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ABSTRACT This paper presents a comprehensive treatment of the complex motion control systems in
the Sliding Mode Control (SMC) framework. The single and multi degrees of freedom (DOF) plants and
applications to haptics and functionally related systems are discussed. The proposed algorithms are based
on the application of the equivalent control observer and the convergence term that guaranty stability of
the closed loop in a Lyapunov sense and enforces the sliding mode on selected manifolds. Presented SMC
design leads to a solution that easily could be modified to include majority of the algorithms presented in
the literature.

INDEX TERMS Sliding mode, motion control systems, robot control, motion observers, actuators.

I. INTRODUCTION
The Sliding Mode Control (SMC) is still attracting a signifi-
cant interest among application engineers and researchers due
to the simplicity of design and implementation. The analysis
and design of the systems with sliding modes are well pre-
sented in several books [1]–[4]. The status overview, survey
and tutorial papers [5], [6] have been published covering
many aspects of the theory. Among these works, [6] stands
aside as an attempt, to give a comprehensive guide for engi-
neers on the design solutions for real-life engineering appli-
cations in which authors discuss some analytical problems
present in a sliding mode application along with methods to
eliminate chattering. In the discrete-time implementation, the
sliding mode motion appears for a continuous (in a sense of
the discrete-time systems) control input [7], [8]. Applications
of the so-called higher order slidingmodes [3], [9], the sliding
mode observers [10] in the realization of the sliding mode
control are attracting attention. Uses of SMC for networked
control systems are discussed in [11].

The application of the sliding modes to mechanical sys-
tems has a long history. Early attempts sought the direct
application of discontinuous control to motion systems with
force as control input [12], [13]. This led to claims of the
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chattering phenomena and numerous attempts to alleviate the
effects of chattering induced by switching control input [1],
[4], [6], [14]. The direct application of the SMC to motion
control systems with force (torque) as a control input is still
very popular despite the fact that discontinuous control causes
chattering. Discrete time implementation of SMC control
does not require discontinuous control [7] but it requires
calculation of the equivalent control.

In this paper the aim is to present a SMC based design
procedure in motion control tasks, which leads to a con-
troller that could be easily applied and would guaranty the
behavior expected from a robust control with sliding modes.
The focus is on (i) the implementable design solutions for
motion control tasks that could be easily applied for linear as
well as nonlinear systems affine in control, (ii) discussion of
the generic algorithms while avoiding presentation of many
solutions that in essence do not have very significant dif-
ferences, (iii) show implementation of proposed algorithms
to common motion control problems – trajectory tracking,
force control, real-world haptic systems, the haptics motion
reconstruction, parallel position/force control tasks, to name
some. The details are kept to the minimum but still provided
to the level that would make easier to follow the design. The
interested or novice control engineer is directed to [1]–[4]
for the fundamentals of sliding mode control theory and
application.
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In this paper, we present a control design methodology that
eliminates the need for equivalent control calculation, and
thus full information on state, disturbances and plant parame-
ters, or the need for high amplitude of the convergence control
term (which is discontinuous in conventional SMC) by apply-
ing equivalent control observer. Therefore, a control designer
needs to select only the convergence term that guaranties
stability of the closed loop. The parameters of this term define
the convergence in the closed loop. Therefore, the presented
approach is simple for application and tuning. Moreover, it is
shown that design approach from this paper is applicable to
most of the algorithms presented in the literature.

This paper is organized as follows. In Section 2, prelim-
inaries about sliding modes, control input selection along
with the models for different tasks of multi-body systems in
configuration and operational space are discussed. Section 3
presents the design of sliding mode controller for different
problems in motion control including new formulation of
hybrid position-force control. Possible applications are dis-
cussed in Section 4. Section 5 concludes the paper.

II. PRELIMINARIES
In most modern discussions on the motion control sys-
tems, the actuators with their power supply are treated as
a force source so the design of the motion controller takes
forces as input and mechanism position (or some func-
tion of) as output. The numerous issues – control prob-
lems – are discussed within motion control. These problems
include position, force and parallel position/force control in
robotics [15]–[18], the control of systems that need to estab-
lish a certain way of cooperation [19], real-world haptics [20]
and the reconstruction of the haptics motion on only master
or slave system [21] are some that are mostly discussed in the
literature. In this section the properties and design of the con-
trol systems with sliding modes along with the mathematical
models used in the motion control tasks will be discussed in
some details. The aim is to set a background results for the
more detailed discussion of the sliding application in motion
control systems.

A. SLIDING MODES IN DYNAMIC SYSTEMS
The main ideas of the control enforcing the sliding mode
motion will be shown for systems described by

Mẋ = f (x)+ Bu+ h (x,t) (1)

where M ∈ <
n×n is a full rank positive definite matrix;

x ∈ <n×1 is the state vector; B ∈ <n×m is the full column
rank matrix; u ∈ <m×1 is the control input vector; f (x) ∈
<
n×1 is a vector function; h (x,t) ∈ <n×1 is the exogenous

disturbance. All parameters, variables, and disturbances are
assumed bounded with known upper bounds consistent with
operational requirements. If the vector f (x) ∈ <n×1 could
be expressed as a linear function f (x) = Ax then system
describes a linear dynamics with pair (A,B) assumed con-
trollable. As will be shown later in this section the velocity

dynamics in motion control systems could be expressed in a
similar way as in (1).

