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ABSTRACT The importance of accurate estimation of the state-of-health (SOH) for Lithium-ion (Li-ion)
batteries is going to increase as Li-ion batteries become more integrated into daily life. As the reliance on
Li-ion batteries increases so does the need for battery pack size optimisation and the extension of battery
lifetime. Data-driven methods for estimation of the SOH of Li-ion batteries have shown to have good
performance under laboratory conditions, but often fail to achieve similar performance when used in real
life applications. This is a consequence of the field data seldomly matching the laboratory data, which is a
necessary condition ofmost data-drivenmethods. Amethodwhich aims to account for discrepancies between
laboratory and field data is transfer learning. This paper shows how the transfer learning algorithm kernel
mean matching can be used to transfer both multiple linear regression (MLR) and bootstrapped random
vector functional link (BRVFL) models from the laboratory to the field. It is shown that these methods
can achieve mean absolute percentage errors (MAPE’s) smaller than 1% on both laboratory and field data
simultaneously.

INDEX TERMS Bagging random vector functional link neural networks, feature extraction, Lithium-ion
batteries, multiple linear regression, transfer learning.

I. INTRODUCTION
There has been an increase in the use of Lithium-ion (Li-ion)
batteries in daily life both through the deployment of more
electric vehicles and in grid-connected residential energy
storage systems. It is, therefore, in the best interest of man-
ufacturers and end users to optimise the size of the battery
packs and the lifetime of the battery from both an environ-
mental and economic perspective. In order to achieve this
goal, it is important to accurately ascertain the health of the
battery at every moment during its operation. Nevertheless,
accurately estimating the battery state-of-health (SOH) often
requires extensive and expensive laboratory experiments,
which can quickly become obsolete.

Estimation of the SOH of a battery usually falls
into one of two categories: (1) physics-driven methods,
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or (2) data-driven methods. The physics-driven methods aim
to model the the internal states of the battery using theory of
physics, chemistry, and electrical circuits. Among the most
popular approaches are the electrochemical models consist-
ing of partial differential equations, which model the inter-
nal battery components and their interactions [1], [2], and
equivalent electric circuit (EEC), which relate battery current
to the voltage through a series of simple circuit elements
(e.g., resistors, capacitors, voltage sources etc.) [3]–[7].
While these methods can be very accurate, they require very
large fully factorial experimental designs to determine the
necessary parameter [8]. Full factorial experimental designs
are necessary to account for all possible battery parameter
(e.g., capacity. resistance etc.) dependencies such as tem-
perature, SOC, and level of degradation. As an alternative,
complex Kalman filters have had some success in estimating
the battery SOH [9]–[17]. However, due to their intrinsic
properties, a singular solution can not always be ensured
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to exist, and even if recursive estimation is used to account
for this potential problem, they require constant monitoring
of the battery. In recent years, there has been an increasing
interest towards more data-driven methods, as they require
little to no expert knowledge and are usually only depen-
dent on the input and the output of the system. Among
data-driven methods three of the more popular choices are:
(1) support vector machines (SVM) [18]–[21], (2) Gaussian
process regression (GPR) [22]–[28], and (3) artificial neu-
ral networks (ANN) [29]–[33]. While these methods are
black-box methods offering little to no insight on the
how/why the degradation occurs, they can achieve errors as
small as 0.5%. However, a lot of data is required for ensuring
small estimation errors. Therefore, alternative methods have
been proposed which extract more relevant features from
the raw measurements, and use simpler models like multi-
ple linear regression (MLR) [34], random vector functional
link neural networks [35]–[39] (RVFL), extreme learning
machines [40], [41]. These methods require much less
data, while still achieving errors smaller than 2%. Lastly,
it has been shown that incremental capacity (IC) can be
related to the SOH by extracting relevant features from
the IC curves and modelling the relationship between fea-
tures and SOH using MLR. However, this requires the
IC curves to be known. It has been shown that the IC curves
can be found using data-driven methods like SVM and
ANN [42]–[48]. It has been shown that the methods based
on the re-constructed IC curves can achieve errors as low
as 0.5%, even in real-life application [47]. Furthermore, very
recent advancements have shown that a hybrid EEC andANN
approach could achieve errors smaller than 1% [48]. How-
ever, the performance comes at the cost of a more compli-
cated feature extraction due to the IC curve re-construction.
A general disadvantage of the data-drivenmethods (including
the hybrid methods) is that the laboratory data on which
the models are trained needs to resemble the intended appli-
cation. If the application deviates even slightly (dependent
on the method) from the laboratory experiments, then the
predictions of the model cannot be trusted. That is, if the
usage pattern in application changes, then the laboratory
experiments needs to be re-performed using this new pattern.
An important question is: Can this be avoided? A possible
solution is transductive transfer learning.

Transfer learning aims to reduce the amount of data
re-collection by accounting for the fact that the model is
going to be used in a different context than where it was
trained [49]. That is, when training the model, transfer learn-
ing tries to account for the differences between the features
used to train the model, and the features observed in the
application. While some researchers have considered transfer
learning for battery SOH and remaining useful life (RUL)
estimation [50], [51], they have focused on very complicated
recurrent neural network models necessitating large training
sets. Furthermore, the type of transfer learning used still
requires knowledge of the SOH on the the field operated
batteries (in this context called the target domain). Therefore,

the aim of the this paper is to show that much simpler SOH
modelsbuild and tested using laboratory ageing experiments
can be transferred to field operated batteries, without the
need for SOH measurements in the target domain. This was
achieved by transferring the models using a type of (transduc-
tive) transfer learning called kernel mean matching [52].

