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ABSTRACT Mental health-related disorders are common in elderly populations. Among the various
mental health disorders, one most significant threat is dementia, and prediction of dementia has become
an important issue related to well-being in old age, because the disease progression of dementia can
be slowed by early diagnosis and disease control. In this paper, we propose an unobtrusive dementia-
prediction system for monitoring physical activities of elderly persons either living alone or as a couple
in different house structures, achieved through passive infrared (PIR) motion sensors combined with data
processing. The proposed feature extraction algorithm extracts feature values related to physical activities
from simple passive infrared sensors located in each room space. We then apply a variety of common
popular classification models, including Deep Neural Networks (DNNs), to predict the risk of dementia in
a sensor-enabled home. We implemented and validated algorithms on data collected for over a month from
18 participants who were engaged with a variety of living conditions. The proposed system was effective
in predicting dementia risk, with up to an 0.99 area under the curve (AUC) using DNN with principal
component analysis (PCA) and a quantile transformer scaler. In terms of the result based on leave-one-
subject-out (LOSO) analysis, an accuracy of 63.38% was achieved using DNN with PCA and a standard
scaler. The proposed methodology is non-invasive and cost-effective, and can be used for a variety of long-
term monitoring and early symptom detection systems, helping caregivers provide optimal interventions to
elderly individuals at risk for dementia.

INDEX TERMS Feature extraction, dementia prediction, Internet of Things, smart homes, unobtrusive
monitoring, sensor technologies.

I. INTRODUCTION
Dementia is a complex neurocognitive disorder caused
by Alzheimer’s disease and various other conditions; it
is a syndrome defined as an acquired decline from
previously-attained cognition that impairs daily functioning.
Dementia is a general term for progressive impairment of
memory, language, problem-solving and other thinking abil-
ities, severe enough to interfere with daily life and requiring
considerable care [1]. There are seven modifiable risk factors
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(diabetes, midlife hypertension, midlife obesity, depression,
physical inactivity, smoking, low education) that can have
significant impact on dementia. If the prevalence of these
seven factors can be reduced by 10% per decade, 8.8 million
cases worldwide of Alzheimer’s disease (AD) could poten-
tially be prevented by 2050 [2].

Dementia results from several progressive neurodegenera-
tive diseases such as Alzheimer’s disease [3], and a 2005 Del-
phi Consensus Study on prevalence of dementia in the world
estimated that 4.6 million new patients worldwide fall into
dementia each year [4]. Depending on the disease’s progres-
sion, dementia patients experience various degrees of decline
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in cognitive, memory, mental and other functions [5], with the
socioeconomic burden of dementia estimated to be $1 trillion
annually by the World Health Organization [6].

Because Korea has an aging society, its number of demen-
tia patients has been increasing and is predicted to reach
1 million in 2030 and 2 million in 2050, potentially result-
ing in a significant increase in Korea’s social and economic
burden [7]. While no effective treatment has so far been
discovered for dementia, early detection is important because
early detection and drug treatment (symptom relief) can delay
its onset. A previous study by Lopez et al. reported that
rates of admission to nursing home after 5 years of dementia
could be reduced by 55% when it was treated with drugs
starting from its initial stage [8], and many recent analytic
epidemiological studies have described dementia as a pre-
ventable disease [9], [10]. Developing a predictive model of
dementia could assist with its early diagnosis and support
active preventive management and treatment that could delay
the deteriorative nature of the disease, possibly delaying its
onset and reducing its prevalence; such a model could also
help improve the quality of life of patients and their families
and reduce social costs.

To solve dementia-related problems of high-risk elderly
individuals and their caregivers, various attempts and solu-
tions using new technologies have been proposed [11]–[14],
and they can be broadly classified into four major types
according to the technologies used: (1) Wearable Tech-
nology, (2) Non-wearable Motion-Sensor Technology, (3)
Assistive/smart home technologies and (4) other tech-
nologies not falling into the first three categories [15].
Using such techniques, systems have been developed
for monitoring dementia-related feature values, electroder-
mal activity (EDA), inertial measurement units (IMU),
activities of daily living (ADL) and physical activities,
and predicting dementia through various data-analysis
techniques.

A dementia-prediction system using a wearable device is
not easy to use in practice because of user inconvenience in
having to wear and periodically charge such a device. Since
this means requiring specific actions of possibly-impaired
users for monitoring data, this approach tends to not be
practically useful. Application of a system using ADL data in
a smart home environment with several people in the house
system is greatly restricted, with the associated large number
of sensing devices increasing system complexity and making
practical application difficult.