In the sliding mode approach, the control input should be
selected to constrain the system’s motion in the manifold
σ (x) = 0 ∈ <m×1. The components of the vector σ (x) are
assumed continuous with G = [∂σ/∂x] ∈ <m×n a full row
rank matrix.

It is said that system (1) exhibits the slidingmodemotion in
manifold σ (x) = 0 if (i) manifold is reached in a finite time
t = t0, and (ii) if for t ≥ t0 the system state is constrained to
the manifold.

The projection of the system dynamics into the sliding
mode manifold is described by σ̇ =

(
GM−1B

) (
u− ueq

)
; det

(
GM−1B

)
6= 0

ueq = −
(
GM−1B

)−1
GM−1 (f (x)+ h (x, t))

(2)

The ueq (x, t) stands for so-called equivalent control [3],
[4] which enforces zero rate of change of the sliding mode
function σ̇ (u = ueq) = 0. For the manifold consistent initial
conditions, σ (x (0)) = 0, the equivalent control (2) applied
to the system (1) enforces the (n − m) order sliding mode
dynamics

ẋ =M−1P (f (x)+ h (x, t)) ; σ (x) = 0;

P =
[
I− B

(
GM−1B

)−1
GM−1

] (3)

The sliding mode projection operator P satisfies two
very important relationships PB = 0 and GM−1P = 0.
In the sliding mode the system is free to move in the
tangential plane of the manifold σ (x) = 0. Note that if
the dimensions of the vector x and u are the same,i.e.,
dim (x) = dim (u), then motion in sliding mode is described
by σ (x) = 0. If system dynamics and the disturbance satisfy
(f (x)+ h (x, t)) = ζ (x, t) + Bη then dynamics (3) reduces
to ẋ =M−1Pζ (x, t) ; σ (x) = 0. The motion in sliding mode
does not depend on the vector η.

B. CONTROL INPUT SELECTION
The control input should be designed to enforce (i) the finite
time convergence to and (ii) the stability of the motion in
sliding manifold. The specific structure of the control action
is not part of the specification. If u = ueq is applied as
the control input then motion is constrained to a manifold
in which σ is constant, σ = const , thus the additional
component should be added to ensure the convergence to and
stability of the sliding mode manifold. Let control enforcing
sliding mode in manifold is selected as

u = ueq − ρ�−19 (σ ) (4)

where � =
(
GM−1B

)
. The control (4) would enforce

sliding mode in manifold if the vector valued function
9 (σ ) is selected so the derivative V̇

∣∣
σ 6=0 = σTσ̇ of

the Lyapunov function candidate V = 0.5σTσ , satisfies
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V̇
∣∣
σ 6=0 = σ

Tσ̇ = −ρσT9 (σ ) < 0. Then for σ 6= 0 the
dynamics of sliding mode function becomes

σT (σ̇ + ρ9 (σ )) = 0 (5)

In sliding mode V̇
∣∣
σ=0 = 0 and u = ueq so the term

ρ�−19 (σ ) should not contribute to motion in manifold.
If this term is discontinuous then in manifold σ = 0 its
average value must be zero – thus switching will occur. These
conditions do not specify if control is continuous or discontin-
uous nor the nature of the convergence process. In continuous
time design, the finite time convergence to the manifold
could be achieved if the control is either discontinuous or is
continuous non-Lipschitz function [1]–[4]. In discrete time
design the sliding mode could be achieved with continuous
control input [4], [7], [8]. A variety of algorithms could be
generated by using different methods for equivalent control
estimation and/or for different selection of the convergence
term. Our goal is not listing many of them here, but rather to
show generic structures that are easy to implement.

The need for the equivalent control calculation, and thus
full information on state, disturbances and plant parameters,
could be avoided by estimation of the equivalent control from
dynamics (2). If pair (u, σ ) is measured and the change of
the equivalent control is slow in comparison with observer
dynamics, the equivalent control could be estimated by

ξ̇ = −Lξ + L
(
u+ L�−1σ

)
ξ = ûeq + L�−1σ

}
⇒ ˙̂ueq+Lûeq = Lueq (6)

Here ξ is an auxiliary variable, diag (L) = lii > 0 is a
design parameter. Insertion of the estimated equivalent con-
trol into (4) the control input becomes

u = ûeq − ρ�−19 (σ ) , � = GM−1B (7)

If (7) is applied as the control input by selecting observer
gain L such that the dynamic separation conditions met for
the augmented system (2), (6), the stability of the solution
σ (x) = 0 is guaranteed and the sliding mode dynamics is
then described as in (3).

Before starting the discussion on the sliding modes in
motion control let us first look at dynamics of the systems
and the tasks.

