between the different classes of satellites in terms of cost is
provided in TABLE 2. It is proven that the costs of space
missions decrease by using smaller satellites.

SpaceWorks Enterprises publishes an annual report on
small satellite marketing assessments. Their 2020 report [10]
analyses the current developments and provides a poten-
tial market for future results until 2025. A total of
189 nano/microsatellites were launched in 2019, a decrease
of 25% compared to last year. 2019 was a down-year for
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FIGURE 3. Nanosatellite constellation [11].

FIGURE 4. Observer-based fault detection [19].

the small satellite sector, with only 188 satellites launched
vs 294 predicted. The drop in industry performance was
primarily due to commercial operators; several significant
operators have launched fewer satellites than expected.
However, this trend will change in the following years.
According to FIGURE 1, the number of nanosatellites’
launches is forecasted to grow in the following years. About
2,900 nano/microsatellites will require a launch during 2021-
2025. FIGURE 2 presents commercial satellites that will be
the majority of the future small satellites deployed in space
as the government projects shrink in the upcoming years.
FIGURE 3 can be a helpful demonstration in giving insight
into satellite constellation. In this research, we are interested
in reviewing the provided framework for fault diagnosis and
prognosis of small satellites in constellation. FIGURE 3
shows the number of nano/microsatellites launched or
planned to be launched in each nanosatellite constellation.
The considerable number of nano/microsatellites waiting
for launch demonstrates the benefits behind employing a
constellation of small satellites rather than one large satellite.
As utilizing small satellites in constellation necessitates
advanced monitoring systems that can compensate for the
lack of hardware redundancy due to smaller design and mass
constraints, especially when the spacecraft is not available for
maintenance and is on a mission, expanding small satellites
in constellation enhance the ability to meet at least partially

the objectives of the mission using other healthy units in the
constellation in case any of the units malfunctions or fails.

TABLE 3 presents some examples of small satellite
mission failures, emphasizing the importance of proper
monitoring systems to avoid such losses. A complete review
of small satellite missions that have partially or fully failed
while on a mission is available in [12].

A combination of CBM and PHM can help detect, isolate,
and predict future failures based on available mathematical
system models or historical data to prevent such failures.
Therefore, in this study, we are interested in reviewing the
possible frameworks for the DPHM of small satellites in
the constellation as there seems to be a lack of studies in
the literature on the prognosis of monolithic space systems.
Additionally, the availability of research work on distributed
space systems, including satellites in constellation seems to
be lacking in the published work and calls for a review of the
existing work that sheds light on the existing challenges and
future directions in this field.

III. SATELLITE FORMATION FLYING DESCRIPTION AND
PROBLEM FORMULATION-FAULT FREE SCENARIO
Solving the cooperative control problem for a multi-agent
system necessitates defining three sections: (i) the informa-
tion exchange among agents, (ii) knowledge of each agent’s
dynamics of motion, and (iii) a control law based on the
consensus objective [13]. In the following sections, we want
to extend the cooperative control method to solve the SFF
problem considered for a growing number of space missions.
The idea is for spacecraft to work together in cooperative
formation to distribute the functionality of more expensive,
larger spacecraft. The spacecraft formation consists of N
spacecraft and one or more virtual leaders that share partial
information with their fellow spacecraft.

A. INTERACTION TOPOLOGY
A directed or undirected communication graph describes the
communication between a team of satellites in a formation
flight or generally a group of agents in MASs. The
communication graph can be static or dynamic. In static
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TABLE 3. Summary of small satellite failure [12].

graphs, the edges remain constant throughout the whole
process. On the other hand, the edges of dynamic graphs are
time-varying. By considering the graph theory, g = (υ, ε)
shows a graph, where υ = {υ1,υ2, . . . ,υN } is the nonempty
finite set of nodes and ε ⊆ υ × υ is the set of edges. Every
edge in a weighted graph is associated with a weight. The
elements of adjacency matrixA =

[
aij
]
∈ RN×N indicate the

weight of every edge. If a parent node j transmits information
to a child node i, we have (j, i) ∈ υ × υ described by aij =
1, otherwise aij = 0. While, directed graph made up of a set
of nodes connected by directed edges, in the adjacencymatrix
of an undirected graph aij = aji. The degree matrix D is
defined as D = diag {d1,d2,. . . ,dN }, where d i =

∑
j∈N i

aij
to form Laplacian matrix of the graph as L = D− A [14].

B. SYSTEM MODEL
For a group of N spacecraft, the individual spacecraft is
modelled as a rigid bodywith the following dynamic equation
for the ith (i = 1, . . . ,N) spacecraft [15].

Jiω̇i = −ωi × Jiωi + τi (1)

where J i ∈ R3×3 is the mass moment-of-inertia matrix,
τ i ∈ R3 is the torque control, ωi∈R3 is the angular velocity
of the ith spacecraft in a body-fixed frame, and x× ∈ R3×3

shows the skew-symmetric matrix given by

x× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (2)

The kinematic equation of the ith spacecraft in formation is
given by [15].

q̇i = Ti(qi)ωi (3)

where ωi ∈ R3 is the angular velocity of the spacecraft
in a body-fixed frame, qi ∈ R3 represents the Modified

Rodriguez Parameters (MRPs), which describe the spacecraft
attitude with respect to an inertia frame [16].

qi(t) = ρi(t)tan
(
ϕi (t)
4

)
(4)

where ρi and ϕi denote the Euler eigenaxis and eigenangle,
respectively. The matrix Ti(qi) ∈ R

3×3 for MRPs is given
by [15]

Ti(qi) =
1
2

[
1− qTi qi

2
I3 + q

×

i + qiq
T
i

]
(5)

The spacecraft models in (1) and (3) can be written as follows

q̇i = vi (6)

v̇i = fi(qi, vi)+ gi(qi)τiq̇i = vi (7)

For i = 1, . . . ,N , where the function f i(qi,vi) = −T iṖiq̇i−
TiJ
−1
i (P iq̇i)

×J iP iq̇i, P i = T−1
i (qi) and gi = TiJ

−1
i .

