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ABSTRACT This study proposes a cache replacement policy technique to increase the cache hit rate. This
policy can improve the efficiency of cache management and performance. Heuristic cache replacement
policies are mechanisms that are designed empirically in advance to determine what needs to be replaced.
This study explains why the heuristic policy does not achieve a high accuracy for certain patterns of data.
A machine learning method is proposed to predict the blocks that need to be requested in the future to
prevent erroneous decisions. The core operation of the proposed method is that when a cache miss occurs,
the machine learning model predicts a future block reference sequence that is based on the block reference
sequence of the input sequence. The predicted block is added to the prediction buffer and the predicted block
is removed from the non-access buffer if it exists in the non-access buffer. After filling the prediction buffer,
the conventional replacement policy can be replaced with a time complexity of O(1) by replacing the block
with a non-access buffer. The proposed method improves the least recently used (LRU) algorithm by 77%,
the least frequently used (LFU) algorithm by 65%, and the adaptive replacement cache (ARC) by 77% and
shows a hit rate similar to that of state-of-the-art research. The proposed method reinforces the existing
heuristic policy and enables a consistent performance for LRU- and LFU-friendly workloads.

INDEX TERMS Machine learning, cache memory, performance evaluation.

I. INTRODUCTION
Cache is a concept that is used to reduce the performance
difference between storage layers; it is applied in a variety of
fields such as operating systems, databases, and network sys-
tems [1]– [3]. For example, solid-state drives (SSDs) provide
faster speeds than hard disk drives (HDDs), but a system per-
formance bottleneck remains because the central processing
unit (CPU) and dynamic random access memory (DRAM)
provide three times lower access latency [4]. To address this
bottleneck, a cache is placed between the storage tiers to
store frequently used items. This allows the requested item
to be placed in a cache that has faster access than the SSD
without direct access to the SSD. However, although access
through the cache is faster than through the lower-tier storage,
it is much smaller; thus, the items in the cache must be
managed efficiently. Cache replacement is a technique that
increases the efficiency of the cache. It selects an item to
be removed from the cache when the requested item is not
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in the cache, and a new space is required to add an item to
the cache. When selecting an item to be replaced, an item
that is determined to be the most unnecessary in the future
should be selected. In this case, the optimal cache replace-
ment algorithm is Belady’s MIN algorithm [5]. However, this
algorithm cannot be practically realized because the reference
to all the future items must be known. Various algorithms
have been proposed as alternatives to the optimal algorithm,
and the most well-known heuristic algorithms are the least
recently used (LRU) and the least frequently used (LFU).
The LRU replaces the block that was requested the oldest,
and the LFU replaces the block with the least pollution-
requested frequency. Each of the LRU and LFU policies
contains advantages and disadvantages. The LRU adapts well
to changes in theworking set, but it has theworst performance
when a set of identical items that is larger than the cache
size has a looping pattern that has to be accessed at regular
intervals. The LFU adapts well to the looping pattern, but it
cannot adapt to current changes because it only remembers
the previously requested number of times when the working
set changes frequently. To solve this problem, policies that
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combine these two algorithms have been proposed [6], [7].
These policies utilize the past and currently accessed items
to determine the replacement items. The combined policies
show superior results in comparison to the LRU and LFU,
but there are problems because they still cannot predict the
future. For example, adaptive replacement cache (ARC) has
the same problem as the LRU, wherein the performance
is degraded when the working set is larger than the cache
size [8]. In addition, there is a possibility of cache pollution.
This is because long-term utility is not guaranteed when
the correlated references, in which the same page is quickly
referenced more than once at the upper level of the memory
hierarchy, are frequently observed [9].

These heuristic-based policies such as the LRU, LFU, and
ARC show a good performance in the pattern that is targeted
by the heuristic. However, numerous patterns can exist, and
the performance of these policies is poor when there are a
variety of patterns. Therefore, this study presents an idea to
help predict the future that is based on past information so
that the conventional heuristic-based replacement policy can
make correct decisions based on these predictions. Predicting
the future based on past information is possible through
machine learning; machine learning can learn a complex
distribution of data that is difficult to interpret. Considerable
research has been conducted on the application of machine
learning to cache replacement [1], [3], [10]–[12]. This study
confirmed the applicability of machine learning.