This study proposes a method for predicting dementia risk
based on an IoT-based smart home system that combines
a motion sensor-based sensing system integrated into each
living space and using a machine-learning algorithm based
on a new feature-extraction algorithm. The proposed system
predicts a user’s dementia risk level by using the feature
extraction algorithm to classify the data from each battery-
operated sensing node into data representing either the pres-
ence or the absence of a user in the space. Performance of
the proposed system was evaluated by comparing the pre-

dicted data with the ground truth information labeled by the
K-MMSE technique.

Contributions of this research are threefold:

1) The proposed system can predict potential risk of
dementia both in a sensor-enabled home occupied by
only one person as well as in a sensing environment
where two people live as a couple. Although the pro-
posed system cannot distinguish a specific person,
it can predict that at least one person in a house has
a high risk of dementia.

2) It predicts the potential risk of dementia in different
house structures, such as those with different room
sizes and positions, overall house size, number of room
spaces, and house type.

3) The proposed feature extraction algorithm can convert
raw sensor outputs with time stamps into meaning-
ful feature variables that can be applied to predicting
dementia risk.

The remaining parts of this paper are organized into five
sections. In Section 2 we present related work divided into
three subareas: diagnostic tools for dementia prediction, the
relationship between dementia and physical activity, and cur-
rent IoT-based systems for unobtrusively predicting demen-
tia. In Section 3 we propose applicable sensing systems
and data processing methodology. Results and discussion
are presented in Sections 4 and 5, and Section 6 provides
conclusions.

II. RELATED WORK
A. DIAGNOSTIC TOOLS FOR MEASURING DEMENTIA AND
MILD COGNITIVE IMPAIRMENT (MCI)
Accurate evaluation of cognitive function is essential in the
diagnosis of dementia, and the American Psychiatric Asso-
ciation’s DSM-IV criteria for diagnosing dementia states
that ‘‘memory loss must be included and other cognitive
decline in at least one other area must be accompanied’’
[16]. While accurate diagnosis of dementia requires com-
prehensive and professional evaluation of various cognitive
areas by specialists, time and environmental constraints and
economic factors many result in failure to evaluate elderly
people for dementia by appropriate specialists, often resulting
in relatively untrained non-experts using cognitive-function
screening tools to determine dementia risk. Such cognitive-
function screening tests have the advantage of being easy to
perform within a short period of time while providing quan-
tified information related to the overall cognitive-function
level [17].

The Mini-Mental State Examination (MMSE) is currently
the most widely-used functional screening test within clin-
ical settings and the community [18], [19]. The reliabil-
ity and validity of the MMSE have been proven through
many previous studies, and a variation, the Korean Mini-
Mental State Examination (K-MMSE), has been developed
and widely-used in Korea [17], [20]. The K-MMSE mea-
sures time orientation (5 points), place orientation (5 points),
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memory registration (3 points), attention and calculation
(5 points), memory recall (3 points), language function (8
points) and spatiotemporal composition (1 point). The maxi-
mum total score is 30, and in Korea a score less than 24 is
evaluated as suspected dementia [17]. While the MMSE
has the advantage of making it relatively easy to perform
screening, there are some cautions. Because the MMSE
questions are relatively easy, a ‘‘false-negative’’ may be
likely to occur in people with mild cognitive decline due
to the so-called ‘‘ceiling effect’’. Prior research results in
which the false-negative rate reaches 20-30% have also been
reported [21], meaning that since the MMSE test is literally
a screening test, even a MMSE score in the normal range
reflects the possibility that dementia cannot be completely
ruled out [22]. However, MMSE has long been actively used
because of its accessibility and rapid implementation quali-
ties, strengths of such screening tests.

The Montreal Cognitive Assessment (MoCA) is a tool
developed to provide better screening than the MMSE
for mild cognitive impairment, and although it has been
less-used than the MMSE as a diagnostic tool for dementia,
it has received added attention because it includes executive-
function questions lacking in the MMSE. It awards 6 points
for attention, 4 points for executive function, 4 points for con-
struction ability, 5 points for memory, 5 points for language
function, and 4 points for orientation [24]. While previous
studies have reported the MoCA to be better than the MMSE
for screening mild cognitive or vascular cognitive impair-
ment [24], [25], before it can be trusted as an indicator of
overall cognitive function at a very early stage, it seems that
further research is needed [26].