C. CONTROL LAW
In the scientific literature, the term SFF describes several
different formation estimation architectures (FEA) that
allow the production and maintenance of formation state
between satellites. These include centralized, distributed, and
decentralized architectures [17]:

1) Centralized estimation architecture includes a single
formation-wide master filter that gathers sensor mea-
surements, control inputs, and spacecraft configuration
to estimate the formation states and transmit control
signals to all the other spacecraft in the formation. All
estimations are carried out at a standard processing
station, meaning resource allocation is easy since the
master filter fully understands the operations of each
spacecraft and has a complete picture of the whole
formation. Centralized estimation architecture has
some disadvantages: (i) Since state information cannot
be obtained from other spacecraft, erroneous readings
from one spacecraft will mean the formation will be
adversely affected, (ii) The immense computational
load imposed on the master filter by global estimation
and control, rather than local estimation and control
for each spacecraft node, and (iii) There is a high
communication overhead because all spacecraft in the
formation must be provided with state information by
the master filter.

2) Distributed estimation architecture uses a hierarchy of
filters where each spacecraft runs a local filter, which
then provides estimates to the master filter, which
is then combined into an estimated formation state.
By distributing the spacecraft in formation between
various local filters, distributed estimation reduces the
computational load of centralized estimation. In this
architecture, computation load is distributed among
local spacecraft, but it retains the downsides of
centralized architecture. Because access to relative
states or output between neighbouring satellites is
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easier in deep space than absolute information, this
design architecture is more acceptable for formation
control.

3) Decentralized estimation architecture is nonhierarchi-
cal, so there is no need for supervision. A decentralized
network allows each spacecraft to simultaneously
process its measurement data with other spacecraft in
formation. However, the total computational burden
over the entire formation is more significant than it
would be for a monolithic spacecraft. A local data
vector must be maintained to minimize data transfer
requirements between spacecraft.

The distributed architecture that allows each satellite to
communicate with its neighbour makes interagent commu-
nication more feasible due to constraints associated with
space missions, such as large numbers of small satellites,
the location of actuators, the limitation of sensors, and
limited wireless ranges. This method is based on local
communication between neighbours. Therefore, compared
with two other methods is a promising solution for SFF. The
rest of this section is dedicated to system general description
and formulation for a distributed architecture.

A team of satellites can consist of N followers and
M leaders. In most cases, only one leader is involved in
distributed tracking problem. The linear or linearized state-
space model of the ith followers are demonstrated by

ẋi = Axi + Bui (8)

yi = Cxi(t)+ Dui(t) (9)

where xi, ui, and yi are the state, the input, and the output of
satellite in the formation, respectively. A, B, C, D are constant
matrices with compatible dimensions. To get a distributed
formation, the control law is described by [13]

ui = cK
∑N

j=1
aij(xi − xj − hi + hj) (10)

where K is the feedback gain, c > 0 is coupling gain, aij
is a corresponding component of the adjacency matrix of
satellites’ communication graph, and hi is the formation
variable of ith satellite, which satisfied Ahi = 0 criterion.
By considering the following two assumptions, we can obtain
control feedback gain K and coupling gain c:
Assumption One: (A,B) is stabilizable.
Assumption Two: The satellites’ communication graph in-

volves a directed spanning tree.
Note: Each satellite in a directed tree, a directed graph,

is connected by a directed edge to the root or leader. Once the
root covers all satellites or has directed edges over all nodes,
the directed tree is named the directed spanning tree.

1) Feedback gain K = −BTP−1, P > 0 is determined
by solving Linear Matrix Inequality (LMI) below:

AP+ PAT − 2BBT < 0 (11)

2) Coupling gain c ≥ cth

cth =
1

minRE(λi)
, i = 2, . . . ,N (12)

where λi 6= 0 are eigenvalues of L

To reach formation state, all A + cλiBK matrices for
i = 2, . . . ,N must meet Hurwitz stability conditions [18].
As the information on the state of formation is difficult

to obtain in many working environments, the relative output
information is used to solve the formation control problem.
In this case, an observer is designed to estimate the local
state information by using the relative output information of
a satellite and its neighbours.

v̇i = (A+ BF)vi + cK
∑N

j=1
aij[C(vi − vj)

−(yi − yj − C(hi − hj))] (13)

ui = Fvi (14)

where variables, assumptions, and criteria are described for
equation (10), In addition, the term C(vi − vj) describes the
interaction between satellites and their neighbours when they
send virtual outputs of their controllers and F Feedback gain.
Observer feedback gains and coupling gain are calculated as
follows:
Assumption Three: A,B,C is stabilizable and detectable.
1) Feedback gainFmust satisfy Hurwitz’s stability ofA+

BF.
2) Feedback gain K = −P−1CT , P > 0 is determined

by solving LMI below:

AP+ PAT − 2CCT < 0 (15)

3) Coupling gain is determined by (12)
Following the above discussion about how cooperative
control is used to solve SFF under fault-free conditions.
To proceed, we need to understand the effects of fault on SFF,
as well as methods for detecting the fault and preventing its
propagation.

IV. SATELLITE FORMATION FLYING DESCRIPTION AND
PROBLEM FORMULATION-FAULT PRONE SCENARIO
Once a fault has been detected in a system, the control
parameters could be modified or the controlling law altered
to adapt the system to new working conditions and prevent
fault propagation and system failure.

A. FAULT CLASSIFICATION
A system fault mainly occurs in three components: sensors,
actuators, and inside the system. Sensor fault may lead to
sensor malfunction by producing inaccurate information.
A faulty actuator will no longer achieve the desired behaviour
of the system. Depending on the fault type, the system may
malfunction parametrically or structurally. When a paramet-
ric or structural defect is identified, the system model used in
fault diagnosis can be modified. In this way, successive faults
can be detected using a model of a healthy system.

The classification of dynamic systems’ faults based on
their form follows: Abrupt faults that are sudden and
permanent tend to change parameter values much more
quickly than normal faults. When a transient fault occurs,
system variables change transiently. In the case of repeated
occurrences, they are classified as intermittent faults.
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Minor and gradually developing faults are called Incipient
Faults. The incipient fault is difficult to detect compared
to abrupt faults because the uncertainties of the model may
mask its effects. It is worth mentioning that additive faults
and multiplicative faults refer to faults that are either added
or multiplied to the input of system dynamics. Sensor and
actuator fault are added as an external input into the state-
space model of the system, so they are called additive
Faults [19]. An additive fault model of a linear system can
be described in state space as

ẋi = Ax(t)+ Bu(t)+ Kfa(t) (16)

y = Cx(t)+ Du(t)+ Gfs(t) (17)

where A, B, C, D, K, G are constant matrices with compatible
dimensions. x, u,y, f a, and f s are the state, the input,
the output of satellite, actuator fault, and sensor fault,
respectively. On the other hand, structural or parametric faults
are multiplicative faults that change the state-space model by
multiplying a scalar.