C. MODELS
1) CONFIGURATION SPACE
dynamics of a rigid fully actuated multi-body n-DOF system
is given by [4]

A (q) q̈+ b (q, q̇)+ g (q)+ τ ext = τ . (8)

Here q stands for the system configuration vector; A (q) is
a positive definite matrix; b (q, q̇) stands for Coriolis forces,
viscous friction and centripetal forces; g (q) stands for gravity
terms; τ ∈ <nx1 stands for generalized joint forces and
τ ext stands for the external forces projection to configuration
space. The system variables and parameters are bounded with

known lower and upper bounds consistent with the opera-
tional domainD0. ExpressingA (q) = An (q)+1A (q), with
a nominal value An (q) and a bounded uncertainty 1A (q),
model (8) could be rewritten as{

q̈ = A−1n
(
τ − τ dis

)
τ dis = b (q, q̇)+ g (q)+1A (q) q̈+ τ ext

(9)

2) THE PROJECTION
ϕ̈ (q) = 8qq̈ + 8̇qq̇ of the dynamics (8) to constraint
manifold ϕ (q) = 0 ∈ <p×1, p < n, can be written

ϕ̈ =M−1ϕ
(
fϕ − fdisϕ

)
;M−1ϕ =

(
8qA−1n 8T

q

)
fdisx = 8qA−1n τ dis −8qA−1n 0T

ϕτ 0 −Mϕ8̇qq̇

τ = 8T
q fϕ + 0

T
ϕτ 0.

(10)

Here 8q =
(
∂ϕ
/
∂q
)
is constraint Jacobian, fϕ, fdisϕ are

constraint space control and disturbance force respectively,
τ dis is given in (9), τ ext = 8T

qλ is the projection of interaction
force λ into configuration space. Due to the redundancy of the
constraint p < n mapping the constraint control fϕ and τ 0 ∈
<
n×1 - the arbitrary configuration space generalized force -

into the configuration space is given by τ = 8T
q fϕ + 0

T
ϕτ 0.

Selection of matrix 0T
ϕ will be discussed later in the text.

3) THE DYNAMICS OF A REDUNDANT TASK
x (q) ∈ <m×1, m < n, governed by ẍ = Jq̈ + J̇q̇ with
Jacobian J = (∂x/∂q) can be, for system (8), expressed as

ẍ =M−1n
(
fx − fdisx

)
; M−1n =

(
JA−1n JT

)
fdisx =MnJA−1n τ dis −MnJA−1n 0T

x τ 0 −MnJ̇q̇

τ = JTfx + 0T
x τ 0

(11)

with the operational space control force fx , disturbance fdisx ,
respectively. The disturbance τ dis is given in (9). Mapping
operational space control force to configuration space is given
by τ = JTfx+0T

x τ 0 where τ 0 ∈ <
n×1 is an arbitrary config-

uration space force vector. Selection of matrix 0T
x would be

discussed later.

4) THE FORCE DUE TO INTERACTION
with environment at ϕe (x) = 0 ∈ <r×1, r < m < n
in operational space is often modeled as a spring-damper
λ (x) = Deėϕ + Keeϕ system with parameters De,Ke > 0
and eϕ = ϕ (x)− ϕe (x). The motion in the normal direction
to surface ϕe (x) = 0 would result in interaction force λ
while the system is free to move in the tangential plane. The
dynamics of the interaction force modeled as spring-damper,
could be expressed as

λ̇
∗
(x) =M−1λ

(
fλ − fdisλ

)
;M−1λ =

(
8xM−1n 8T

x

)
fdisλ =Mλ8xM−1n fdisx +Mλ(ϕ̈e −8xM−1n 0T

λxfxo

− D−1e Keėϕ − 8̇x ẋ)

fx = 8T
x fλ + 0

T
λxfxo

(12)

VOLUME 10, 2022 26605



A. Šabanović, T. Uzunović: Observer-Based Design of Motion Control Systems in SMC Framework

Here λ̇
∗
= D−1e λ̇ (x) is scaled interaction force; 8x =

(∂ϕ/∂x) is the constraint Jacobian; fλ, fdisλ are control and
disturbance forces in constraint space, respectively; and fdisx
is given in (11). Mapping of the constraint control forces into
the operational space is given by fx = 8T

x fλ + 0
T
λxfxo, where

fxo is an arbitrary operational space force.
A specific situation appears if a set of systems needs to

establish some functional relationship. As example let two
single DOF systems are required to maintain relationship
defined by a vector valued function ξT (q1, q2) = [ξ1 ξ2] and
that equation ξ (q1, q2) = 0 has unique solution for q1&q2.
The dynamics ξ̈ = 9q̈ + 9̇q̇, 9 = ∂ξ/∂q could be written
as

ξ̈ = 9A−1n 9T
(
τ ξ − τ

dis
ξ

)
;An = diag (an1, an2)

τ disξ =
(
9A−1n 9T

)−1
9A−1n τ dis1,2 −

(
9A−1n 9T

)−1
9̇q̇

τ ξ =
[
τξ1 τξ2

]
, τ dis1,2 =

[
τ dis1 τ dis2

]
(13)

Models (9)-(13) stand for different projections of the
dynamics (8) and all are presented as structure Rz =

�
(
f− fdis

)
where � is a full rank matrix of appropriate

dimension, fdis stands for generalized matched disturbance,
and f is the control force. If the control tasks could be defined
in a suitable way, structurally the same controller could be
applied to all problems. Note here that generalized distur-
bance for systems (9)-(13) could be estimated as an unknown
input by applying simple disturbance observer [22].

Models (9), (10), (11) and (13) could be written in the form

z̈ = �z
(
fz − fdisz

)
⇓

ż = vz
v̇z = �z

(
fz − fdisz

)


z = q or ϕ or x or ξ
fz = τ or fϕ or fx or fξ

fdisz = τ
dis or fdisϕ or fdisx or fdisξ

�z = A−1ϕ or M−1ϕ or M−1n or M−1ξ
(14)

where dim (z) = dim (fz) and�z is a square full rank matrix.
The force dynamics λ̇

∗
= �λ

(
fλ − fdisλ

)
is already in the

same form as the v̇z = �z
(
fz − fdisz

)
.