The Clinical Dementia Rating (CDR) scale and the Global
Deterioration Scale (GDS) are representative grading scales
for evaluating the severity of dementia in patients [27], [28].
GDS and CDR are widely used both as criteria for deter-
mining the severity of dementia in clinical studies and as
criteria for evaluating the efficacy of dementia drugs in
clinical trials [29]. While GDS is a tool that includes both
cognitive function and activities related to daily living and
abnormal behavior, and it can be used as a useful test tool
for early diagnosis of dementia by classifying early cognitive
impairment into various stages in detail. Both GDS and CDR
tools are time-consuming and for use only by experienced
professionals [30].

This study therefore used theKorean version of theMMSE,
K-MMSE, widely used as a screening tool with verified
reliability and validity that can be quickly implemented by
non-specialists.

B. DEMENTIA AND PHYSICAL ACTIVITY
While dementia is a common disease closely related to age
and with a high social cost, little attention has been paid to
identifying lifestyle habits that might be modified in seek-
ing its prevention [31]. It is known that physical activity is
associated with lower incidence of mild cognitive impairment
and dementia [32], and exercise or general physical activity

has been associated with lower risk of cognitive impairment,
Alzheimer’s disease, and dementia of any type [31].

Physical activity is defined as movement of skeletal mus-
cles resulting in energy expenditure exceeding that of the
resting state [33]. Many previous studies have shown that
physical-fitness intervention can produce beneficial effects
on memory and other aspects of cognition in elderly per-
sons [34]–[39]. Cassilhas et al. assessed the impact of
resistance training at two different intensities on cognitive
functions in the elderly and showed that resistance exercise
had a positive impact on cognitive function in the elderly.
While such beneficial effects did not depend on resistance
exercise being performed at moderate or high levels of
intensity, from a psychological standpoint moderate intensity
might be more appropriate for the elderly because it provides
more significant improvement in their mood profiles and cer-
tain quality-of-life aspects along with cognitive benefits [40].

Physical activity that encompasses exercise is different
from physical fitness [34], i.e., one can be physically active
without necessarily having high aerobic fitness [41]. Phys-
ical activity has been noted as being beneficial across
many domains, including cardiovascular disease, cancer, and
depression [42].

Significant trends in increased protection against demen-
tia through greater physical activity have been observed,
and high levels of physical activity have been associated
with reduced risk of cognitive impairment. Regular physical
activity could represent an important and potent protective
factor against cognitive decline and dementia in elderly per-
sons [43].

Peter et al. [44], focusing on whether physical activity
could reduce age-related risk, studied the effects of physical
activity on dementia risk in older adults with mild cognitive
impairment, and performed a 17-year follow-up, They found
that even low levels of physical activity (ie, moderate physical
activity once a week) may weaken the link between aging and
dementia. Their survival analyses also found a remarkable
78% decrease in the risk of dementia in older people who
were moderately-to-highly active, compared to that for an
inactive group.

Dementia is a neurodegenerative syndrome characterized
by a decline in functional capacity and cognition [45]. With
aging, some cognitive functions such as attention, memory,
and concentration, along with some physical functions such
as walking and balance, decline and become slower and less
efficient. These manifestations are the result of neural-cell
loss in the frontal, parietal and temporal lobes, and many
such cognitive changes can be evident and even cause mild
disability even if a state of dementia is not reached [46].

Colcombe and Kramer [47] showed that reduced loss of
hippocampal brain tissue in the aging brain is related to the
level of physical fitness, in agreement with animal studies
also showing increased brain-cortical thickness with volun-
tary exercise [48] and other positive brain changes, ultimately
leading to a preventive effect of physical activity on inflam-
matory pathways and disturbed growth-factor signaling. [49].
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TABLE 1. Units for magnetic properties.

The encouraging results of these studies has prompted longi-
tudinal and randomized trials that confirm the overall notion
that physical exercise enhances cognitive function in older
adults [50]–[54].

C. CURRENT IoT-BASED SYSTEMS FOR UNOBTRUSIVELY
PREDICTING DEMENTIA
Although there are multiple technologies and methodolo-
gies for supporting clinical diagnosis and severity assess-
ment of neurodegenerative diseases [55]–[57], we basically
eliminated all wearable-type sensors and focused on fixed
and ambient sensors, especially motion sensors. We did this
because the sensing technologies for real elderly populations
should be in feasible and convenient in-home environments
and should minimize intrusiveness on privacy. Many tech-
nologies described in the literature [55]–[57], such as wrist-
band wearables and video-based sensors, didn’t meet those
requirements, and force and pressure sensors tend to cover
only a limited small space. Several studies in the literature
propose the use of motion-sensor-based monitoring systems
for dementia detection in home environments. Akl et al. [58]
measured the walking speeds of elderly individuals using
machine-learning and diverse sensors such as PIR sensors,
door-contact switches, and motion-activated sensors. Dodge
et al. [59] evaluated dementia using motion sensors mounted
on the ceiling to examine features such as walking speed
and home computer usage, although measurement of walking
speed using the proposed sensors could not be applied to
a home simultaneously occupied by two people. Galambos
et al. [60] used PIR sensors for detecting depression and
dementia, and Gochoo et al. [61] used PIR sensors and CNN
for Elderly Travel Patterns that could be related to dementia,
but the number of subjects in that study was small. An overall
summary of these studies is given in Table 1.