The remainder of the paper is structured as follows: First
the experimental setup and the results of the laboratory
experiments are presented in Section II-A. After which,
three strategies for extracting features are then presented in
Section II-B. These features are used to estimate the SOH in
Section II-C. Section II-D shows how the proposed models
can be transferred from the domain in which they are to be
trained (the laboratory) to the domain where they are to be
applied (the field). The results of the transferred models can
be found in Section III, and a discussion of the approach
follows in Section IV. Lastly, while SOH can be measured
on two fronts capacity and power, the focus in this paper will
be on capacity degradation. That is, from this point forward
SOH estimation will refer to capacity estimation (though the
ideas outlined in this paper will also extend to SOHmodelling
in terms of power or resistance).

II. MATERIALS AND METHODS
A. EXPERIMENTAL SETUP
1) BATTERY AND FORKLIFT OPERATION
In this work, Li-ion battery cells with a nominal capacity
of 180 Ah and a nominal voltage of 3.3 V were considered.
The cells are based on a graphite anode and a lithium iron
phosphate cathode. Battery packs, composed of these cells,
had been deployed in the field, in three forklifts, which were
placed in the back of trucks around Europe and used to move
heavy pallets throughout the day, and charged every few days.
A representative one-week operation profile for the three
forklifts is presented in Fig.’s 1 and 2. The figure shows that
the operation of the forklifts leads to mostly short and shallow
cycles.

FIGURE 1. Battery load profile during one-week of forklift operation.

Furthermore, throughout the operation of these forklifts
there have only been a few deep cycles (i.e. with a depth
of discharge larger than 80%) and subsequently constant
current charging allowing for an approximation of the battery
charging capacity in only a very few cases. Fig. 3 shows the
approximate forklift battery charging capacity against the full
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FIGURE 2. Battery SOC profile during one-week of forklift operation.

equivalent cycles (FECs). As one can observe in the figure,
the amount of degradation experienced by the battery in the
forklifts is minimal – between 0.5 and 1% of degradation
during the entire analysed operation period, approximately
17 months. Lastly, the operation of the battery allowed for
the calculation of an approximate capacity at only four points
in time for Forklift 2 and six for Forklift 3.

2) LABORATORY AGEING TESTS
Due to the nature of the usage of the batteries, with irregular
deep discharges, creating a comprehensive battery degra-
dation model would be difficult. Therefore, a total of six
accelerated ageing tests were conducted; three concerning
calendar ageing, and three cycle ageing. For both calendar
and cycle ageing, the batteries were aged at 35, 40, and 45◦C
to capture the effect of temperature on the degradation. The
batteries used to analyse the effects of calendar ageing were
stored at 90% SOC, as this was the average SOC the forklifts
were subjected when they were in idling mode. Every two
weeks a reference performance test is performed to measure
the capacity of the batteries and to quantify their incremental
degradation.

Fig. 4 presents the capacity decrease of the cells dur-
ing calendar ageing at the three ageing temperatures
and 90% SOC. From these results, it is seen that the increase
in the idling temperature from 35 ◦C to 45 ◦C, does not have
a large influence in the capacity fade behavior of the cells
(i.e., maximum 5% difference after 15 months of idling
between the considered temperatures).

The batteries used for cycle ageing were subjected to a load
profile created using the first six months of battery operation
in the forklifts. The profile was created by removing all
idling periods (which account for more than 90% of the total
operation) from the first six months of the of the battery
operation in the forklifts, resulting in a profile of approxi-
mately 12 days. However, while the forklift during operation
is subjected to the average current applied to the battery
was 22 A, it has peaks above 350 A; due to current limitations
of the laboratory battery test station, the current had to be kept
below 50 A. This creates a possible discrepancy between not
only the currents of the ageing profile and the actual forklift
profile, but also their SOCs. In order to overcome this issue
(i.e., SOC mismatch between the two profiles), whenever the

current in the forklift profile exceeded 50 A (mainly during
discharging), the ageing profile was limited to 50 A until the
same SOC value was reached for both forklift and laboratory
ageing profile. This ensured that the SOCs of the two profiles
were identical. The aforementioned procedure, distilled the
six months of forklift operation into the two-week profile,
shown in Fig.’s 5 and 6, which was used to perform cycle
ageing tests at three temperatures (i.e., 35, 40, and 45◦C).
After each round of cycle ageing (i.e. every two-weeks),
a reference performance test was performed to measure the
capacity of the batteries and to quantify their degradation.

Fig. 7 shows the evolution of the capacity degradation,
of the tested battery cells, during cycle ageing at the three
ageing temperatures. It can be observed that the degradation
behaviour of the three batteries is almost identical despite the
10◦C difference in the ageing temperature, which is similar
to the results obtained for the calendar ageing. Furthermore,
Fig. 7 illustrates that during the considered cycle aging exper-
iment, the batteries were subjected to nearly 600 FECs, which
resulted in approximately 10% capacity fade.

B. STATE-OF-HEALTH FEATURES
The aim of feature extraction is to take rawmeasurement data
and distill this information into a set of variables, commonly
called features, which are still able to accurately represent
the raw measurements. A model is then created to establish a
relationship between these features and the battery capacity
(i.e. the SOH). Furthermore, the feature extraction methods,
in this paper, are window based (similar to the methodology
presented in [34]), i.e. a period (or window-size) will be
specified and the features will be extracted using the raw
measurements within this period.