In this study, to predict future information from past infor-
mation, a model that uses the information of the block-level
I/O traces were collected from a variety of applications as
the training data; the model can predict the block number
sequence. To learn the pattern of consecutive block num-
bers in the past, the model was trained using the sequence-
to-sequence (Seq2Seq) [13] model that is based on long
short-term memory (LSTM) [14] networks. During the sim-
ulation, when a new block is accessed and cache replacement
is required, the trained model predicts the next block to
be accessed and it stores the block in order in the predic-
tion buffer. In addition, we propose a non-access buffer that
stores blocks that exist in the cache but are not referenced
in the future. If the predicted block exists in the non-access
buffer, the block is removed from the non-access buffer. The
conventional cache replacement policy determines whether
to remove the block by checking the prediction buffer that
stores the block to be accessed in the future. In addition,
to increase the accuracy of the prediction buffer, the actual
request block and predicted block are checked. If the number
of failures is greater than or equal to a set threshold, the
model fills the prediction buffer again to increase the accuracy
of the prediction buffer. Based on the traces used for the
previous cache replacement policy evaluation, we evaluate
the proposed method. Experimental results show that while
the proposed method outperforms heuristic cache replace-
ment policy with a significant margin by identifying future
sequence that policies such as LRU and LFU do not recog-
nize, and show a slight performance improvement or similar

performance when compared with the state-of-the-art cache
replacement policy [10].

• We designed a Seq2Seq-basedmodel that uses the Block
I/O as the input; this model predicts the block sequence
to be accessed. This predicted block sequence it is
applied to the conventional heuristic replacement policy.

• By combining heuristic cache replacement with the
future sequence predicted by the model, unnecessary
replacements can be prevented in advance by identifying
reference patterns that are not explored by existing cache
replacement policies.

• In the LRU-friendly workload and LFU-friendly work-
load, the hit rate of the proposed model outperforms the
LRU by 77% and the LFU by 65%. This shows that the
model works in both workloads well.

II. RELATED WORK
A. RECURRENT NEURAL NETWORK
A recurrent neural network (RNN) is a model for handling
sequence data. Sequence data are data in which the order
of the data is preserved, and the data are related instead
of being independent entities. The existing neural network
ignores the temporal aspect of the data and recognizes them
as independent entities. The proposed model that needs to
be considered for this aspect is an RNN. Unlike the existing
neural networks, RNNs can remember hidden states. When a
new input is introduced, the RNN changes the hidden state
slightly and it becomes the hidden state of the next input;
thus, preserving the previous memory. There are various
models using the RNN, the most famous of which is the long
short-term memory (LSTM). The LSTM is designed to solve
the vanishing gradient problem, which is a weakness of the
RNN. The main characteristic of LSTM is that a cell state that
can preserve the long-term memory is added to the hidden
state, and the cell state is controlled by adding three gates.
First, the forget gate determines what cell state information is
forgotten. Second, the input gate determines which value to
store in the cell state. Finally, the output gate is responsible for
decidingwhat should be sent to the output. There is a Seq2Seq
model that is composed of these two RNNmodels, which has
two characteristics: the long-term memory capability of the
RNN model and the output of the sequences of the different
domains from the input sequence. The two RNN models are
divided into the encoder and decoder. The encoder receives
the sequence called the source as the input; it compresses
the meaning of the source and transmits it to the hidden state
of the decoder. The output value of the compressed encoder
is called the context vector. The decoder uses the context
vector as the initial value of the hidden state and outputs the
sequence values one by one.

B. CACHE MANAGEMENT
The least recently used (LRU) algorithm is a technique that
replaces the block that was requested the oldest in the cache.
This technique can adapt well to the request patterns that
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show temporal and spatial localities. However, as the blocks
that are requested frequently or are requested less often can-
not be identified, the sequential reference that is not reused in
the future may unnecessarily occupy cache space.

The least frequently used (LFU) technique replaces the
block with the smallest number of requests when considering
the blocks in the cache. It works well when it has a looping
pattern that does not change the workload. However, as the
workload changes over time, cache pollution occurs because
the old blocks remain in the cache.