III. THE PROPOSED SENSING ENVIRONMENT
A. PROPOSED OVERALL SYSTEM
Figure 1 depicts the overall system architecture of a pro-
posed physical-activity-based dementia-prediction system
using IoT devices. The system uses PIR sensing units as basic
sensors that check whether participants are located in partic-
ular defined spaces. In their actual residence, experimental

FIGURE 1. Overall system diagram and data flow of the physical activity
monitoring system developed for dementia prediction.

FIGURE 2. Overall system diagram and data flow of the physical activity
monitoring system developed for prediction of dementia.

participants live freely both inside and outside the house,
with their physical actions recognized through PIR sensors
whose data is transmitted to a gateway installed at the center
of the house using 2.4GHz ISM (Industrial, Scientific and
Medical) band communication. The collected motion data,
although possibly collected multiple times within 10 seconds,
are organized as one event every 10 seconds transmitted to
the User Monitor as a 2nd Gateway (UM2G) using Blue-
tooth communication. The data goes through a basic filtering
processing and is then sent to the Computing Machine (CM)
usingWi-Fi communication, where it is then subjected to data
processing and machine-learning processing for calculation
and prediction of dementia risk, with results sent to clinicians,
family members, users, and caregivers.

B. SENSING DEVICES
The wireless-motion-sensing node (WMSN) is illustrated in
Fig. 2. The PIR sensor (BS412), manufactured by Senba
Sensing Technology, covers 120 degree angles and distances
up to 8m. The Energy-control module (ECM) provides power
to the PIR sensor during patient-idle status only as waiting
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status, and once human motion has been detected by the PIR
sensor, the ECM activates the 555 timer module to delay for
10 seconds then activate the Microcontroller. The activated
microcontroller then transmits detected human motion to the
Gateway through a 2.4GHz ISM module. Once the sensing
module has received an acknowledgment signal (ACK) from
the gateway, to minimize battery power it will automatically
change its status to sleep mode. After another 10 seconds,
the ECM disables power to the microcontroller unit (MCU)
and turns the timer modules off, returning them to waiting
status with only the PIR sensor module active. This proposed
hardware configuration minimizes energy consumption.

C. SUBJECT DATA & INSTALLATION
In the proposed system, space-to-space movements are sig-
nificant factors. Since the experimental subject could occupy
different house architectures and room spaces, we have
defined generalized room spaces and front door referred to in
the formal dictionary [Oxford English Dictionary] with added
factors as follows:

4) Living room (LR): ‘‘A room in a house for general
and informal everyday use (as opposed to a bedroom,
dining room, etc.).’’

5) Bedroom (BR): ‘‘A room used for sleeping or intended
to contain a bed or beds; a sleeping apartment.’’

6) Room 1 (R1): ‘‘Capacity to accommodate a person or
thing or allow a particular action; accommodation.’’ R1
should not include a bed.

7) Kitchen (KT): ‘‘A room or area equipped with facilities
for cooking and preparation of food.’’

8) Bathroom (BT): ‘‘A room containing a toilet or toilets,
usually with facilities for handwashing, and sometimes
also a bath or shower’’

9) Door contact (DC) on front door: ‘‘the principal
entrance-door of a house.’’

There were eighteen participants (5 male; 13 female; 65 ∼
79 years old; 5 couples) in our experiments for collection
of physical activity data in a real home. Among them, four
scored fewer than 25 points on the K-MMSE that mea-
sures time orientation (5 points), place orientation (5 points),
memory registration (3 points), attention and calculation
(5 points), memory recall (3 points), language function (8
points) and spatiotemporal composition (1 point). The max-
imum total score is 30, and a score less than 24 in Korea is
taken as an indication of suspected dementia [17].