The extracted features will be used to model the capacity
measured during the reference performance tests performed
at the end of every round of ageing of the battery cells.
As every round of ageing will only have a single capacity
measurement, it is natural to extract the features based on
these rounds of ageing, i.e. the features on the ageing data
will be extracted on a two-week basis.

The length of the period used to extract the features on the
forklift data is not as important, as the period being large
enough to yield consistent results. Preliminary extraction
showed that an extraction period of one week yielded con-
sistent results. Furthermore, due to the nature of the capacity
measurements performed in the laboratory, the feature extrac-
tion from the forklift data has to be disjoint (i.e. they can not
overlap).

The features extracted on both the ageing and forklift data
will be based on three slightly different techniques: (1) simple
descriptive statistics [34], (2) partial voltage charging [53],
[54], and (3) online resistance extraction [55]. These methods
were chosen because they can be performed in an ‘‘online’’
fashion using relatively little computing power.

1) SIMPLE DESCRIPTIVE STATISTICS
The descriptive statistics will be extracted from the raw volt-
age, current, and temperature profiles in every window in
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FIGURE 3. The approximate battery charging capacity shown against FEC for the three forklifts.

FIGURE 4. The capacity degradation due to calendar ageing of three
batteries aged at a 35, 40, and 45◦C shown against time in months.

FIGURE 5. The current of the two week profile used to age the three
batteries in the cycle experiment.

both the laboratory ageing and forklift data. The descriptive
features give insight into the distribution of the voltage, cur-
rent, and temperature. In the following sections the aim will
be to link the change in these distributions to the degrada-
tion of the battery. The voltage, current, and temperature of

FIGURE 6. The SOC of the two week profile used to age the three
batteries in the cycle experiment.

FIGURE 7. The capacity degradation due to cycle ageing of three batteries
aged at a 35, 40, and 45◦C shown against FEC.

window w will be denoted by Vw, Iw, and Tw, respectively,
and assumed to have lengthN (i.e.Vw, Iw, andTw are vectors
in RN ). Furthermore, it will be assumed that the features
for all previous windows, 1, 2, . . . ,w − 1 have already been
extracted from the raw measurements.
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FIGURE 8. Extracted features of the ageing data shown against FEC. The left panel shows the average voltage within each round of ageing,
while the right panel shows the skewness of the voltage.

In the following, a short description of each of the descrip-
tive features, and how they are calculated for each window,
is given:
• Average of the voltage, current, and temperature (Xw is
used to represent either Vw, Iw, or Tw): a measure of
center of a distribution, and is calculated as:

X̄w =
1
N

N∑
n=1

Xwn

• Standard deviation of the voltage, current, and temper-
ature (Xw is used to represent either Vw, Iw, or Tw):
a measure of deviation around the average (the square
root of the average squared distance of every point from
the center), and is calculated as

s(Xw) =

(
1

N − 1

N∑
n=1

(Xwn − X̄w)2
)(1/2)

• Skewness of the voltage and current (Xw is used to
represent either Vw or Iw): a measure of the asymmetry
of the distribution (if its negative/positive it has larger
left/right tails), and is calculated as:

g1(Xw) =
N

(N − 1)(N − 2)

∑N
n=1(Xwn − X̄w)

3

s(Xw)3

• Kurtosis of the voltage and current (Xw is used to
represent either Vw or Iw): a measure of how large the
tails of the distribution are when compared to a normal
distribution (if it is larger/smaller than 0, the tails are
larger/smaller than those of a normal distribution), and
is calculated as:

g2(Xw) =
1

(N − 2)(N − 3)

×

{
(N + 1)N
(N − 1)

∑N
n=1(Xwn − X̄w)

4

s(Xw)4

−3(N − 1)2
}

• Maximum change in the voltage and current (Xw is
used to represent either Vw, or Iw): a measure of the

largest change in the sequence (in the case of the voltage
this will be related to the ohmic resistance, while for the
current it is related to the workload), and is calculated
as:

1Xw = max
n ∈ {1,2,...,N−1}

(
Xw(n+1) − Xwn

)
• Cumulative full equivalence cycles (FEC): a measure of
the through-put normalised by the capacity of the battery
cell, and is calculated as:

FECw = FECw−1 +
1

2Qnominal

N∑
n=1

|Iwn|
3600

,

where FECw−1 is the FEC of the previous window (with
FEC0 = 0), and Qnominal is the nominal capacity of the
battery (in this case the nominal capacity is 180).

Fig. 8 shows two examples of the features extracted from
the ageing data against FEC. The left panel shows the average
voltage, it is clear that there is a decreasing trend in the
average voltage as a function of the FEC, while there seems
to be nearly no effect of the ageing on the skewness of the
voltage distribution, as seen on the right panel. Furthermore,
the panels show that the temperature does not seem to have
an effect on the shape of these trend lines, only shifting them
up or down.

2) PARTIAL VOLTAGE CHARGING
As the battery cell degrades, the time it takes for cell to
completely charge from empty to full will naturally decrease,
i.e. the time it takes for the cell to go from its lower to its upper
voltage limits will decrease, as depicted in Fig. 10. Further-
more, it has been shown in [53], [54] that it is not necessary
to observe the entire voltage curve from its absolute lower
limit to its absolute upper limit, but calculating through-put
in a restricted voltage window from Vlow to Vhigh (shown as
the red horizontal lines in Fig. 10) will be proportional to the
calculating the capacity across the entire voltage curve.