ẋi = A(2)x(t)+ B(2)u(t) (18)

y = C(2)x(t)+ D(2)u(t) (19)

where A, B, C, D are constant matrices with compatible
dimensions. x, u, and y are the state, the input, the output of
satellite, respectively.

B. SYSTEM MODEL
An observer-based fault detection scheme is employed when
an unknown fault (f (t)) has occurred in a system and is added
along with control input (u(t)) and disturbances (d(t)) to
the real system model. The constant comparison of outputs
generated by the sensors (y (t)) with outputs derived by
the state estimation filter algorithms (ŷ (t) ) can develop an
output residual that indicates the presence of the fault by
comparing the residual with a threshold. Bayesian filters such
as Kalman Filter (KF) or Particle Filter (PF) detect faults
when measurement and process are noisy. The detected fault
can be isolated by using a bank of filters. If measurement
noise is filtered, observers can detect and isolate faults
(FIGURE 4).

Fault Detection and Isolation (FDI) architectures, shown
in FIGURE 4 for small satellites in a constellation, consist
of three major types: decentralized, semi-decentralized
(distributed), and centralized [20]. As discussed earlier,
distributed architecture compared with two other methods
is a more feasible solution for SFF. Therefore, the system
general description and formulation for the distributed FDI
architecture are discussed below.

Each spacecraft operates its fault detection and fault
isolation module using relative interaction between itself and
its neighbours in the distributed FDI architecture. System
general description and formulation for a distributed FDI
architecture is as follow [20],

ẋi(t) = f (xi)+ Bui(t)+ ωi(t) (20)

yi = Cxi(t)+ νi(t) (21)

where ωi and νi are Gaussian white noise with zero mean and
covariance Q and R, respectively. To solve the fault detection
problem, first of all, the state of ith satellite needs to be
estimated utilizing a nonlinear state estimation filter such as
extended Kalman filter (EKF), the state of the satellites are
estimated and updated in each iteration,

ẋi(t) = f (xi)+ Bui(t)+ K (t)(yi(t)− Cx̂ i(t)) (22)

The Kalman filter gain K(t) = P(t)(F(t))TR−1(t) is
determined by solving the differential Riccati equation:

Ṗ(t) = F(t)P(t)+ P(t)(F(t))T

−P(t)(C(t))T (R(t))−1C(t)P(t)

+Q(t) (23)

where Jacobian matrix F(t) = ∂f
∂x and covariance matrix

P(t0) = E[(x(t0)− E[x(t0)])(x(t0)− E[x(t0)])
T ]. The

residual signal can be estimated at this stage as the
discrepancy between the actual and estimated outputs.

e(t) = y(t)− Cx̂(t) (24)

eij(t) represents the residual of jth actuator of ith satellite.
Residual dimensions could differ depending on the type of
sensor(s) satellites are equipped with. The presence of a
fault in satellite formation must be evaluated by defining
a threshold. These faults can exist at system, actuator and
sensor levels. Additionally, the fault types include abrupt,
transient, intermittent and incipient. Consider a matrix J i(t)
is constructed from differences between the residual of ith
satellite and its closest neighbouring satellite. The residual
signal Si(t) is formed by the summation of rows of J i(t) and
finally, the residual evaluation function is formed as

S i(t) =
N−1∑
k=1

J ik (t) (25)

d ij (m) =
1
M

m∑
n=m−M+1

S ij (n) (26)

where m and M show sample size and window length,
respectively. To select a threshold, the designer(s) must find
a criterion that displays the normal and healthy satellite
behaviour when faced with the most severe fault.

T ij = mean(S ij (t))+
√
var(S ij (t)) (27)

when one of the elements of the residual evaluation function
exceeds the threshold T i

j , a fault is identified. To isolate the
detected fault of the system, a threshold is constructed as it
was for fault detection,

T ikj = mean(gikj(t))+
√
var(gikj(t)) (28)

where gikj(m) =
1
M
∑m

n=m−M+1 L
i
kj(n), Likj(t) =∣∣eij (t)− ekj(t)

∣∣. Lilkj shows the effect of detected fault on the
jth actuator of kth satellite of ith distributed formation.m and
M also show sample size and window length. The mission
remains healthy if gikj(m) does not exceed its threshold.
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After defining the concepts and the problem formulation
in previous sections, the available research on fault diagnosis
and prognosis in single-agent and multi-agent systems such
as SFF is reviewed and compared in the next section.

V. LITERATURE REVIEW
Based on a review of current literature, there are several
key themes to consider concerning fault diagnosis of SFF.
First, it is essential to review SFF attitude estimation and
control methods within this context. Next, a review of the
available literature on fault detection, isolation, and prognosis
techniques for different purposes is presented. Lastly, fault
DPHM for MASs is detailed. Although there is extensive
literature on fault diagnosis and prognosis for single systems,
cooperative fault diagnosis and prognosis for multi-agent
systems, particularly for the formation flying of spacecraft,
are still a challenge.

A. SATELLITE FORMATION FLYING STATE ESTIMATION
AND CONTROL
In recent years, the problem of attitude coordination control
for SFF has received significant attention. SFF is suitable
for various space missions, such as Earth and atmosphere
monitoring, deep space exploration, and spacecraft servicing
and maintenance in orbit.

Maintaining the state of formation between spacecraft,
especially in the case of failure of subsystems of satellites,
becomes a severe challenge because faults and external
disturbances cause a drift in both the position and formation
centre of the spacecraft. Modern guidance and navigation
systems rely on some form of nonlinear filtering algorithm
based on probabilistic inference to compute the state estimate
of the spacecraft.

The nonlinear filter estimates the system dynamics by
filtering out noisy measurements based on a two-step
procedure, iterative process of prediction and correction.
Several estimation algorithms have been proposed to estimate
the state of SFF; these include KF, EKF, unscented Kalman
filter (UKF), and PF.

Carpenter [21] presented the EKF approach to propose a
decentralized architecture for autonomous formation estab-
lishment and maintenance. Local control was achieved in the
reported work by combining local measurement data with
transmission vectors from other nodes. Lawton and Beard
presented two new control methods for multi-spacecraft
attitude alignment to keep the state of formation among
satellites during formation manoeuvres [22]. In the case
of having more than one leader, Meng et al. proposed a
distributed attitude containment control that used one-hop
and two-hop neighbours’ information [23].