The adaptive replacement cache (ARC) [6] maintains two
LRU lists. The two LRU lists are called L1 and L2, where L1
keeps the pages that are accessed only once, and L2 keeps
the pages that are accessed at least twice. L1 is classified
as T1 and B1, and L2 is classified as T2 or B2. T1 and T2
are lists in the cache, and B1 and B2 are ghost buffers that
contain the pages that are removed from T1 and T2. The main
characteristic of the ARC is that the sizes of T1 and T2 can
be dynamically set by adjusting the parameter p, rather than
classifying T1 and T2 into a fixed size. The parameter p is
adjusted based on B1 and B2; it can quickly adapt to the
workload based on the past history.

Recently, several attempts have been made to use machine
learning for efficient cache management. DLIRS [15] was
inspired by ARC that dynamically allocates cache space,
and proposed a method of dynamically allocating LIR and
HIR space in LIRS policy. Learning cache replacement
(LeCaR) [10] is an algorithm that is based on the RL; it
minimizes the regret to select the LRU and LFU according
to the current request pattern. DeepMEC [2] can determine
the content that needs to be stored in the cache by pre-
dicting the popularity of the content based on the RNN,
the convolution neural network (CNN), and the CRNN in
order to maintain the popular content in the cache when
the edge node uses the cache for content management.
PARROT [3] approximates Belady’s MIN using imitation
learning (IL) [16] to improve the performance of the CPU
cache replacement. Glider [13] predicts whether each cur-
rent program counter (PC) is cache-friendly or cache-averse
based on an integer support vector machine (ISVM). Pseudo-
OPT [12] can predict the future reuse distance based on the
past history using the LSTM as a model. Learning Relaxed
Belady (LRB) [1] uses a Gradient Boosting Machine (GBM)
to select candidates by randomly sampling objects in the
cache to obtain cache replacement candidates. Among the
selected candidates, the candidate with the longest request
distance is removed from the cache. CACHEUS [17] removes
the static hyperparameters present in LeCaR and can resist
scan and churn types, thus eliminating the disadvantages of
LRU and LFU workloads. Therefore, design a model that can
identify more types of workloads to show better performance.
This paper predicts future reference sequences differently
from some studies that utilize machine learning models for
the selection of candidates in the cache. Therefore, this study
differentiates it from some state-of-the-art studies by bringing
the advantages of the existing cache replacement policy as it

FIGURE 1. The validation accuracy for input feature.

is and supplementing the shortcomings of the existing cache
replacement policy.

III. PROBLEM FORMULATION
To design our model based on ML solution, we formulate
cache replacement as a probabilistic prediction problem and
view its output as a probability distribution. The goal of
efficient cache replacement is to exploit relationship between
access blocks and next access blocks. Therefore, we use
the method of assigning probabilities to word sequence in
a language model to predict future block sequence. The
input sequence is called X , and one input existing in X
is expressed as a lowercase letter x. When expressing the
probability of appearance of input data, it can be expressed
as P(X ) = P(xn, . . . , x1). When the probability of data
appearing after xn is P(y1) based on data probability, it can
be expressed as P(y1|xn, . . . , x1) if expressed as a condi-
tional probability. The next occurrence probability y1 can
be used to predict the occurrence probability of y2 follow-
ing y1, which is P(y2|y1, xn, . . . , x1), P(y3|y2, y1, xn, . . . , x1),
P(ym|y(m−1), . . . , y1, xn, . . . , x1). In conclusion, we define
this study as a classification problem for predicting the next
block, and design a model to understand the contextual flow
as a transition block leads to the next block.

IV. PROPOSED METHOD
This section describes the design method of the model pro-
posed in this study based on the above formulation in the
following order. First, selection of input and output data
related to future blocks, second, selection of a machine
learning model that can accurately predict the probability of
appearance, and finally, design as a method used for cache
replacement based on the value output by the designedmodel.

A. CONFIGURATIONS
1) TRAINING DATA
This subsection explores the data to use as the input and the
data to use as the output. Exploration is important, because
each component influences the our model. Our model
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FIGURE 2. Seq2Seq: Block I/O stream will be encoded and decoded in a
sequence that can be for Seq2Seq learning.