If the extraction of these reduced capacity measurements,
Qw, are to be performed from a dynamic profile, the current
needs to be consistent as the voltage passes through the
defined voltage limits, as it is well known that the capacity
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FIGURE 9. The average and the standard deviation of the extracted Qw values against the FEC, shown in the left- and right-panel, respectively.

FIGURE 10. Exemplification of the partial voltage charging for a fresh
and aged cell; the partial voltage interval lays between Vlow and Vhigh.

is heavily dependent on the current. In real-life applications,
the main difficulty of this method is to identify periods of
time where the current is consistent, i.e. periods where the
current profile repeats at different moments during the battery
operation through its life. Luckily, the charging procedure of
the forklifts and, therefore, the ageing profile, is consistent.
This consistency allows for the extraction of Qw every time
the battery is fully charged, yielding multiple extracted Qw
values for every window in both the ageing and forklift
data. After these features have been extracted, they will be
summarised within each window by taking the average and
standard deviation, denoted Q̄w and s(Qw), respectively.
Requiring a relaxation period at least as long as the pre-

vious pulse, the resistance can be extracted using these five
variables, as sketched in Fig. 11.

The average and standard deviation of the extracted
Qw values for the ageing profile can be seen in the left-
and right-hand panels of Fig. 9. As it can be observed,
unlike the descriptive features, the evolution of these fea-
tures as function of FEC is dependent on the temperature
(at least Q̄w). Furthermore, two things are worth mentioning:
(1) the curve of Q̄w seems to be flattening, which could
become a problem if used for prediction (unless the measured

FIGURE 11. Illustration of the resistance extraction method.

capacity behaves in a similar fashion), and (2) the standard
deviation, seen in the right panel of Fig. 9, is increasing slowly
overtime. That is, even though the voltage is passing through
the same voltage limits, the time is takes to pass through these
limits becomes more inconsistent as the battery degrades.

3) RESISTANCE
It has been shown that both the ohmic and internal resis-
tance can be extracted, to within a reasonable accuracy, from
dynamic profiles [55]. The battery resistance can be extracted
from a dynamic profile by keeping very careful track of the
following:

(1) Changes to the current: 1I .
(2) The value of the voltage at the end of the last relaxation

period Vs.
(3) Amount of time the battery was relaxed 1Trelax .
(4) The length of the previous pulse 1Tprevious.
(5) The length of the current pulse 1Tcurrent .
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FIGURE 12. The extracted ohmic and internal resistances against FEC, shown in the left- and right-hand panels, respectively.

To be more specific, requiring 1Trelax ≥ 1Tprevious, then
the ohmic and internal resistances can be calculated as:

R0 =
V0.1s − Vs

1I
, and Ri =

V18s − Vs
1I

,

whereV0.1s andV18s is the voltage 0.1 seconds and 18 seconds
after the initiation of the pulse, respectively.

Like the case of the partial voltage method, the ohmic and
internal resistances can be extracted multiple times during
every period (for both the ageing and forklift data). Therefore,
they are summarised using the average and standard deviation
to track the change in the distribution of the extracted features
instead of the raw extracted values. These will be denoted
as R̄0, s(R0), R̄i, and s(Ri).
In Fig. 12 the average of the extracted ohmic and internal

resistances are shown against FEC for every window of the
ageing data. As would be expected, it shows that the average
resistance (both ohmic and internal) increases as the battery
degrades. Furthermore, the figures show that the overall trend
of both the ohmic and internal resistance is not affected by
temperature. Lastly, it seems the variation in the average
extracted ohmic resistance is more stable than the average
extracted internal resistance. It may be possible to stabilise
the extracted internal resistance, by adding further restric-
tions on 1Trelax , such as requiring it has to be larger than
a minimum 15 seconds (i.e. 1Trelax ≥ max{1Tprevious, 15}).
However, as R̄i is just one of many SOH estimation features,
it is not deemed unnecessary in the context of this paper.

C. STATE-OF-HEALTH MODELLING
As the aim of this paper is to transfer a model trained on
the ageing data obtained in laboratory to the forklift data
measured on the field, the modelling of state-of-health (SOH)
should not be the focus. Therefore, the methods presented
in this section are very simple, but with reasonably high
accuracy.

It is assumed that the general SOH can be decomposed into
two parts, the loss of capacity due to idling (calendar ageing),
and the loss of capacity due to the cycling (cycle ageing).
Furthermore, it is assumed that this effect is additive. That is,

the capacity in window w, denote Qw, can be written as:

Qw = Q0 −1Q(cy)
w −1Q

(ca)
w , (1)

where Q0 is the initial capacity,1Q
(cy)
w is the loss in capacity

due to cycling, and 1Q(ca)
w is the loss in capacity due to

calendar ageing.
The two components will be modelled separately as the

loss in capacity due to each of these components, and the
capacity is then predicted using Eq. (1). Lastly, the train-
ing and validation sets were created by making a random
70/30 split of the ageing data, where the 70% will used to
train the models, and the 30% will be used to compare them.