Alternately, Kim et al. developed an EKF to determine the
relative attitude, position, and gyro biases of two spacecraft
using line-of-sight (LOS) measurements combined with gyro
measurements from each spacecraft. The quaternion was
used to describe the attitude kinematics, and general relative

orbital equations were used to describe the position in this
study [24].

In another study [25], Erdong et al. proposed a decentral-
ized variable structure controller using Lyapunov’s strategy to
handle uncertainty, disturbances, and time delays in satellite
interactions. Another application of EKF was introduced by
Nebelecky et al. [26], where a local EKF and data fusion
process known as the Covariance Intersection algorithm
were employed to achieve a decentralized attitude estimation
between three spacecraft. To control SFF’s relative attitude,
a state-dependent Riccati equation technique was proposed
by Chang et al. [27]. Using a lagrangian-based method,
Chung et al. studied the tracking of multiple satellites
cooperatively by a proposed decentralized tracking control
law [28].

The EKF was proposed for relative position and atti-
tude estimation for spacecraft formation once more by
Xing et al. [29]. This study used multiple line-of-sight vector
measurements and the EKF to calculate the leader’s attitude
and relative position. In the subsequent research, Chen et al.
proposed the integrated Relative Navigation and Attitude
Determination (RNAD) approach, which can significantly
improve the performance of relative navigation and attitude
estimation for ultra-close SFF [30].

Du et al. considered a quaternion-based approach for SFF
attitude coordination applications. A group of spacecraft
under an undirected communication graph cannot be con-
trolled in finite time in the present method. Each spacecraft
can use this control strategy to coordinate its attitude with
the leader. Additionally, to ease the complicated computation,
using a finite-time sliding-mode estimator, it is possible to
develop a modified control law to reduce internal satellite
communication to communicate with the leader [31].

Zhou et al. discussed decentralized finite-time attitude
coordination laws using the adaptive sliding mode control
technique [32]. It is worth mentioning that each of the
formation’s spacecraft has its reference trajectory. As a result,
when a common time-varying reference attitude is only
available to a subset of the group members, the control laws
in [32] are not applicable.

Under an undirected communication graph, two distributed
velocity-free attitude coordination control methods were
developed by Zou [33] to align satellites toward a reference
attitude, even when the moment-of-inertia matrices and
external disturbances were unknown. Cai and Huang looked
at a quaternion-based distributed leader-follower attitude
control problem for SFF under an undirected topology
graph [34].

To keep the quaternion normalization constraint in esti-
mating the spacecraft attitude and relative position, full state
feedback and the Generalized Rodrigues Parameters (GRP)
were used in another study by Zhang et al. [35]. A sliding
mode adaptive control technique was proposed into a
Lagrange system to address the problem of distributed
attitude control in SFF systems with misaligned actuators by
Gao et al. [36].
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The continuous communication amongmultiple spacecraft
is a common feature of the research mentioned above.
In terms of practical applications, such a communication
mechanism may consume a significant amount of com-
munication resources. Therefore, using an event-triggered
method can improve the process of data transmission. This
type of communication is applied on a single satellite
in some research, such as in [37]. Despite this, multiple
spacecraft achievements remain limited. Spacecraft have
internal communication, so it is challenging to design a
trigger condition that excludes Zeno behaviour. Using event-
triggered inputs, cooperative attitude control of SFFs is
pointed in [38]. The interaction between satellites, however,
is not yet triggered by events. Motivated by mentioned
constraints, Hu et al. proposed a cooperative control problem
for SFF with resources limitation under an undirected
communication graph while considering widespread uncer-
tainty and external disruptions [39]. According to the new
framework, neighbour satellites only interact once an event
has occurred. So, they need to exchange information only in
particular moments. This method significantly reduces their
inner satellite interaction load and energy consumption.

A distributed attitude synchronization problem for SFF
with constrained and event-triggered communication under a
directed topology graph is being proposed by Long et al. [40]
to save the communication resources. Furthermore, compared
to continuous ones, this method has the advantage that it
is based entirely on continuous local signals and triggered
neighbouring signals. Thus, it requires no constant monitor-
ing of neighbouring states. The papers reviewed in the current
section are categorized in TABLE 4.

To lay the foundations for reviewing fault diagnosis,
prognosis, and health monitoring for MASs and SFF, the
following section reviews the available literature on fault
detection, isolation, and prognosis of a single agent.

B. FAULT DIAGNOSIS, PROGNOSIS, AND HEALTH
MONITORING
CBM and DPHM have evolved significantly as systems have
grown increasingly complex. Furthermore, a high degree of
robustness and reliability is also being demanded in various
science and technology fields. The following sub-sections
will examine the advances in the fields related to this research
over the past years.

1) CBM, TBM, AND RUL
The two types of maintenance planning are time-based
maintenance (TBM) and CBM. TBM is corrective mainte-
nance that is performed regularly. It is effective but cannot
adapt itself to the growing needs for safety. To address
this shortcoming, another maintenance method is employed
(CBM). Compared to TBM, CBM provides monitoring and
controlling of the system to prevent damages and protect
the design from the effects of failure [41]. The study [42]
compared CBM and TBM, and the difference in performance

between the two methods was noticeable, which is why CBM
has gotten more attention in recent years.

The remaining useful lifetime (RUL) prediction can
also be used to monitor the system’s condition. In terms
of practicality and feasibility, RUL prediction is more
attractive [43].

2) FAULT DETECTION AND ISOLATION
Fault Diagnosis consists of two parts: the first is attempting
to determine fault present in the system, which is called fault
detection, and the second is determining the cause of failure,
as well as its time and location, which is called fault isolation.
FDI has been significantly used as the early part of the DPHM
scheme over the last years [44], [45]. The four main types of
fault diagnosis [46] aremodel-based, data-driven, expert, and
hybrid fault diagnosis.
In model-based approaches, the mathematical system

model is formed in fault-free condition, and then the model
estimated states are comparedwith themeasured state.When-
ever a significant deviation is detected, it can be an alarm
for the presence of the fault. The use of model-based fault
detection methods was reviewed by Ekanayake et al. [47].
Themodel-based approaches can be categorized as stochastic
and deterministic methods. State estimate filters work-
ing based on the Bayesian framework are considered in
stochastic processes. Many applications have used KFs in
fault detection [48], and UKFs can also be used in fault
detection [49]. Rahimi et al. proposed a new hierarchical
FDI method for satellite attitude control systems utilizing
UKF and adaptive residual window size selection [46].
Adaptive UKF (AUKF) is used for fault estimation and
detection of some parts of satellite attitude control system,
reaction wheel (RW) and control moment gyros (CMG) to
determine the presence of abrupt and intermittent faults by
Rahimi et al. [50], [51]. The observer or parity relations
approach is used in deterministic methods. There is a review
of deterministic processes in [52]. In investigating fault
diagnosis for spacecraft components, Djebko et al. presented
a quantitative model-based approach by comparing house-
keeping data to data based on a mathematical model of the
system [53].