FIGURE 3. The validation loss to find a suitable number of source
sequences data.

considers the block number, frequency, reuse distance and
delta as inputs. Frequency is the number of requests for which
the block number is requested, reuse distance is the num-
ber of blocks requested between two consecutive identical
request blocks, and delta is the difference between consecu-
tive blocks. Figure 1 shows the validation accuracy when four
input features are combined: block number (b), frequency (f),
reuse distance (r), and delta (d). In our experiments, the block
number is converted into an embedding vector and frequency,
reuse distance, and delta are normalized. In conclusion, the
block number, frequency, and reuse distance with the highest
validation accuracy are selected as input features. Our model
considers the block number and delta as output. We analyze
the coverage of block numbers and deltas to reduce the
number of classes that the model needs to predict. Based on
traces used in the evaluation section (Section 5), we obtain
the frequency of the unique block number and delta found
in all requests, sort them in descending order of frequency,
and calculate the coverage of the top 1000 frequencies for all
frequencies. As shown in Table 1, the block number is used as
the output because the block number shows higher coverage
in traces excluding cscope, glimpse, and postgres.

2) MODEL ARCHITECTURE
The architecture of the proposed model uses a LSTM-based
Seq2Seq network that can predict the next sequence of the
I/O stream [18]. The architecture of the proposed model is

illustrated in Figure 2. In Figure 2, blk is the block num-
ber, freq is the frequency, and reuse is the reuse distance.
To preserve the meaning of the block number sequence, there
is an embedding layer that consists of 256 neurons in the
input layer. The model has two hidden LSTM layers, where
each LSTM layer has 256 hidden nodes. To determine the
sequence length of the encoder, we evaluate the validation
loss at 4, 8, 16, 32, 64 as shown in Figure 3. We choose
8 as the input sequence length because training converges
quickly when it is 8. The first input of the decoder starts
with ‘‘<sos>’’ and outputs the block number to be accessed.
Because the length of the output sequence is fixed at 3, a sym-
bol indicating the end of the sequence is not added. The final
output layer of the decoder is a dense layer with softmax [19].
The number of output neurons in the density layer includes
the number of unique blocks that are found in the training
dataset and ‘‘<unknown>’’, which is unpredictable.

B. BEHAVIOR
The operation process of the proposed method for the role
is explained through figures and algorithms. Figure 4 shows
the overall architecture of the proposed method. The archi-
tecture has six components: the request queue, history buffer,
prediction buffer, non-access buffer, Seq2Seq, and the cache.
The request queue stores the actual requested blocks (RBs)
in a temporal order; it keeps the RBs in the form of RB1,
RB2, . . . , which is the request time order from the past to the
future. In addition, tnow is the time of the currently requested
block, tnow+1 and tnow+2 are expressed as the time of the block
that may be requested in the future, and tnow−1 and tnow−2
are expressed as the times of the block that were requested
in the past. The history buffer has the same length as the
input sequence of the model, and the information of blocks
are recorded in the most recently used (MRU) location in
the requested order. When the input sequence length set in
Figure 3 is four, a total of four information that exist in the
current referenced time tnow to tnow−3 are stored in the request
order in the history buffer. The prediction buffer has the same
size as the cache, and the blocks that are predicted to be
requested in the future by the Seq2Seq model are recorded
in the MRU location along with the order of the requests.
When the cache size set in Figure 3 is six, a total of six
information exist at the next time tnow+1 to tnow+6 after the
currently referenced time tnow is stored in the order of the
request in the prediction buffer.

The block at the LRU position in the prediction buffer is
the block that is predicted to be requested next. Because the
predicted block (PB1) is removed every time a new block
request arrives, the LRU position always maintains the block
that is predicted to be requested next. For example, when a
block is requested at the next time tnow+1, the LRU position
(PB1) of the prediction buffer stores the block (RB5) to be
requested in tnow+1. Therefore, because the block at the LRU
position in the prediction buffer is the same as the block at
the current time tnow+1, the prediction buffer maintains the
block to be requested at the next time tnow+2 by deleting the
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FIGURE 4. Proposed architecture overview.