1) CALENDAR MODEL
Calendar ageing is mainly dependent on two factors: (1) the
storage temperature, and (2) the SOC at which the battery is
stored. As the storage SOC is going to be very consistent in
the intended application (i.e., the forklifts), mostly between
90 and 100%, the storage SOC is going to be ignored as
a variable. It has been shown in [56] that the relationship
between storage time, temperature, and degradation should
follow a power law, i.e. the logarithm of the loss in capacity
due to calendar ageing, 1Q(ca)

w , can be modelled as:

log
(
1Q(ca)

w

)
= η0 + η1 · w+ η2 · T + η3 · w · T , (2)

where w is the (accumulated) time in storage measured in
weeks, and T is the temperature measured in centigrade.
Using the calendar aged laboratory data, presented in Fig. 4,
the parameters were found by simple least squares esti-
mation (see Table 1), and the mean absolute percentage
error (MAPE) on the validation set was calculate as ≈ 0.4%.

TABLE 1. The estimated parameters of the power law model, seen
in Eq. (2), used to estimate capacity loss due to calendar ageing.

The results of the model described by Eq. (2) using the
trained parameters of Table 1 can be seen in Fig. 13.
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FIGURE 13. The change in capacity against the number of weeks in
storage. The dots and crosses represent the training and validation sets,
respectively. The trained power law model from Eq. (2) is shown in red.

2) CYCLING MODEL
Twomethods will be comparedwhenmodelling the change in
capacity due to cycling,1Q(cy). The first method is a multiple
linear regression model (MLR) [34], while the second is a
bootstrap aggregated random vector functional link neural
network (BRVFL) [41]. Before the models are trained fea-
ture reduction will be performed using principle components
analysis (PCA) [57], [58]. Lastly, the two methods will be
compared using cross-validation for each of the specified
PCA thresholds.

3) PRINCIPLE COMPONENTS ANALYSIS
PCA can be thought of as a linear transformation of the
features, specifically a translation to the origin, followed by a
rotation such that the newfirst coordinate explainsmost of the
variation, the second explains the second most variation, and
so on. A simple 2-dimensional example can be seen in Fig. 14,
the left-hand panel shows the original features (simulated
from a multivariate normal distribution with correlation 0.8),
and the right-hand panel shows the PCA rotated features. The
PCA coordinate axes are shown in both panels as the red and
blue unit vectors.

FIGURE 14. A 2-dimensional example of the linear transformation
induced by principle components analysis.

If the features are stored in a matrix X , then the principle
components can be found by diagonalisation of the matrix:

C = XTX . That is, by identifying the eigenvectors, V , and
eigenvalues, λ1, λ2, . . . , λM , such that:

C = V T3V ,

where 3 is a diagonal matrix containing the eigenvalues
λ1, λ2, . . . , λM . The principle components correspond to the
eigenvectors of C (i.e. V ).
Using the matrix of principle components, the feature

matrix can be rotated by simple matrix multiplication:

S = XV .

The elements of the diagonal matrix 3 are related to the
amount of variation explained in the direction of the corre-
sponding eigenvector, and found in numerically descending
order, i.e. |λ1| > |λ2| > . . . > |λM |. Thus, the features can
be reduced by selecting the number of columns included in V
when making the rotation.

It follows that to reduce the features, it becomes necessary
to calculate the amount of variance explained by each of the
principle components. If6 is the covariance matrix of S, and
σmm is them’th diagonal element of6, then the proportion of
the variation explained by the m’th principle component is:

pm =
σm

σ+
,

where σ+ =
∑M

m=1 σmm. As the principle vectors are
arranged in descending order of variance they explained in the
features, the cumulative sum of the proportions can be used
to identify an index i such that the first i features will explain
more variance than some specified lower limit t . That is,
given t and the cumulative sum of the proportion of explained
variance:

ci =
i∑

m=1

pm,

it is of interest to find the index, i, such that ci−1 < t , but
ci ≥ t . Given this index i, the size of number of features is
reduced as:

S(i) = XV1:i,

where V1:i is the matrix of the first i columns of V . Note: from
this point the superscript in S(i) will be generally be dropped
to alleviate notation.

4) MULTIPLE LINEAR REGRESSION
Let 1Q(cy)

w be the change in capacity measured during the
reference performance test, and Sw be the PCA reduced fea-
tures corresponding the window w (this is the equivalent to
thew’th round of ageing). Amultiple linear regression (MLR)
model assumes that the capacity can be modelled by a linear
combination of the features, i.e.

1Q(cy)
w = β0 +

i∑
j=1

Swjβj + ε,
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FIGURE 15. Loss of capacity against FEC for each of the three temperatures in the ageing data. The dots are the measured change in
capacity used to train the model, and the crosses is the measured change in capacity in the validation set. The solid and dashed lines are
the estimated change in capacity by the trained MLR, referring to the PCA reduced features using 95% and 100% thresholds, respectively.

where ε is assumed to follow a normal distribution with mean
zero and standard deviation σ , β0 is a common intercept, and
βj is the slope of feature j. That is, if all Swi with i 6= j are
kept fixed and Swj is increased by 1, then the response1Q

(cy)
w

is expected to change by βj.
Let Dtrain = {(1Q(cy)

1 ,S1), (1Q
(cy)
2 ,S2), . . . , (1Q

(cy)
N ,

SN )} be a training set of N observation, then the regression
coefficients, β, can be trained by minimising the sum of
squared errors:

β̂ = argmin
β


N∑
n=1

yn − β0 − i∑
j=1

Swjβj

2
 .