The mathematical model of the system may not always
be available due to the system’s complexity or lack of deep
understanding of it; in these conditions, the data-driven
approaches are more applicable. Regarding data-driven fault
diagnosis methods in space engineering, ElDali and Kumar
proposed a data-driven method based on growing neural
networks (GNN) and variable sequence Long and Short-
TermMemory (LSTM)model to improve the hyperparameter
optimization process for fault diagnosis and prognosis of var-
ious aerospace applications, including aircraft engines [41].
Furthermore, support vector machines (SVM) are frequently
employed in data-driven-based fault diagnosis. Farahani
and Rahimi developed an SVM-based FDI algorithm for
the satellite CMG [54]. The proposed optimized SVM
classifier could detect multiple in-phase faults in a CMG
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TABLE 4. Summary of satellite formation flying state estimation and control literature.

assembly. Ibrahim et al. proposed a fault diagnosis method to
determine failures affecting satellite subparts such as power
and communication systems [55]. They classified satellite
data using SVMs as faulty or nominal. Next, the data is
analyzed logically to determine the patterns of failure. A
Fault Tree Analysis has also been performed to correlate the
patterns identified with the events leading to the failure [55].
Suo et al. designed another SVM-based fault diagnosis
strategy by utilizing fuzzy Bayes risk for optimizing the
feature selection phase. The defined method enhances the
accuracy of classification performance, although it suffers
from a long processing time. The presented method is
tested on fault diagnoses of the satellite power systems as
the satellite power system is subject to 27 percent of all
failures [56]. Ganesan et al. proposed a fault detector for
satellite power system sensors using a convolutional neural
network (CNN) to categorize the data. Adding a revised

form of Stockwell transform to this method also significantly
improves the data processing procedure [57].

By incorporating unsupervised and supervised machine
learning techniques, a new method for fault detection has
been developed by Zhang et al. [58]. In the first stage, a fault
detection method is offered by applying linear discriminant
analysis (LDA) to collect historical data as healthy data and
satellite in-orbit data as faulty data and then discriminate
them from each other by finding the best projection vector.
In the next step, a standard model is defined using healthy
data and a defined projection vector. Finally, satellite in-orbit
faulty data can be detected by recognizing any significant
deviation from the normal data of the standard model. The
shortcomings of [58] are that LDA is sensitive to nonlinearity,
and nongaussian distributions can undermine its efficacy.

DL techniques are also used to propose two new fault
diagnosis strategies for satellite attitude control systems.
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The first method is designed by Luo et al. to link CNN and
LSTM to detect actuator bias fault and estimate its magnitude.
The results show that merging these two methods can lower
estimation error and chattering [59]. The second application
of DL is proposed by Xiao and Yin that is related to thruster
stuck-open and stuck-close fault diagnosis. The main novelty
of the mentioned method is the implementation by using
time-domain measurement and the output data of the attitude
controller, without access to the mathematical model of the
thruster and the satellite attitude control system [60].

However, a lack of historical data can lead to failure in
using a data-driven approach. Additionally, this method can
cause a heavy computation load. In [61], recent literature on
the data-driven and model-based incipient faults diagnosis is
reviewed. Furthermore, another study presents awell-covered
review on the model-based and data-driven methods by
focusing on improving the diagnosability of satellite control
systems [62].

A combination of expert methods and accurate system
knowledge can lead to an accurate fault detection process.
Despite its advantages, this method does not have a low cost
since it requires expert knowledge and manual checking [63].

In recent years, hybrid methods have been developed to
improve system reliability and performance; these methods
combine various fault diagnosis methods in a different order
according to the needs of a problem. In contrast to expert
systems, hybrid approaches do not require deep and accurate
expert knowledge of the system. Sobhani-Tehrani et al. [64]
presented a novel hybrid approach to detecting satellite RW
faults. They conducted this research using a mathematical
model and neural network approaches. A neural parameter
estimator (NPE) and two updated NPE structures that comply
with updated rules for decision logic and weighting of the
FDI under a single-parameter fault model were proposed in
this method [64]. In another study [65], Yuan et al. employed
a hybrid method by using adaptive KF (AKF) and parity
equations for FDI of gyroscope and sensor angle. The validity
of the proposed approach is proven by numerical simulations
of four-axis gyroscopes and star sensors. The study [66]
reviewed the fault diagnosis approaches and applications,
categorized between knowledge-based and hybrid/active
methods.

TABLE 5 summarizes the reviewed papers in this section
that deal with the fault diagnosis of the systems. The summary
in TABLE 5 includes the methods used in each paper and the
applications for each method to help categorize and use-cases
for different methods when it comes to fault diagnosis.

3) FAULT PROGNOSIS
Fault prognosis consists of methods to observe the system’s
condition by monitoring various parameters. After the
procedure is observed, a decision would bemade on replacing
or repairing faulty component(s) depending on the detected
fault behaviour. By estimating RUL, it is possible to track the
degradation of the systems as a result of the fault to predict
the best time for maintenance or employing a redundant

TABLE 5. Summary of fault diagnosis literature.

component or method. This prediction will reduce the cost
of maintenance significantly over time. Failure prognosis
approaches can be categorized into four groups:model-based,
data-driven, knowledge-based, and hybrid methods.

A model-based fault prognosis approach needs a mathe-
matical model of the system degradation caused by fault(s).
The historical or measurement data are used to determine
model parameters. So, if a precise failure model is avail-
able, it can help predict the system RUL. Estimation and
filtering techniques are the main methods for fault progno-
sis procedure; model-based approaches include state-space
algorithms. KF [67], EKF [68], ensemble Kalman filters [69],
UKF [70], PF [71], and observer-based methods [72]. The
Eyring model [73] and the Weibull distribution [74] are other
model-based approaches.