This study was conducted between November 1, 2020 and
February 28, 2021, targeting 18 elderly people older than
65 and living in the Busan and Ulsan areas in South Korea.
The K-MMSE survey was conducted by a well-trained tester.
The criteria for selection of study participants were:

- People 65 years of age or older who could communicate
- Those with a K-MMSE score of 20 or more
- Those who understood the procedure and purpose of the

research and who had signed the consent form
- Capability to conduct daily-living activities

FIGURE 3. The signal graph of the installed sensors’ outputs with a
human subject’s movements and house layouts of the sensing
environments: (a) physical activity of subject #3, (b) house layout of
subject #3, (c) physical activity of subject #16 and house layout of subject
#16.

After being briefed about the purpose of the study, all study
subjects and their guardians voluntarily agreed to participate
in it. The study was also approved by the University Institu-
tional Review Board (YSUIRB-202004-HR-064-2). Partici-
pants 5 males and 13 females were ultimately selected, with
an age distribution ranging from 65 to 79. The experiments
were conducted for a month. For detecting the presence of a
subject in a room, sensing devices communicating with the
PIR sensor module were installed in each room space. The
lens of each PIR sensor could provide infrared signals to the
sensing module over a range of 120 degrees with a 12-foot
detecting distance.

Figures 3 (b) and (d) show installations in the sensing
environment for two different subjects, one with a low and the
other a high K-MMSE score. To acquire data related to each
subject’s physical-motion status, sensing nodes were placed
in common living areas. As can be seen, the data collected
for physical activities during a day were quite different for
subjects with different MMSE scores.

D. FEATURE EXTRACTION
The indices, constants and variables used by the system and
proposed algorithms are listed below:
• h: packet identifier
• j: time slot
• r : placed sensor
• d : day slot
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FIGURE 4. Conceptual framework for feature extraction.

• N1: 1st night (00:00 AM – 5:59 AM)
• M : morning (06:00 AM – 11:59 AM)
• A: afternoon (12:00 PM – 04:59 PM)
• E : evening (05:00 PM – 7:59 PM)
• N2: 2nd night (8:00 PM – 11:59 PM)
• Ts,j: start time at time slot j
• Te,j: end time at time slot j
• LR: living room
• BD: bedroom
• R1: another room
• KT: kitchen
• BT: Bathroom
• DC: door contact
• Nj(xi): the number of sensor input, xi, in time slot j
• mj(xi): mean of sensor input, xi, in time slot j
• Sj(xi): standard deviation of sensor input, xi, in time slot
j

• P: packet
• I : initial feature
• F : feature
We propose a time-slot-based feature for learning mod-

ules, each comprising five time slots (1st night, morning,
afternoon, evening, and 2nd night), along with correspond-
ing extraction algorithms used in detecting the ADLs of the
elderly, as shown in Figure 4. The proposed time-slot-based
feature extraction was used to distinguish among subjects
living in the same house, because each subject generally
has different living patterns, e.g., one might go out of the
house while the other might mainly stay in the house. The
proposed method will thus provide differentiated data for
multiple people living in a given house.

Each generated data packet was comprised of seven ele-
ments: packet identifier h, timestamp Time (in granularity
of seconds), and ON/OFF status LR, BD, R1, KT and DC
sensors. The hth packet Ph, is denoted as:

Ph = {ID,Time,LR,BD,R1,KT ,DC}h. (1)

Each data packet provided only theON/OFF status of each
of the five sensors in the home, together with a corresponding
packet identifier ID and timestamp Time. We then derived the
ADLs by defining the initial feature values based on a time
slot representing sequential packets and home configurations.
Time slots I are defined as the set of start and end times at time
slot j, denoted as Ts,j and Te,j, respectively. We extracted two
values, the total number of ON status values of the sensor,

Nj(xi), and the collection of Time data as the ON status of
the sensor. First-order time derivatives (delta features) were
extracted from the entire collection of Time data by taking
differences of adjacent pairs of values in the array, while
original samples (static features) were not utilized in the
following stages. The array of difference values is calculated
as an average, mj(xi), and standard deviation, Sj(xi), of all
values in the array. All values representing initial feature
vectors at j, Ij, are denoted as:

Ij,p = {Ts,j,Te,j,Nj(xi),mj(xi), Sj(xi)}. (2)

The extracted initial feature vectors are divided into 5 dif-
ferent time slots. Each extracted initial feature vector in dif-
ferent time slots was collected into a location-based feature
vector, Fr , denoted as:

Fr = {IN1, IM , IA, IE , IN2}. (3)

Each location-based feature vector for a given day was
collected into the one-day feature vector, Fd , that can be
written as:

Fd = {FLR,FBD,FBT ,FR1,FKT ,FDC }. (4)

The one-day feature values were collected for n days to
calculate statistical feature values such as total sum, average,
and standard deviation. All values of an n-day feature vector
can be written as:

Fn = {N (Fd ),m(Fd ), S(Fd )}. (5)

The Fn values, results of the proposed feature extraction
algorithm, will become the input values for PCA processing.
Based on the feature-extraction process, the extracted 90 fea-
tures serve as inputs to the PCA process.