The solution to this optimisation problem can be found
in closed form, using matrix notation the solution takes the
form:

β̃ = argmin
β

{
||Q(cy)

− S̃β||2
}
,

where Q(cy)
=

(
1Q(cy)

1 ,1Q(cy)
2 , . . . ,1Q(cy)

N

)T , S is the
matrix containing the reduced features (with an observation
in every row, and a feature in every column), and S̃ = [1 S]
(i.e. a column of 1’s have been added representing the
common intercept). The solution is found by differentiat-
ing ||Q(cy)

− S̃β||2, setting it equal to the zero vector, and
isolating β, which yields:

β̂ =
(
S̃T S̃

)−1
S̃TQ(cy). (3)

Fig. 15 shows the change in capacity against the FEC
for each of the three temperatures used in the accelerated
ageing tests. The black dots correspond to the measured
change in capacity in the training set, while the black crosses
is the measured change in capacity in the validation set.

The solid and dashed lines correspond to the estimated
change in capacity using a PCA threshold of 95% and 100%
(i.e. a retention of 95% and 100% of the variation in the
original features), respectively. The figure shows that there
is nearly no difference between the two reduction thresholds
with one very clear outlier seen when trying to predict the
capacity around 200 FEC at a temperature of 45◦C. This can
also be seen when comparing the mean absolute error (MAE)
and MAPE on the validation sets in Table 2. The largest
validation error was found at 45◦C with a value of 0.43%
with a PCA threshold at 95% (with the second largest MAPE
at 0.37%). However, as there is little to no difference between
the two thresholds, it will enable the end user the choice of
a smaller threshold yielding a larger reduction to the number
of features used in the MLR. Either threshold showed good
performance with errors less than 0.5%.

TABLE 2. Validation error between the measured and predicted change in
capacity of the MLR model, shown for two PCA reduction thresholds at
95% and 100%, and each of the temperatures used to age the cells.

5) BAGGED RANDOM VECTOR FUNCTIONAL LINK
Random vector functional links (RVFL) are simple feed for-
ward neural networks with a single hidden layer, where the
bias and weights corresponding to the hidden neurons are
randomised and kept fixed during the training phase, allowing
for fast optimisation which can be solved in closed form.
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FIGURE 16. Graph representation of a random vector functional link
neural network (RVFL).

The general structure of the RVFL can be seen in Fig. 16.
The features are transformed using the randomly generated
hidden layer, H , and the output layer is a concatenation of
the transformed features H and the reduced features S. That
is, if the number of features in the reduced features is i and
the number of hidden units is j, then the total number of units
in the output layer is i+ j.

If the concatenated features are arranged in a matrix
D = [S H ], the solution can be found by minimising the
penalised sum of squared errors:

β̃ =

{
argmin

β

||Q(cy)
− Dβ||2 + λ||β||2

}
,

where λ is a regularisation constant, which should be chosen
such that it minimises the out-of-sample error (this can be
accomplished using k-fold cross-validation during training).
If λ > 0 the optimisation problem is a variant of ridge-

regression, and the solution can be found in a similar fashion
to what was described for the MLR:

β̃ =
(
DTD+ λIi+j

)−1
DTQ(cy), (4)

where Ii+j is the identity matrix of size i+ j. However, if λ is
set to zero the solution will have to be found using theMoore-
Penrose pseudoinverse, D+, as:

β̃ = D+Q(cy). (5)

Due the random nature of the RVFLmethod, various exten-
sion have been proposed to stabilise the random assignment
of weights. Among themore promising variants are the sparse
pre-trained RVFL (SP-RVFL) using a sparse auto-encoder
to learn the hidden weights in an unsupervised fashion [38],
ensemble deep RVFL (edRVFL) using an RVFL with multi-
ple hidden layers each layer predicting the outcome [39], and
bootstrap aggregated RVFL (BRVFL), which combines the
random nature of the RVFLwith a bootstrap aggregation [41].

The BRVFL is chosen as it is a simple extension offering
more stability to the modelling process than the RVFL.When
training the BRVFL, B bootstrap samples of the training set
are created; bootstrap samples are samples of the same size as
the training set, where each element has an equal probability
of being chosen with replacement (i.e. the element is not

removed if it is chosen and can, thus, be chosen again).
A regular RVFL is then trained to each of the B bootstrap
samples using Eq. (4). When predicting the capacity, initially
each of the B trained RVFL models will make a prediction,
Q̂(cy)
(1) , Q̂

(cy)
(2) , . . . , Q̂

(cy)
(B) , and the final prediction of the BRVFL

model is then the average of these predictions:

Q̂(cy)
=

1
B

B∑
b=1

Q̂(cy)
(b) .

Fig. 17 shows the result of a trained BRVFL using
2500 bootstrap sample, a hidden layer with 200 neurons,
and a λ = 0.02. The figure shows the change in capacity
against the FEC for each of the three temperatures used in
the accelerated ageing tests, where the black dots correspond
to the measured change in capacity in the training set, and
the black crosses is the measured change in capacity in the
validation set. The solid and dashed lines correspond to the
estimated change in capacity of the trained BRVFL using
PCA thresholds of 95% and 100%, respectively. The figure
shows very similar behaviour to the estimated capacities of
the MLR for both thresholds. This is further supported by the
validation errors seen in Table 3, showing very similar results
to that of the MLR (though the MAPE’s tend to be slightly
smaller for the BRVFL).