D. FORMULATION OF CONTROL TASKS
Themotion control issues are related to the problems of track-
ing desired trajectory and modifying motion to obtain desired
interaction with environment. In literature, these issues are
usually treated as separate [12], [13], [15], [16] but in real,
to obtain natural human-like behavior the motion without
interaction and motion in contact with environment should
be combined and a seamless transition between the two is
needed [21].

From dynamics (14) the tracking error ez = z− zref would
converge to zero if vz = żref −Cez and control is designed to
enforce sliding mode on manifold σ z = ėz + Cez = 0. Here
C is a square full rank positive definite (usually a diagonal)
matrix.

When enforcement of sliding mode in selected manifold is
performed, then in sliding mode dynamics σ z = ėz+Cez = 0

governs the control error and asymptotic convergence is guar-
anteed. If sliding mode is established for σ z = η 6= 0 then
tracking error converges to ez→ C−1η. This is an interesting
feature that allows modification of the system behavior in
sliding mode. As an example tracking of interaction force
λ = Deėϕ + Keeϕ with eϕ = ϕ − ϕe, position of obstacle ϕe
and reference force λref yields dynamics ėϕ + D−1e Keeϕ =
D−1e λref thus the environment tracking error depend on the
force reference.

As discussed above the sliding mode manifold for trajec-
tory tracking could be formulated as (m ≤ n)

Sz=
{
q, q̇ ∈ <n : σ z = ėz + Cez = 0, σ z ∈ <m×1

}
(15)

The sliding mode manifold for force control could be
defined as (p ≤ m ≤ n)

Sλ=
{
q, q̇ ∈ <n : σ λ = λ− λref = 0, σ λ ∈ <p×1

}
(16)

These formulations could be applied for redundant as well
as non-redundant tasks. Motion in manifold (15) or (16)
guarantees tracking of the position or force but still does
not secure the interaction between the two modes of motion.
Establishing a functional relationship between motion and
force control tasks to mimic a natural human-like motion
in which the motion along desired trajectory is modified
when controlled system interacts with obstacle requires the
selection of the sliding mode function as a function of both
motion and interaction force tracking, as in

Szλ=
{
q, q̇ ∈ <n : σ z +Hλ = 0, σ z ∈ <m,λ ∈ <p

}
(17)

where matrix H defines the distribution of the interaction
force to the components of the generalized error - a mapping
between the force and generalized error spaces. Implementa-
tion of the control enforcing sliding mode in manifold (17)
yields σ z = −Hλ. It results in a pure trajectory tracking if
λ = 0. If λ 6= 0 then tracking, in the axes determined by the
projection matrix H, will be modified and balance between
the tracking error ez and the interaction force λ will be
established. In order to maintain desired interaction force the
trajectory tracking sliding mode functions should be bounded
to satisfy the relationship σ ∗z = −Hλ

ref . The control task
specification as in (17) includes both, the trajectory tracking
and the force control and could be treated as general motion
control task formulation.

III. CONTROL SYSTEM DESIGN
The dynamics of sliding mode function (15), (16) and (17)
for generalized plant dynamics (14) can be expressed as

σ̇ = �
(
f− feq

)
(18)

where σ = σ z or σ λ or σ zλ stands sliding mode function
defined in (15), (16) or (17); feq stands for a continuous vector
valued function – so-called equivalent control. The control
input f = fz and control distribution matrix � = �z are
defined as in (14).
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As shown in Section 2 control input f = feq− ρ�−19 (σ )
with properly selected vector valued function 9 (σ ) would
enforce sliding mode in manifold σ = 0. For σ 6= 0 the
dynamics of sliding mode function becomes

σ̇ + ρ9 (σ ) = 0 (19)

If pair (σ , f ) is measured, use of the observer (6) allows
estimation of f̂eq and control input implementation as

f = f̂eq − ρ�−19 (σ ) (20)

Control (20) yields the dynamics of sliding mode function
σ̇ + ρ9 (σ ) = �−1

(
f̂eq − feq

)
and consequently, with

proper separation of the observer and sliding mode function
dynamics the f̂eq → feq and the sliding mode is enforced in
manifold σ = 0.

The selection of the convergence term is a design parameter
and could be discontinuous or continuous. Some of exam-
ples of the implementation of algorithm (20) that enforces
sliding mode in manifold σ = 0 are shown below but many
more could be derived taking 9 (σ ) as discontinuous or non-
Lipschitz function:
• f = −Msign (σ ) ,M > 0 and f = −Mσ/‖σ‖ are
often used in early works on robotic control with sliding
modes. It may cause chattering and is not recommended
in the motion control systems;

• f = sat
(
f̂eq − ρ�−1σ − ρ1�−1sign (σ )

)
- a combi-

nation of estimation of equivalent control and discon-
tinuity term. Selection of small ρ1 > 0 may minimize
chattering;

• Selection of 9 (σ ) as non-Lipchitz function, for exam-
ple f = sat

(
f̂eq −ρ�−1 ‖σ‖η sign (σ )

)
, 0 < η <

1 - would lead to finite time convergence [3]. Selection
of small η may cause chattering;

• control f = sat
(
f̂eq − ρ�−1σ

)
in continuous time

would guaranty asymptotic convergence and strictly
speaking it would not enforce sliding mode motion.
In the discrete-time, with sampling interval T , appli-
cation of f (k + 1) = sat

(
f̂eq (k)− ρ�−1 (k) σ (k)

)
yields sliding mode function dynamics σ (k + 1) =
(I − Tρ) σ (k) and sliding mode could be
attained [4], [7], [8].