PCA is a transformation that projects initial input data
into a new coordinate system for extracting meaningful infor-
mation from high-dimension datasets [62]. In general, PCA
is used to reduce the number of dimensions of the initial
raw data and discern optimal hidden features that can gen-
erate inputs for the backend classification algorithms [63].
In this paper, we have selected diverse scalers for enhancing
the performance of the proposed methodology. The scaled
PCA generates 90 new variables in converting the input data
to a new coordinated dimensional space. The combinations
of principal components (PCs) of four different scalers are
shown in Figure 5: (a) 4th and 7th PCs with standard scaler;
(b) 2nd and 5th PCs with quantile transformer scaler; (c) 3rd

and 4th PCs with min/max scaler; and (d) PCAwith no scaler.
As can be seen in Figures 5 (a) and (b), the high-risk dementia
data (red rectangles) tend to be gathered into one group, mak-
ing it possible to see that the standard/quantile transformer
scalers and PCA providemeaningful feature values compared
to other PCA combinations.

E. CLASSIFICATION
We classified dementia risk into high-risk and low-risk
groups based on the K-MMSE scores, with a score less
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FIGURE 5. Diverse feature scaling plots with the PCA: class 0 is high-risk
of dementia subjects (blue triangle) and class 1 is low-risk of dementia
subjects (red rectangular). Each subfigure includes correlation coefficient
values of each PC: (a) 4th and 7th PCs with standard scaler; (b) 2nd and
5th PCAs with quantile transformer scaler; (c) 3rd and 4th PCAs with
min-max scaler; (d) 1st and 2nd PCAs without scaler.

than 25 classified as representing a high-risk-for demen-
tia group and other scores classified as representing a
low-risk-for-dementia group. We used all 90 proposed fea-
tures as input variables to the classification algorithm.
Eight representative classification algorithms were consid-
ered: Deep Neural Network (DNN) [64], Random Forest
(RF) [65], AdaBoost (ABC) [66], Gaussian Naïve Bayes
(GNB) [67], Decision Tree (DT) [68], Multi-Layer Per-
ceptron (MLP) [69], K-Nearest neighbors (KNC) [70] and
Support VectorMachines (SVM) [71]. The proposedmethod-
ologies were implemented using Python Keras [72] and
TensorFlow [73], and Figure 6 shows the proposed DNN
architecture for applying the classification of dementia risk.

IV. RESULTS AND ANALYSIS
18 elderly participants, each having produced 30 days
of records, were selected for evaluation of the proposed
dementia-risk monitoring system. The total number of the

FIGURE 6. The architecture of the proposed DNN.

TABLE 2. Performance comparison of AUC results based on different
scalers and PCAs.

used instances is 399, which excludes data damaged due
to system malfunctions (33 instances). We initially com-
pared the AUC values for selecting acceptable combina-
tions of classification algorithms and preprocessing meth-
ods, and the overall dataset was divided into two groups,
with 66% for training and 34% for testing. A leave-
one-subject-out (LOSO) was applied to verify the overall
results.

A. PERFORMANCE MEASURES
Five common quality metrics were considered: sensitivity
(Sn.), specificity (Sp.), positive predictivity value (Pp.), accu-
racy (Acc.), Equal Error Rate (EER) and area under the
ROC curve (AUC). AUC was used for initial performance
evaluation for better comparison based on only one perfor-
mance metric, because as indicated by Kegl [74], accuracy
cannot explain the measure for sparse (imbalanced) data-
sets due to minor high-risk dementia data and major low-
risk dementia data. AUC can also be used for evaluating
overall performance using one performance metric without
requiring a threshold of the calculated probabilities from the
classification algorithms.
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TABLE 3. Performance comparison of EER results based on different
scalers and PCAs.

TABLE 4. Performance comparison of LOSO results based on different
scalers and PCAs.