TABLE 3. Validation error between the measured and predicted capacity
of the BRVFL model, shown for two PCA reduction lower limits at 95%
and 100%, and each of the temperatures used to age the cells.

D. TRANSFER LEARNING
The aim of the paper is to take the SOH estimation models,
which were parameterised using the laboratory ageing data,
presented in Section II-C, and transfer these models to the
field (i.e. the forklifts). Transference of these models cannot
be done directly, because the distribution of the features
extracted from the forklift data will not match those of the
laboratory ageing data, as seen in Section II-A. This problem
falls into a class of machine learning methods, called trans-
ductive transfer learning (TTL). In the context of TTL, the
laboratory (where the ageing data is sampled from) is called
the source domain, denotedS, and the field (where the forklift
data is sampled from) is called the target domain, denoted T .

Restating the problem more mathematically, with S and
Q(cy) denoting the features and capacity, the joint distributions
of the source and target domains are not equal:

PS
(
S,Q(cy)

)
6= PT

(
S,Q(cy)

)
. (6)

TTL assumes that the conditional distributions in the
source and target domains of the capacity given the features

VOLUME 10, 2022 26523



S. B. Vilsen, D.-I. Stroe: Transfer Learning for Adapting Battery SOH Estimation From Laboratory

FIGURE 17. The change in capacity against FEC for each of the three temperatures in the ageing data. The dots are the measured change in
capacity used to train the model, and the crosses is the measured change in capacity in the validation set. The solid and dashed curves are
the changes in capacity estimated by the trained BRVFL, referring to the PCA reduced features using 95% and 100% thresholds,
respectively.

are (approximately) equal, i.e.

PS
(
Q(cy)
|S
)
≈ PT

(
Q(cy)
|S
)
. (7)

Because any joint distribution can be written as:

PX
(
S,Q(cy)

)
= PX

(
Q(cy)
|S
)
PX (S),

the assumption of equal conditional distributions, Eq. (7),
implies that the difference between the joint distributions,
Eq. (6), must be due to a difference in the marginal distri-
butions, i.e.

PS (S) 6= PT (S).

This particular type of TTL is, therefore, often called fea-
ture shifting (or more traditionally covariate shifting).

It can be shown that the difference in the marginal distribu-
tions can be accounted for by calculating importance weights
for each sample in the source domain. That is, it is possible
to find α(S) such that:

α(S) =
PT (S)
PS (S)

.

When the importance weights are found they are used
to either up or down weight the influence of the samples
in the sources domain when training a model. Training on
a weighted source sample is almost identical to what was
presented in Section II-C. Therefore, all that remains is to
find the importance weights. However, most TTL methods
require some knowledge of the marginal distribution, which
may be very difficult to ascertain. A method for finding these
importance weights without needing to know anything about
the marginal distributions is kernel mean matching [52].

1) KERNEL MEAN MATCHING
Let F be the feature space from where the features S were
sampled and H a reproducing kernel Hilbert space (RKHS),
with the feature map 8 : F → H, and kernel k . Ker-
nel mean matching (KMM) tries to estimate the importance
weights, α(S), by minimising the maximum mean discrep-
ancy (MMD):

α̂ = argmin
α
||ES∼PS [α(S)8(S)]− ES∼PT [8(S)] ||2,

subject to: α(S) ≥ 0, and

ES∼PS [α(S)] = 1.

where || · ||2 is the `2-norm, and EX∼PX is the expected value
taken w.r.t. variable X and distribution PX .

Given a sample of features and their capacities from
the source domain, DS = {(S1,1Q

(cy)
1 ), (S2,1Q

(cy)
2 ), . . . ,

(SN ,1Q
(cy)
N )}, and a sample of the features from the target

domain, DT = {T1,T2, . . . ,TM }, it can be shown that
MMD optimisation problem can be approximated by the
following quadratic programming problem:

α̂ = argmin
α

1
2
αTKα − κTα

subject to: α(Sn) ∈ [0;U ], ∀n ∈ {1, 2, . . . ,N }, and∣∣∣∣∣
N∑
n=1

α(Sn)− N

∣∣∣∣∣ ≤ Nε,
where U is an upper bound on the search space, ε is a nor-
malisation error, K is a kernel matrix where Kij = k(Si,Sj),
and κ is a vector where:

κi =
N
M

M∑
m=1

k(Si,Tm).
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FIGURE 18. The domain transferred model evaluated on the source domain, showing the capacity against the FEC. The column shows the
temperature of the source domain, while each row shows the name of the forklift used as the target domain. The dots and crosses are the
points used to training and validation, respectively. Furthermore, the solid and dashed curves correspond to the estimated capacity of the
domain transferred BRVFL and MLR models.

It follows that if a value κi is large it implies that the corre-
sponding observation is important, leading to a large value
of αi.

In this formulation, nothing is assumed about the marginal
distributions PS (S) and PT (S). In fact, the only assumptions
necessary to show convergence of α̂ to the ’true’ α (in this
context ’true’ is used in the statistical sense, i.e. the sample
ratio α̂ converges to ratio α between the source and target
domain) is that k needs to be universal (or equivalently strictly
positive definite), and PT (S) needs to be absolutely contin-
uous with respect to PS (S) (this ensures that PT (S) = 0
when PS (S) = 0).

III. RESULTS
The results of the transferred models will be evaluated in two
ways: (1) The performance of the transferred models on the
source domain, and (2) by the performance of the transferred
model on the target domain. The first evaluation was included
as when the model is transferred from the source to the target
domain it should still perform well on the source domain.
It is included as a sanity check.