The space engineering field of study lacks enough
literature on fault prognosis. One available literature is a
model-based method proposed by Rahimi et al. that used
KFs and PFs to forecast the RUL of RWs onboard a satellite.
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This method uses the PF approach since it is the most widely
applied Bayesian method in the prognostics field and has
the advantage of being flexible enough to handle nonlinear
systems with non-Gaussian noise [75].

On the other hand, the lack of a suitable mathematical
model for the failure prediction is the leading cause of
following the data-driven approach. Data-driven approaches
utilize the sensor(s) measurements to learn the systems’
trend during the processing time. Data-driven prognosis
models can be classified into four methods: Regression-
based methods, Probabilistic-based methods, Markov-based
methods, and artificial intelligence methods. Probabilistic
prognostic models consider RUL and system states as random
variables. Thus, probability density distribution (PDF) is
considered to predict their statistical features [76].
Knowledge-based prognosis methods can be used if

the system designer completely understands the system
under study. Fault prognosis using Signal processing tech-
niques [77] and fuzzy logic methods have been reviewed
in [78], belonging to the Knowledge-based prognosis
category.

Another published study in the field of space engineering
is a two-step prognosis method based on LSTM proposed
by Islam and Rahimi. First, the system’s future state is
predicted by analyzing historical and current data. The
next step involves predicting the future behaviour of the
RW system, and parameters can indicate the degree of
degradation of the system (health index) and be used to
forecast the RUL [79]. The next study’s objective is to
forecast the RUL needed for reloading liquefied natural gas
tanks, which is crucial for ensuring the satellite plants’ health
and maintenance. Escobet et al. proposed two methods to
estimate the remaining time before supplying the plant tank.
One method is fuzzy inductive reasoning (FIR), a nonlinear
technique based on fuzzy inference. The second is a linear
process based on a double-aliasing filter. Unlike the second
approach, the FIR method always predicts the RUL in a
repetitively decreasing manner [80].

Combining at least two of the three main types of
fault prognosis techniques leads to hybrid approaches.
For example, a mixture of data-driven and model-based
approaches is investigated in [81]. In the mentioned
study [81], Baptista et al. used a measurement-based data-
driven method to train the data and a model-based filter
estimates RUL in the prediction phase. Another hybrid
prognosis strategy was proposed by Sun et al. [82].
A combination of unscented PF andmultiple kernel relevance
vector machine (MKRVM) was introduced to predict RUL
and the state of the health of the lithium-ion battery [82].
In [83], hybrid prognostic approaches for forecasting RUL
of engineered systems are reviewed.

The classification of reviewed literature in this section is
presented in TABLE 6. This table includes the methods used
in each paper and the applications for each method. As can
be seen from TABLE 6, there are not many fault prognosis
studies pertaining to the space systems or their actuators,

TABLE 6. Summary of fault prognosis literature.

even for monolithic satellites. The lack of such studies in the
field requires additional work on fault prognosis and failure
prediction, including determining the remaining useful life
for such systems in future work.

C. FAULT DIAGNOSIS AND PROGNOSIS METHODS FOR
MULTI-AGENT SYSTEMS AND SATELLITE FORMATION
FLYING
MASs are used in various fields in engineering, including
SFF. In recent decades, they have become increasingly
popular as they are more reliable and robust than centralized
systems. Practically, a fault is an unforeseen event that causes
a system’s performance and stability to be substantially
diminished. A fault in cooperative systems can be divided
into two types based on its effects: component faults, such as
faults that happen in actuators, sensors, and node controllers,
and topology faults, such as interaction graph edge faults [84].
Because communication links exist in cooperative systems,
a fault in one agent can spread throughout the entire system
and affect the entire system’s performance [85]. It is therefore
imperative to diagnose the faults as soon as possible. Hence,
numerous research works focused on designing a system to
detect the fault and prevent its propagation [86]–[88].

Beni and Shahriari-Kahkeshi investigated the problem of
actuator fault detection and estimation for the linear model
of a team of agents with elusive state variables [14]. The
designed controller works correctly in a fault-free system,
and the follower agents follow the leader output as expected.
However, the problem would arise if a fault appeared at the
jth actuator of the ith agent. It is crucial to detect the fault
and prevent it from spreading among agents, as there are
interconnected communication links between agents. Fault
in one agent actuator can interrupt the information flow
between that agent and its neighbours. As a result, it can
degrade the performance of the whole MAS or even lead
to mission failure. The network topology in this research
is undirected, and considered faults in this research work
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have abrupt characteristics. The proposed distributed fault
detection algorithm builds a fault estimator based on relative
information between agents and their neighbours to observe
every agent’s status and develop residual signals to detect
faults. A fault estimator is also proposed to determine the
strength and size of the detected defect. The proposed scheme
is constructed as an LMI problem, and its stability is assessed
based on the Lyapunov stability law. Finally, to confirm the
acceptable performance of the proposed scheme, simulations
are done for a topology consisting of four leader-follower
agents, which are DC motors with actuator bias fault. Thus,
the objective of this work is to design a distributed fault
detection and estimation scheme to detect and estimate the
actuator fault. This scheme provides information that can
be used to identify failure modes, reconfigure controllers,
and design fault-tolerant control systems. Compared to the
previous study [14], [89] is allocated to the distributed
fault estimation for the MASs problem but with a nonlinear
dynamics model. MASs based on agent cooperation and
coordination are capable of achieving complex goals. It is
not feasible or cost-effective to create observers for specific
agents most of the time. As a result, if the neighbours can
estimate the fault in those nodes, the entire system can
quickly and purposefully deal with it. These facts encouraged
Liu et al. to do study [89]. This study examines how an
observer designed for one agent could estimate both itself and
its neighbour’s faults.

The fault estimation methods used in other studies, such
as [90], have produced acceptable results for estimating
the faults in MASs. As a result of the proposed method
in the study [90], an observer constructed in one agent
using accessible output information can assess which of its
neighbours may be faulty and detect its fault. The main
novelty of the mentioned study is finding main agents and
developing observers for them. The proposed method might
be helpful when an agent cannot be detected or observed or
if the computation load and costs of the mission need to be
reduced. The system augmented model can be constructed
using the fault as an unknown input or a system state.
To calculate the gains of the observer, the systemLMIs should
be formulated.