B. INITIAL RESULTS BASED ON AUC AND EER
To verify the performance of preprocessing related to the
PCA and different scalers, we needed to compare results
using one performance metric, the AUC or EER values.
Table 2 and 3 compare the overall performances using
either AUCs or EERs from different combinations of PCAs
and scalers. The best AUC performances, 0.990 and 0.990,
marked in bold, were by the DNN with PCA-quantile scaler
or the SVC with PCA-standard scaler, followed by SVC with
a PCA-min-max scaler. In terms of EERs, Table 3 shows
that the best EER performance was the MLP with a quantile
scaler, marked in bold. Figure 7 compares ROC curves based
on the combination of PCA and different scalers, with DNN,
RF, ABC, GNB, MLP, KNC, and SVC throughout the three
different scalers.

C. LOSO PERFORMANCE OF DNN
Table 4 summarizes the performance characteristics of the
five preprocessing methods using a DNN algorithm for clas-
sifying high-risk dementia subjects for a given test data set
using the LOSO method. We obtained the best dementia-risk
prediction with a DNN architecture that included 4 hidden
layers, each containing 180 neurons. The testing environ-

FIGURE 7. Comparison of ROCs based on the combination of the PCA and
scalers. (a) Quantile transformer (b) Standard (c) Min max.

ments set the number of training epochs as 200 and the batch
size as 25. The confusion matrixes are shown in Table 4 for
all scalers. The best performance was DNN-PCA-Standard,
the DNN classifier with PCA and standard scaler. Although
the Acc. value was 63.38% in the best performance case, Sn.
was relatively low.
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V. DISCUSSION
This study presented an unobtrusive sensing environment
with a new feature extraction system for monitoring phys-
ical activities of elderly individuals and determining their
dementia risks using eight popular classification algorithms
and preprocessing methods such as PCA and diverse scalers.
We implemented the proposed system and tested its perfor-
mance in actual testing environments at 13 elderly residential
homes (18 subjects) and conducted the experiments over a
period of 30 days (1 month). Determination of dementia risk
in different types of sensing environments was processed
using data from the proposed dementia risk detection system
correlated well with questionnaire interviews (K-MMSE),
indicating that unobtrusive sensing systems and intelligent
learning algorithms can be used as effective and practical
solutions for monitoring mental health of the elderly. This
approach is much less labor-intensive than earlier methods
and does not require the user to conduct regular surveys. The
system, compared to surveys, has the additional advantage
of being able to automatically and quickly detect changes or
abnormalities in physical activity of the elderly, enabling the
proposed system to quickly request necessary medical care.

While K-MMSE has been widely used in Korea as a pri-
mary dementia screening tool in community-centered demen-
tia projects, it is well-known that MMSE was not originally
developed for diagnosing dementia [18]. Many studies have
been conducted on just how accurately the MMSE, a sim-
pler mental state test developed for wide use in a variety
of groups without specifying a target group, can accurately
select a specific clinical group such as dementia sufferers.
Such studies applied MMSE to a general group and a demen-
tia group and revealed the extent of sensitivity and specificity
theMMSE displayed in differentiating these two groups [19].
According to a previous study by Oh et al., when K-MMSE
was performed on patients with low educational background,
there was a relatively high likelihood of erroneously indicat-
ing the presence of cognitive impairment even though their
cognitive function was actually normal [75]. It was found that
the false-positive group identified in a previous study [75]
included many illiterate people, and that among the items of
the K-MMSE, ‘‘attention and calculation’’ and ‘‘language,’’
including reading and writing, received low scores. There-
fore, when K-MMSE is used to screen for dementia, it seems
likely that a follow-up study combining memory testing and
neuropsychological evaluation would be necessary even if it
takes more time.

We tested combinations of eight classifiers and preprocess-
ing methods, and among the combinations of data processing
considered, DNN/PCA with quantile transformer scaler and
SVC/PCA with standard scaler outperformed other combina-
tions.

Tree-based algorithms with PCAs did not perform well
in our experiments, and without PCA, RF displayed good
performance, i.e., based on this experiment the characteristics
of tree-based and neural network-based algorithms exhibit
opposite features. We have tested LOSO analysis, meaning

that testing data from one subject can be totally new data
to the trained model, and left-out data may include more
outliers than other data to the trained model. Standard scaling
subtracts the mean value from all samples then divides them
by the standard deviation, so the standard scaling is much less
affected by outliers. On the other hand, the Min-Max scaling
normalizes sample values to the range of 0 to 1. We could in
the case of multiple possible outliers thus expect the overall
performance of PCA with a standard scaler to produce better
results than the Min-Max scaler. The five selected timeslots
(1st night, morning, afternoon, evening and 2nd night), are
also fundamental and essential units related to many physical
activities and types, and the separate time slot features can
provide unique information about the different living patterns
of subjects residing as a couple in a single house. Although
information on such physical activities could be easily moni-
tored and derived using wearables, since the elderly subjects
in our study were resistant to the use of such technology over
the long term, we used an alternative method based on use of
PIR sensors to monitor their physical activities.