A. SOURCE DOMAIN
Because there are three target domains, a total of nine com-
binations of sources and targets needs to be considered when
evaluating the performance of the transferred model on the
source domain. The results of the domain transferred models
are shown in Fig. 18. The figure shows the battery capac-
ity against the FEC, where each column corresponds to the
temperature in the source domain, and each row corresponds
to the target domain (indicated by the name of the forklift).

The dots were used as the training data, while the crosses
were used for validation. The dashed and solid curves corre-
spond to the estimated capacity using the MLR and BRVFL
methods, respectively. The figures show that the MLR per-
forms poorly for a temperature of 45◦C (and for 40◦C when
using Forklift 1 as a target), while being relatively accurate
for 35 and 40◦C. This is not unexpected, as the tempera-
ture experienced by the forklifts is usually closer to 20◦C,
increasing the importance of the samples from lower tem-
perature sources (i.e. α(S) > α(S′) if measured temperature
in S < S′). This is further supported by the MAE and MAPE
of the validation set shown in Table 4. Focusing on the 95%
PCA reduction threshold, the MAPEs are in all but three
cases less than 3%. Furthermore, it is clear from the figure
and table that the BRVFL is much more closely fitted to the
estimated capacity of the source domain. In fact, the errors
exhibited by the transferred BRVFL models are comparable
to the non-transferred BRVFL models.

B. TARGET DOMAIN
The estimated SOH on the target domain was calculated in
a similar fashion to the source domain, with the additional
dependence of calendar ageing. Under the assumptions out-
lined in the beginning of Section II-C and the results of
the calendar ageing model, seen in Section II-C1, it was
only deemed necessary to transfer the methods modelling the
change in capacity due to cycling ageing. Given the estimated
change in capacity due to calendar ageing and cycling, the
capacity at time w is found using Eq. (1).
The estimated capacity of the two methods on the target

domain is shown in Fig. 19 against the FEC. The predictions
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FIGURE 19. The domain transferred model evaluated on the target domain, showing the capacity against the FEC. Each column shows
the name of the forklift (the target domain). The solid and dashed curves correspond to the estimated capacity of the domain
transferred BRVFL and MLR models. The black dots correspond to approximate capacity measurements of the three forklifts.

TABLE 4. The MAE and MAPE of the targeted domain transferred MLR
and BRVFL on the source domain, shown for both a 95% and 100% PCA
reduction thresholds and each of the three forklifts.

made by transferred the MLR and BRVFL models are shown
as crosses and triangles, respectively. In addition a smoothed
curve is fitted better visualise the trend of the methods, shown
as the dashed and solid lines for MLR and BRVFL, respec-
tively. Furthermore, the capacity measurements performed

during the operation of the forklifts are shown as black dots.
The figure shows very similar estimation results for the two
methods on Forklift 2 and 3, but that the MLR method has
some stability issues on Forklift 1. As a consequence, the
estimated capacities of theMLRmethod are very far from the
measured capacities on Forklift 1, while the BRVFL method
is consistent through all three forklifts.

These results are also supported by finding the MAE and
MAPE between instance of measured capacities and corre-
sponding estimated capacities of the three forklifts, which
can be seen in Table 5. The table shows that the BRVFL
method generally outperforms the MLR method; however,
if Forklift 1 is disregarded the results of the MLR still
achieves MAPE’s less than 1%.

TABLE 5. The MAE and MAPE of the domain transferred MLR and BRVFL
on the source target domains (i.e. the three forklifts).

IV. CONCLUSION AND DISCUSSION
The paper outlines and implements a paradigm for extracting
different types of features, estimating battery SOH using
cycle and calendar laboratory aging tests, and transferring the
SOH estimation models to a real-life application. The meth-
ods used to parameterise the SOH estimationmodels based on
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the laboratory data, were chosen to be as simple as possible,
while having good performance, narrowing the methods to
multiple linear regression (MLR) and a bootstrapped variant
of random vector functional link neural networks (BRVFL).

The analyses performed in the paper shows the ease of use
and implementation of transfer learning for both the MLR
and BRVFL methods. The transferred models showed good
performance in both the source and target domains (i.e. the
laboratory and field), achieving mean absolute percentage
errors (MAPE’s) smaller than 1% with the exception of the
MLR method on a single forklift (Forklift 1).

A deviation worth pointing out is the capacity estimation
results using the BRVFL method for Forklift 3 in Fig. 19.
This sudden decrease while peculiar cannot be verified as no
capacity measurements of the forklift exists in this period,
though it is not unheard of in the literature.What further com-
plicates matters is the fact that the decrease is not predicted by
the MLR (though the variance in the prediction of the MLR
increases during this period as well). Two possible scenarios
could exist explaining this sharp decrease: (1) it is an actual
decrease in capacity not accounted for by the MLR, this is a
real possibility as the BRVFL has better performance on the
source domain, or (2) it is not an actual decrease in capacity,
which would imply that the BRVFL method is overfitting to
the source domain. However, it is impossible to judgewhether
these predictions can actually be trusted without any capacity
measurements.

Lastly, it is worth pointing out that this approach could
be extended to involve databases of laboratory experiments
with different current, SOC, and temperature profiles, as the
estimated weights are used to up, or down, weight an obser-
vation dependent on the distance between the observation in
the database and each observation of the field data.
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