A variety of algorithms could be generated by using differ-
ent methods for equivalent control estimation or for different
selection of the convergence term. Our goal is not listing
many of them here, but rather to show generic structures that
are easy to implement. The solutions which include the equiv-
alent control observer are in general easier for application
because: (i) the observer design uses only the control error,
does not require all system parameters and nonlinear terms
(as shown in equation (6); (ii) the convergence term in the
control input is tuned for a system in which estimated equiv-
alent control essentially compensates the disturbances thus
the tuning is made for the nominal system σ̇ = −ρ9 (σ );
(iii) the chattering in ideal case is fully eliminated due to

the fact that convergence term is zero when motion reaches
sliding mode manifold (as follows from σ̇ = −ρ9 (σ ) and
for σ = 0 ⇒ σ̇ = 0 ⇒ ρ9 (σ ) = 0 as shown in
the stability analysis. In real systems, the chattering depends
on the measurement noise propagation in control error and
in equivalent control estimation channels (usually observer
possesses the low pass filter features so noise is reduced).

IV. APPLICATIONS
In this section the application of algorithm (20) for different
tasks in the configuration and operation space will be dis-
cussed. The presentation will be concentrated in selection of
the sliding mode manifold, the determination of the structure
of feq and the derivation of the system dynamics with sliding
mode in selectedmanifold. For redundant tasks the configura-
tion space control force will be expressed as τ = 3Tf+0Tτ 0
with 3 being the appropriate Jacobian matrix. The structure
of the matrix 0 will be determined in each of the tasks.

A. CONFIGURATION SPACE CONTROL
1) THE CONFIGURATION SPACE TRAJECTORY TRACKING
error eq = q − qref , where qref is a reference, will converge
to zero if system (9) is forced to exhibit sliding mode motion
in manifold σ q = ėq + Cqeq = 0, σ q ∈ <n×1. Cq ∈ <

n×n is
positive definite full rank matrix (usually selected diagonal).
The configuration space dynamics (9) yields the dynamics of
the sliding mode function σ q as σ̇ q = A−1n

(
τ − τ eq

)
τ eq = τ dis + An

(
q̈ref − Cqėq

) (21)

where τ eq stands for equivalent control, τ dis is defined in (9).
Insertion τ = τ̂

eq
− ρAn9

(
σ q
)
, into configuration space

dynamics (8) yields the closed loop sliding mode dynamics
σ̇ q + ρ9

(
σ q
)
= A−1n

(
τ̂
eq
− τ eq

)
. The equivalent control

could be estimated by an observer as in (6). Consequently
if τ̂ eq → τ eq then sliding mode closed loop dynamics is
governed by ėq + Cqeq = 0 and eq→ 0.

2) THE CONFIGURATION SPACE STATE CONSTRAINT
ϕ (q) = 0 ∈ <p×1, p < n, with 8q = (∂ϕ/∂q) ∈ <p×n

as a full row rank constraint Jacobian, could be maintained
by input force if sliding mode is enforced on sliding mode
manifold σ ϕ = ϕ̇+Cϕϕ = 0 ∈ <p×1 where Cϕ ∈ <p×p is a
full rank matrix. The dynamics of sliding mode function with
constraint dynamics as in (10) becomes{

σ̇ ϕ =M−1ϕ
(
fϕ − feqϕ

)
feqϕ = fdisϕ −MϕCϕϕ̇

(22)

fdisϕ and Mϕ are defined in (10) and τ 0 ∈ <n×1 is arbitrary
force vector in configuration space. Control fϕ = f̂eqϕ −
ρMϕ9

(
σ ϕ
)
enforces sliding mode motion in manifold σ ϕ =

0 and from ϕ̇ + Cϕϕ = 0 the convergence ϕ (q) → 0
is guaranteed. Insertion τ = 8T

q f
eq
ϕ + 0

T
ϕτ 0 into (8) yields
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system dynamics in sliding mode as
0ϕ (q) q̈+ A−1n 0T

ϕτ
dis
= A−1n 0T

ϕτ 0

σ ϕ (q) = 8qq̇+ Cϕϕ (q) = 0

0ϕ = I− A−1n 8T
q

(
8qA−1n 8T

q

)−1
8q

(23)

where τ 0 is an arbitrary configuration space force vector.
Projection matrix 0ϕ satisfies 8q0ϕ = 0 and 0ϕA−1n 8T

q =

0. The 8#
q = A−1n 8T

q

(
8qA−1n 8T

q

)−1
is the generalized

pseudo-inverse of constraint Jacobian and matrix 0ϕ = I −
8#
q8q is its null-space projection matrix. In sliding mode on

manifold σ ϕ (q) = 0motion described by (23) is constrained
the null-space of constraint Jacobian and is dynamically
decoupled from the motion in constrained direction. The (23)
reflects the configuration space dynamics not observable at
the measured output - constraint - and could be used to
enhance system performance, control a separate task or the
posture of the system.