The number of time slots and regularity of physical move-
ment are important in accurately monitoring the risk of
dementia. Because people exhibit various tendencies with
respect to staying still and moving from space to space, mul-
tiple wearable type sensors would be required to accurately
detect dementia risk. Subjects #13 and #14 were a couple and
only subject #13 had aworking time involving irregular work-
ing hours. Another couple (subjects #7 and #8) lived with two
other people, a son and daughter; all other subjects mostly
stayed at home, sometimes perhaps going out for walk. If the
proposed system is to determine activity details of two or
more people in a home, additional sensor devices would be
needed. Since this would also generate additional technical
complexity in the monitoring system, using minimal sensing
devices along with the proposed feature extraction algorithm
could be an optimal solution for predicting the risk of demen-
tia in real home environments.

To implement a practically-useful monitoring system,
we have designed low-powered IoT devices using 500 mAh
battery power, and based on the proposed H/W, it could be
used for one month without any problem. In terms of wireless
communication, since the houses in South Korea are built
using concrete, a 2.4 GHz ISM module in low-power mode
was insufficient for transmitting and receiving the data; when
we installed the system, houses larger than 100 m2 could not
establish good communication well between the sensors and
the gateway. While some cases could be resolved based on
the optimal position of the gateway, some could not, in which
case we could resolve the issue by increasing the communi-
cation power consumption of both the sensing modules and
the gateway.

We tested the thirteen houses of different structures and
sizes ranging from 50 to 130 m2. To minimize the effects
of different room dimensions, we have categorized each
room as one of five typical types and ignored differences
in distances between room spaces. For minimizing privacy
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TABLE 5. T-Test results based on 5th PC.

TABLE 6. Correlation Coefficient Results based on First 5 PCs.

issues, the proposed method only counts movements between
the determined room spaces, so that the basic units of the
proposed methodology are room-to-room movements from.
If we needed to monitor detailed movements dependent on
different room dimensions, concern for users’ privacy would
be increased.

In recent years research based on using a system that can
monitor human physical activity has been actively conducted.
A previous study using Kinect reported that the multi-Kinect
system exhibited an accuracy improvement of 15.7% over
the single Kinect system, and suggested that the system
would be useful for monitoring of joint movement speed,
functional working envelope, or home training. However, the
multi-Kinect system requires two or more cameras, including
an RGB camera, and offers poor accuracy unless the camera
is placed directly in front of the user [76].

In a previous study of a mobile Android system implemen-
tation application for use in central nervous system move-
ment disorder testing, it was reported an initial prodromal
recognition accuracy of 86.4%. when applied to health status
evaluation While this suggests that it would be an efficient
and easy-to-use system that can support decision-making in
health checkups. there are limitations; a tablet 10 inches or
larger and a more detailed test mode that considers various
symptoms and movement disorders are required for health-
status evaluation [77].

We have used a paired t-test to evaluate statistical sig-
nificance. We initially selected the first 5 PCs from stan-
dard, Min-Max, no scaler, and quantile transformer, Among
these choices, the 5th PC with quantile transformer reflected
statistical significance while the others did not, as shown
in Table 5. Similarly, Table 6 shows that the correlation
coefficient value of the 5th PC exhibited the highest value.
Based on this statistical result, we could assume that there
is a difference between the PCs of motion data from two
populations of subjects after applying the PCA, especially
with quantile transformer.

VI. CONCLUSION
The proposed system is a good early-screening tool for long-
term dementia risk-monitoring for the elderly for the fol-

lowing reasons: (i) it provides an accurate detection and
prediction function; (ii) it is non-invasive, easily to install,
and comfortable for elderly use as a long-term monitoring
system; (iii) it presents minimal concerns with respect to
personal privacy issues; and (iv) it is affordable for most
elderly participants. Even though in our sample population of
18 elderly participants there were only four elderly subjects
with low MMSE score, and the results for detecting the high
risk of dementia might be biased by the small sample size, our
results for early detection of mentally-related disorders are
promising in terms of enabling caregivers to provide timely
interventions. Since the number of samples tested was small,
we must seek to find more elderly participants to improve
and validate our results, so as future work we intend to apply
our algorithms to a larger group of elderly and to include
wearable devices. The proposed methodology can be further
developed to include an algorithm for predicting different
levels of dementia.
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