Additionally, to improve the estimation, the region pole
constraint is applied. In [91], Shenquan et al. studied the
actuator fault estimation for a group of N agents using
an unknown real matrix to add uncertainties to the system
model. An estimation error is constructed by considering
the relative output information among agents. Based on this
error, a distributed observer is generated for fault estimation.
A set of adjustable parameters (AP) is chosen for each
agent observer to improve its performance. The gain of the
distributed observer is derived from a multi-constraint design
method utilizing the H∞ method with pole placement (PP).
The simulation of a network consisting of four aircraft and
one air vehicle with actuator faults has proven that this
approach is feasible. Similarly, in [92], Zhang et al. proposed
a novel AP-based distributed observer for MASs faults.

Liu et al. studied the design of a global observer for
fault detection of nonlinear MASs with time delay subjected
to actuator fault and external disturbances [93]. First,
an augmented system (for each agent, the state and fault
vectors are augmented in the state-space model of ith ith
agent) is obtained. A global MASs equation is derived by
calculating global vectors and using the Kronecker product
features. Next, a fault estimation observer is obtained by
considering information from a directed communication
graph. Finally, the observer gain is determined by the LMI
formulation. In addition, the proposed method’s performance
in both the entire frequency domain and the finite frequency
domain is discussed. It is essential to emphasize that in [93],
both external disturbances and actuator fault signals are
considered within infinite and finite frequency domains.
As faults occur in the limited frequency domain, it is helpful
to examine the problem of fault estimation in the restricted
frequency domain.

Gong et al. construct an adaptive observer for linear
dynamic models of MASs agents to detect the sensor faults
by using local output estimation errors derived from the
interaction between agents and their neighbours. It is assumed
that each agent’s state is unmeasurable, so the relative
states are not accessible for designing observers. Instead, the
output information is available by a sensor(s). Based on the
Lyapunov theory, fault detection errors converge dramatically
to a small adjustable region around the origin [94]. It is
more critical to address sensor faults in MASs rather than
component and actuator faults [95]. Since cooperation control
laws usually are constructed based on the local measurements
between an agent and its neighbour, the sensor malfunction
negatively impacts the whole agents’ network performance.

External disturbances inevitably disrupt the dynamics of
individual agents in MASs by lowering the performance
of fault estimation. Many researchers have focused on
analysis issues to reduce the impact of disturbances on
the fault estimation procedure. In order to improve MASs
performance, it is practical to mitigate disturbance effects by
using an unknown input observer technique, which separates
disturbances from system fault. Some references assumed
that disturbances could be partially decoupled because it
is difficult for an unknown input observer to decouple all
disturbances completely [96]. In [96], Gao et al. assessed a
distributed fault estimation using a time-varying model of
the MAS. The paper suggested method can decouple sensor
faults from disturbances partially. It defines an unknown input
observer for each agent to decouple disturbances as much
as can be achieved and reduce the effects of disturbances
that cannot be decoupled via relative information flow
between neighbouring agents. Calculation of the preferable
parameters of unknown input observers can be accomplished
through the recursive LMIs optimization method.

Shan et al. [97] developed a MAS with unknown
actuator faults based on a leader-follower structure. The
dimensional expansion method is employed to construct
the fault estimation observer for the linear model of a MAS.
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The dimension expansion strategy can integrate all agents in
a network into a unity system; it can be done using properties
of the Kronecker product. However, there is too much
data to observe when observing the entire MAS, making
the strategy of observation design more complicated. The
estimated state variables are not as accurate as those provided
by a single system. The spectral decomposition property of
symmetric matrices and coordinate changes allow a system
to be divided into several separate subcomponents. Spectral
decomposition is performed by using the Laplacian matrix
formed by a communication network between satellites to
generate independent observable components. Afterwards,
the spectral decomposition combines the observers of the
sub-components to create a fault estimation observer of the
entire system. Bai and Wang designed an observer [98]
that operates the FDI relying on local information flow
in the communication graph between each satellite and its
adjacent satellite, which is more feasible in extensive MASs.
Utilizing this method has the advantage of reducing the
number of observers needed and the computing load because
the suggested FDI algorithmwould only require designing N-
1 observers for a MAS with N agents to satisfy the algorithm
assumptions. Another advantage of using this algorithm is the
practically directed network topology containing a spanning
tree. Unlike most previous methods based on unknown input,
observers were applied to FDI for MASs with undirected
topology. Bai and Wang [99] expanded their research and
applied both additive and multiplicative classes of actuator
fault to the agents’ system model. It means some potential
types of actuator faults are considered to be investigated: loss-
of-effectiveness fault, bias fault, outage fault, and stuck fault.

In [100], Zou et al. used a distributed architecture to
analyze linear time-varying systems. Unlike other resources
that rely on relative state and output information since time-
varying systems are being analyzed, it may not be appropriate
to use relative information. An augmented model combines
local output measurements in the absence of absolute output
measurements. In [100], the diagnosis of a sensor fault
consists of two stages, namely the generation of residuals
and their interpretation. The residual-generation stage is an
optimization problem involving minimizing an indefinite
quadratic function. Iterative residual generation is designed
using the Krein space-Kalman filtering theory. A residual-
evaluation mechanism creates an evaluation function and
compares it to a threshold to detect faults. A plain yes/no logic
is applied to announce the presence of the fault. One of the
benefits of using the Krein space-Kalman state estimation in
the residual generation stage is reducing computation load.

To the authors’ knowledge, there has not been an
abundance of published literature on MAS fault prognosis.
A recently published paper used a neural network-based
method to predict MAS state in healthy conditions and then
detect and classify sensor faults. In order to detect a fault, the
measurement of the sensors is compared with the predicted
state of a healthy system, and the residual signal is generated.
A residual-triggered fault classifier is used to determine the

TABLE 7. Fault diagnosis and prognosis for multi-agent system and
satellite formation flying.

type of fault. This study considers zero-output, drift, and
deviation faults as different types of sensor faults. The main
contribution of this paper is to apply the backpropagation
method to predict the state of MASs where it is not possible
to access the communication information flow [101].

In recent years, FDI in SFF has been the subject of many
research studies. Nemati et al. present a distributed strategy
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for detecting, isolating, and estimating actuator(s) faults in a
team of satellites [84]. To find and monitor a fault in [84],
nonlinear observers are created; when the residual signal
surpasses a threshold, the presence of a defect in the system
is announced. The observer gains are obtained by the LMI
optimization method. After detecting the actuator(s) faults,
a set of nonlinear unknown input observers is designed
to isolate the faulty actuator(s) employing the generalized
observer scheme. The understudy paper addresses one of
the major shortcomings of the LMI method, namely its
insensitivity and conservativeness in determining nonlinear
observers. A Lipschitz formulation is applied to all designed
observers to solve this problem to make the LMI method
more practical without exposing an extra computation
burden. Additionally, the proposed method is robust against
uncertainties. The impact of uncertainties is reduced by using
the H∞ control strategy to do this robustness. The nonlinear
observers created in the mentioned research work can detect
its and its adjacent satellites’ fault.