B. OPERATIONAL SPACE CONTROL
1) TASK CONTROL
task x (q) ∈ <m×1 tracking its xref reference could be
formulated as enforcement of sliding mode in manifold σ x =
ėx + Cxex = 0, Cx > 0, ex = x − xref . With task dynamics
as in (11) the dynamics of sliding mode function can be
expressed as σ̇ x =M−1n

(
fx − feqx

)
;M−1n =

(
JA−1n JT

)
feqx = fdisx +Mn

(
ẍref − Cx ėx

) (24)

where the disturbance fdisx is expressed as in (11). Control
fx = f̂eqx − ρMn9 (σ x) would enforce sliding mode in
manifold σ x = 0with reaching dynamics σ̇ x+ρ9 (σ x) = 0.
The task control force mapping into configuration space is
given by τ = JTfx + 0T

x τ 0, where τ 0 is an arbitrary config-
uration space force vector. Insertion into configuration space
dynamics (8) yields the sliding mode equations of motion

0x q̈+ A−1n 0T
x τ

dis
= A−1n 0T

x τ 0

σ x

(
x, xref

)
= 0

0x =

(
I− A−1n JT

(
JA−1n JT

)−1
J
) (25)

The structure is the same as in the constraint control – motion
is constrained to sliding mode manifold and 0x satisfies
J0x = 0 and JA−1n 0T

x = 0. Motion in manifold σ x = 0
allows the usage of the (n− m) degrees to enforce some other
task or relationship in null-space of the task Jacobian. This
shows the similarities between task and constraint and could
be effectively used for the decoupling of the task and posture
control.

2) FORCE CONTROL
The dynamics of the operational space force error σ λ =
λ (x) − λref , with force reference λref and λ (x) ∈ <r×1

measured force with dynamics as in (12) can be expressed
as {

σ̇ ∗λ = D−1e σ̇ λ =M−1λ
(
fλ − feqλ

)
feqλ = fdisλ + D

−1
e Mλλ̇

ref (26)

Here fλ ∈ <r×1 is control force, 8λ ∈ <r×m is constraint
Jacobian in operation space, fdisλ ∈ <

m×1, Mλ ∈ <
m×m

and spring-damper model of the force are as in (12). The
dynamics (26) has the same structure as constraint (22) or
task (24) dynamics thus the structure of control could be the
same. Control fλ = feqλ − ρMλ9 (σ λ) enforces sliding mode
in manifold σ λ = 0. Insertion fx = 8T

λf
eq
λ + 0

T
λf0, where

f0 ∈ <m×1 is an arbitrary operational space force, into task
dynamics (11) yields sliding mode dynamics in operational
space
0λẍ+M−1λ 0T

λf
dis
x =M−1λ 0T

λf0 & σ λ

(
λ,λref

)
= 0

0λ =

(
I−M−1λ 8T

λ

(
8λM−1λ 8T

λ

)−1
8λ

) (27)

where fdisx is expressed as in (11). Dynamics (27) describes the
(m− r) dimensional operation space dynamics constrained
to the tangential plane in the interaction point. It is easy to
verify that its projection in the force direction is equal to zero.
This shows the relationship between force and task control –
the axes not involved in the force control could be used to
generate motion. In the proposed solution the information on
the constraint Jacobian is needed and it is applicable when
system is in interaction with environment.

C. HYBRID POSITION-FORCE CONTROL
In interaction with environment motion should be modified
and should excerpt desired force on the obstacle while mov-
ing in the tangential plane at the point of interaction. Such a
situation is treated in well established hybrid position-force
control framework in which operational space is partitioned
onto the direction of the free motion and the direction of
constraint in which the force will be controlled. In such a way
the position and force control are analyzed independently to
take advantage of well-known control techniques for each and
are combined at level of the configuration force [16], [20].
The hybrid position-force control is applicable when system
is in interaction with environment.

Let operation space position vector x ∈ <m×1 is portioned
onto the xx = Sx ∈ <m×1 in the direction of the free motion
and xf = S⊥x ∈ <m×1 in the direction of constraint. Here
S ∈ <m×m is diagonal matrix with ones in every direction
in which position is controlled and zeroes in directions force
is controlled and S⊥ = I − S. Let interaction is modeled
as a spring-damper yielding D−1e λ = ėλ + D−1e Keeλ with
parameters De,Ke > 0 and eλ = xf − xef , x

e
f is position of

obstacle. With such a partition, the sliding mode function and
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force dynamics could be represented as

σ x = Sσ
σ f=S⊥σ
λ = Deėλ + Keeλ


σ̇ x = S

(
ẍ− ẍref + Cė

)
σ̇ f=S⊥

(
ẍ− ẍref + Cė

)
D−1e λ̇ = S⊥

(
ẍ− ẍef + Keėλ

) (28)

From (28) follows that σ f and λ have the same acceleration
distribution matrix so they could be combined into a single
variable σ λf = σ f + hλ, h = ηD−1e , h > 0 and the dynamics
of the σ λf could be expressed as

σ̇ λf = σ̇ f + hλ̇ = S⊥
(
ẍ− ẍref + Cė

)
+ hλ̇

σ λf = σ f + hλ = 0⇒ σ f = −hλ (29)

If sliding mode is established in manifold σ λf = 0 the
interaction force λ is balanced by the error in tracking the
xreff = S⊥xref and if interaction force is zero the sliding
mode is established in manifold σ f = S⊥σ . It is obvious if
force needs to be controlled to track its reference then σ f =
S⊥σ should be bounded by the force reference. By enforcing
sliding mode in σ x = Sσ = 0 & σ λf = S⊥σ + hλ =
0 the trajectory tracking in interaction-free motion (λ =
0) and interaction force control combined with motion in
interaction-free direction is established. The dynamics of the
sliding mode functions σ λf = S⊥σ + hλ and σ x = Sσ could
be written as

σ̇ x = (SJ)A−1n (SJ)T
(
fx − feqx

)
σ̇ λf = (S⊥J)A−1n (S⊥J)T

(
fλ − feqλ

)
(30)

The control inputs are
fx = f̂eqx − ρMx9 (σ x) ; M−1x = (SJ)A

−1
n (SJ)T

fλ = f̂eqλ − ρMλ9
(
σ λf

)
; M−1λ = (S⊥J)A

−1
n (S⊥J)T

τ = (SJ)Tfx + (S⊥J)Tfλ
(31)

A natural fusion of the motion and force control lies in
a modification of the movement if an interaction appears
and maintaining the motion control if interaction is removed.
During interaction, the motion is performed in the tangential
plane in the contact point and motion in the constraint direc-
tion determines the force. Such a behavior could be realized if
sliding mode function is selected as a function of both motion
tracking and interaction force as in (17) σ xλ = ėx+Cex+Hλ,
σ xλ ∈ <

m×1, C > 0, the force λ ∈ <p×1, H ∈ <m×p defines
the distribution of the interaction force to the components of
the generalized tracking error. With task dynamics defined as
in (11) the dynamics of sliding mode function (17) could be
expressed as σ̇ xλ =M−1n

(
fx − feqxλ

)
; M−1n =

(
JA−1n JT

)
;

feqxλ = fdisx +Mn

(
ẍref − Cx ėx −Hλ̇

) (32)

Here fdisx is defined in (11). The control fx = feqxλ −
ρMn9 (σ xλ) enforces sliding mode in manifold σxλ =

0 and dynamics in constrained direction is described by

FIGURE 1. Robot’s trajectory, reference trajectory, and obstacle for
observer-based control.

FIGURE 2. x-direction position and interaction force for observer-based
control.

ėx + Cex = −Hλ. In order to keep interaction force within
desired limits the σ x = ėx + Cex should be limited by
−Hλmax

≤ σ x ≤ −Hλmin. The limits may be considered
as references for the interaction force that we want to track.

In order to illustrate the concept presented here, it will
be assumed that hybrid position-force control is applied to a
planar manipulator, discussed in detail in [23]. Two different
control algorithms were applied: (i) observer-based control
fx = f̂eqxλ − ρMnσ xλ − ρ1Mnsign (σ xλ), (ii) classical discon-
tinuous control fx = −Msign (σ xλ).
The results for the observer-based control are depicted in

Figures 1-3. The shaded parts of the graphs in Figures 2 and 3
correspond to the time interval in which the contact between
the manipulator and the circular obstacle (its edge is given
in blue color) exists. The xe and ye denote the coordinates of
the point belonging to an obstacle that is the closest to the
manipulator, or the position of the contact point belonging to
an obstacle. During the free motion, the manipulator is able
to track the reference trajectory (see Figure 1). During the
contact, the manipulators is tracking the reference trajectory
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FIGURE 3. y-direction position and interaction force for observer-based
control.

FIGURE 4. Robot’s trajectory, reference trajectory, and obstacle for
classical discontinuous control.

in the y-direction (see Figure 3). However, this is not the case
for the x-direction motion, the tracking is not possible, and
force is controlled in this direction. Therefore, the reference
interaction force in the x-direction is tracked (see Figure 2).
The results for the discontinuous control are depicted in

Figures 4-6. The shaded parts of the graphs in Figures 5 and 5
correspond to the time intervals in which the contact between
the manipulator and the circular obstacle (its edge is given in
blue color) exists. It can be observed that oscillatory motion
exists when themanipulator establishes/loses the contact with
environment (look at many shaded intervals Figures 5 and 5).
It is so-called woodpecker phenomenon. The force in the
x-direction is not controlled anymore, and the discontinuous
control is obviously inferior to here proposed observer-based
control strategy.

D. HAPTIC SYSTEMS
Recently, haptics is becoming important field in motion con-
trol. In the core of the problem lie the control structures
enabling a human operator to interact with the remote envi-
ronment, while having a realistic feeling of the interaction

FIGURE 5. x-direction position and interaction force for classical
discontinuous control.