An SFF illustrated with a directed interaction graph is
used in [102] to propose a novel fault estimation for a
nonlinear model of SFF systems with actuator fault. The
incipient faults that are small and develop gradually are
considered in this article. They can produce bias and disrupt
nominal actuator performance. The system fault is detected
by constructing a decentralized unknown input observer. The
motivation for this research is that most synchronization
control for SFF systems ignores actuator fault, resulting
in performance degradation. Although many SFF control
methodologies can resist the destructive impact of unknown
fault, they can only handle limited magnitude fault effects.
This drawback can be addressed by applying a suitable
control scheme to detect and isolate systems’ faults before
propagating in the whole SFF network. Comparing the
designed observer with those intended in references [84]
confirms that the decentralized unknown input observer
is constructed in the study [98] to estimate the unknown
actuator fault in each satellite following the leader. This
method does not require an adaptive fault estimation
scheme, and it may lessen the demanding process of online
computation.

The study in [103] shows the attitude control system (ACS)
is responsible for the majority of in-orbit satellite failures
compared to other satellites’ subsystems (32% of the total),
and gyroscopes failure is the most usual reason for these
failures (17%). Motivated by these statistics, Shakouri and
Assadian proposed an FDI scheme, using local measurements
between neighbour satellites such as relative position [104].
Thus, it is necessary to design the FDI algorithm to
determine the relative position vector between a satellite
and its neighbour. The first and second derivatives of the
position vector can be used to derive the relative velocity
and acceleration vectors. The output functions of satellite
gyroscopes are developed using the mentioned vectors.
An FDI process can be performed using the output function’s
behaviour. By comparing the output function to the threshold,

we can figure out the gyroscope fault amplitude, and after
fault detection, we can isolate the fault using the output
function characteristics. Among the main benefits of this
approach is that it is independent of the orbit or attitude of
the follower satellite. Additionally, the satellite already has
a relative distance measurement sensor, so it is unnecessary
to provide another sensor to the satellite to develop this
algorithm.

Based on unreliable real-time data due to disturbances and
actuator faults, Azizi and Khorasani designed a distributed
state estimation architecture for SFF. A logical method
is proposed for estimating the state of the entire satellite
topology based on a fault augmented linear model of a set of
sub-observers chosen by a supervisor [105]. It was applied
in a formation flight of five satellites and demonstrated
exceptional performance in managing environmental and
dynamical uncertainties.

TABLE 7 shows that many fault diagnosis strategies are
designed for agents with undirected topology, which may not
be the most practical approach for real-life applications.

In the next section, some of the insights from the reviewed
literature in this paper are collected and organized to provide
readers with further directions for the existing gap in this
field.

VI. FUTURE WORK
A primary objective of DPHM for SFF is to increase mission
reliability and safety by implementing cross-cutting tech-
nologies for improving future Earth and space observation.
Some potential research directions for future studies can be
listed as follows.

1) Extending available fault diagnosis and prognosis
methods: Various fault diagnosis and prognosis strate-
gies are suggested to maintain a single satellite in
orbit, such as study [55] working on fault detection
of satellites’ communication systems. They could be
expanded and adapted to be used by a group of satellites
that work together cooperatively to take advantage of
using smaller satellites in constellations instead of a
heavier single satellite.

2) Applying MASs fault detection methods to SFF: In this
paper, various types of fault detection and estimation
methods for MASs are discussed, such as [92] that can
be applied to small satellites in the constellation as
agents, by consideration of each satellite’s formation
variables in the MASs control law [13].

3) SFF fault prognosis: There are few works on the
fault prognosis of single satellite systems [75]. So,
as expected, there is a lack of research on MASs and
SFF fault prognosis that should be noted in the future.

4) Adaptivity and robustness of estimationmethods:Many
issues remain with implementing nonlinear filters that
ensure adaptivity, robustness, and minimal estimation
error covariance [75]. With increasing knowledge of
nonlinear filtering techniques and technology to cope
with the computational demands of these algorithms,
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better estimations and posterior distributions should
be possible. Additionally, complex nonlinear dynamic
models may have high dimensionality and simultane-
ously estimate both parameters and states.

5) Improving the existing methods to be more feasible:As
shown in TABLE 7, many fault diagnosis strategies are
designed for agents with undirected topology. To be
more practical, these works can be extended for use
in SFF with a directed communication graph and
more communication limitations, such as unmodeled
dynamics, packet loss, and time delays [39]. Besides,
several fault diagnosis methods are applied to time-
invariant or static topologies. It seems more realistic to
apply it to a dynamic or time-varying communication
graph [58]. In addition, additive faults are usually
considered in the systems in the reviewed literature.
It can be extended to include both additive and
multiplicative fault. Also, various fault types should be
considered [99].

6) Improving decoupling methods: SFF should be able to
address the shortcoming of comprehensive decoupling
(not only partially) of environmental disturbances from
fault estimation errors [96].

7) Enhancing the rate of fault diagnosis: The rate of fault
diagnosis is also an essential factor for future fault
diagnosis strategies [88].

8) Using a stochastic estimation method: Many fault
diagnosis strategies are designed using the deter-
ministic method. It means they ignore the effect of
systematic and environmental uncertainties on the
model behaviour. So that, the result is not feasible.
Instead, these research works can consider the uncer-
tainties and use a stochastic estimation method [89].

9) Employing a hybrid method: The problem of fault
diagnosis and prognosis of SFF is complex and
challenging. Using a hybrid method can help the
designer find the best solution to minimize the cost
function without reducing accuracy [83].

VII. CONCLUSION
This paper provides an overview of the latest research and
development on fault diagnosis and prognosis schemes for
a single agent and a team of agents working together,
emphasizing on small satellites in constellation. Moreover,
some key concepts related to diagnostic and prognostic
approaches are also described. This review identifies and
categorizes the literature on various schemes, including
model-based, data-driven, knowledge-based, and hybrid.
However, as a result of this review paper, we can conclude that
satellite formation flying fault diagnosis and prognosis have
many challenges and shortcomings that need to be addressed
in future.

Some of these challenges are listed in the following section
to provide future directions for the research and researchers
working in this field.
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