FIGURE 6. y-direction position and interaction force for classical
discontinuous control.

force and transparent interaction. The operation of the
master-slave system can be formulated as the concurrent
trajectory and force tracking, with human operator setting the
position reference (xm) to the slave side (xs) while the slave
side is executing the motion task and transfers the interaction
force back to the master side. The operator sets the level of
the interaction force thus the force that master-side device
is exerting to the operator (fh) is equal (or proportional) to
the force (fe) slave device exerts to the environment. Such
operation arrangements could be mathematically formulated
as a requirement to establish sliding mode motion such that
the position tracking ex = xs − xm and force tracking errors
ebf = fh+fe are concurrently equal to zero [20]. Colloquially,
we may view this arrangement as ‘‘extending the hands of the
operator by a long stick with a tool on its far end’’.
For simplicity, let master device dynamics and slave

devices dynamic are given as in

amq̈m + bm + gm = τm − fh + τop
asq̈s + bs + gs = τs − fe
fh = dhėmo + khemo; emo = xm − xop
fe = deėse + keese; ese = xs − xe

Aq̈+b+g+f=τ b

(33)
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with A = diag [am, as] , qT = [qm qs] , τTb = [τm τs], bT =

[bm bs] , gT = [gm gs] , fT =
[(
fh − τop

)
fe
]
.

The τop is the operator input force, xop, xe are opera-
tor and environment position respectively, (dh, kh) , (de, ke)
are spring-damper parameters on the operator and slave
side respectively, τm, τs are master and slave control inputs
respectively. Let interaction with the operator and with the
environment are modeled as a spring-damper system (the
same procedure could be applied if the interaction forces are
modeled as simple spring model) [18].

Now, the haptic (bilateral) operation could be formulated as
a requirement to enforce sliding mode in the manifold σ b = 0
where vector valued sliding mode function σT

b =
[
σbx σbf

]
is

σ b =

[
σbx
σbf

]
=

[
ėx + cbxex
kf (fh + fe)

]
; cbx , kf > 0[

σbx
σbf

]
︸ ︷︷ ︸
σ b

=

[
−1 1
dop de

]
︸ ︷︷ ︸

J

[
ẋm
ẋs

]
+

[
−cbx cbx
kop ke

]
︸ ︷︷ ︸

C

[
xm
xs

]

+

[
0

ξ
(
xop, xe

) ]︸ ︷︷ ︸
ξ(xop,xe)

ξ
(
xop, xe

)
= −dopẋop − kopxop − deẋe − kexe

σ b = Jq̇+ Cq+ ξ
(
xop, xe

)
(34)

The dynamics of sliding mode function could be expressed
as

σ̇ b= Jq̈+ Cq̇+ ξ̇
(
xop, xe

)
σ̇ b= JA−1JT

(
τ b − τ

eq
b

)
τ
eq
b =

(
JA−1JT

)−1
JA−1 (b+ g+ f)− Cq̇− ξ̇

(
xop, xe

)
(35)

The (34) stands for the task dynamics of the two physically
separated systems which are required to establish desired
functional relationship. It has the same structure as in all
cases discussed above, thus the control that would guarantee
sliding mode in manifold σ b = 0 could be selected as τ b =
τ̂
eq
b −ρ

(
JA−1JT

)−1
9 (σ b), and observer (6) could be used to

estimate τ̂ eqb . By changing force τop the operator sets the equi-
librium in the bilateral control system. Bilateral control with
scaling position and force (for example in micromanipulation
systems) can be solved in the same way. The haptic systems
are part of a wider class of functionally related systems in
which the systems are forced to maintain a certain functional
relationship [19], [22].

E. REPRODUCTION OF HAPTIC MOTION
The reproduction of haptic interaction requires accurate
replay of the position and the interaction force without human
operator (just as a replay of music or video is done without
person or unit that recorded sound or image).

Let motion generalized error σ recbx = cbxxrec + ẋrec; cbx >
0 and the interaction force f rece be recorded during the

bilateral operation on a master-slave system. Assume that
during reproduction the motion generalized error σ repbx =

cbxxrep+ẋrep and force f
rep
e are measured. Let the generalized

motion-reproduction error is defined as σx = σ
rep
bx − σ

rec
bx .

If control enforces the convergence to and stability of equi-
librium σx = 0 the reproduced trajectory xrep will follow the
recorded path xrec. The position-force reproduction general-
ized error and its dynamics could be expressed as σ

rep
bxf =

(
σ
rep
bx − σ

rec
bx
)
+ k

(
hf repe − hf

rec
e
)

σ̇
rep
bxϕ = K rep

(
f repx − f

rep
eq

) (36)

Here force control gain k > 0 is a design parameter,K rep > 0
and f repx stand for the gain and input force of the system
reproducing haptic motion (slave or master), the f repeq is the
control enforcing zero rate of change of position-force repro-
duction error (36). In the equilibrium, the motion general-
ized error σx is balanced by the force error k

(
hf repϕ − hf recϕ

)
and if interaction force is fe = De (ẋ − ẋe) + Ke (x − xe),
where Ke, De are strictly positive constants, xe is the position
of the environment, and the initial position and parameters of
the environment in the recording and reproduction phases are
the same. Then in sliding mode

(1+ hDe) ėx + (Cx + hKe) ex = khDeėxe + khKeexe
exe = xrepe − x

rec
e ; K rep

e = K rec
e = Ke;

Drepe = Drece = De (37)

The proposed solution offers accurate force reproduction
even in the case xrepe 6= xrece , as a key advantage in comparison
with other methods presented in [24].

V. CONCLUSION
This paper showed that majority motion control tasks can be
discussed in a single framework, since the dynamics of all
tasks can be written in the same form. Thus, the same control
structure is applicable. The paper concentrated to structures
based on SMC. However, it gives enough information to
apply numerous other control algorithms to all of the tasks.
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