FIGURE 5. Prediction buffer update.

block (tnow+1) at the LRU position. Conversely, whenmoving
to the next request, the predicted block at the LRU position
of the prediction buffer is deleted from the prediction buffer,
and the deleted block and requested block are compared
for equality. If the two values are different, the number of
prediction failures is increased; if the number of prediction
failures is the same as the set value (threshold), there is an
empty prediction buffer and it fills the prediction buffer again.
The non-access buffer is a buffer that stores cache internal
blocks that are judged not to be requested in the future. If the

predicted block exists in the buffer, it is removed from the
buffer because the buffer assumes that the block currently
in the cache will be requested in the future. The reason that
non-access buffer exists is to obtain information from the
buffer because the cache replacement policy removes blocks
that will not be requested in the future. Seq2Seq predicts
the blocks to be requested in the future based on the input.
In Seq2Seq, the input data are sampled from the history buffer
and prediction buffer, and there are three cases, which are
described as follows.
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1) PREDICTION BUFFER UPDATE POLICY
Figure 5 illustrates the three cases of sampling the input
data. The request queue stores the blocks that are requested
from the past to the future and are now requested. The cache
represents the current state of the cache, and the cache size
and the size of the prediction buffer are set to six, the length
of the input sequence is set to four, and the length of the
output sequence is set to two. In addition, blk represents
the request blocks that exist in the request queue. When the
current request time is t , blkt+1 and blkt+2 are the blocks that
will be requested in the future, and blkt−1 and blkt−2 are the
blocks that were requested in the past.

The first sampling method is when the prediction buffer is
empty; here the history buffer is taken and used as the input to
themodel. In Figure 5 (a), as the history buffer stores as much
as four, which is the input sequence length of Seq2Seq, blkt to
blkt−3 exists in the history buffer. Therefore, the information
of blocks that are present in the history buffer are used as the
input of Seq2Seq, and Seq2Seq predicts two blocks. The two
predicted blocks store in the prediction buffer in the requested
order.

The second sampling method is when the prediction buffer
is filled, but the size of the prediction buffer is not sufficient
for the length of the input sequence. In this case, a part of the
history buffer and the information of blocks that are stored in
the prediction buffer are required. In Figure 5 (b), the blocks
that are currently stored in the prediction buffer are blkt+1 and
blkt+2; thus, it is necessary to predict it from the next blkt+2.
To predict the next block, four input values from blkt−1 to
blkt+2 are required. Therefore, blkt−1 and blkt are stored in
the history buffer, and blkt+1 and blkt+2, which are stored in
the prediction buffer, are concatenated and used as the input
sequence for Seq2Seq. The predicted blkt+3 and blkt+4 are
stored in the prediction buffer for the order of the request.

The last sampling method is when the blocks that exist
in the prediction buffer exist as much as the length of the
input sequence. In Figure 5 (c), because the last block to
be requested in the current prediction buffer is blkt+4, it is
necessary for the model to predict the blocks from the next
requested blkt+5. To make a prediction from blkt+5, the
input sequence of Seq2Seq is required from blkt+1 to blkt+4.
Therefore, because the required input sequence exists in the
prediction buffer, the model predicts the block numbers using
blkt+1 to blkt+4 as the input sequence. The predicted blkt+5
and blkt+6 are stored in the prediction buffer for the order of
the request.

2) CACHE UPDATE POLICY
The cache is the actual cache memory that stores the
requested blocks. When the cache hits, the requested block
is moved to MRU. This is because when all the blocks in the
cache do not exist in the prediction buffer or all the blocks in
the prediction buffer exist in the cache, the cache is replaced
based on the LRU. When the cache is missing, the blocks
in the head position of the non-access buffer are removed

Algorithm 1 Proposed Method(PB,HB,NAB)
Require: requested block b
1: FaultCount ← 0
2: if HB.Length is InputLength then
3: HB.DELETEFRONT();
4: end if
5: HB.ADD(b);
6: if PB is not empty then
7: if PB.FRONT is not b then
8: FaultCount ← FaultCount + 1
9: if FaultCount is Threshold then

10: PB.CLEAR()
11: FaultCount ← 0
12: end ifPB.DELETEFRONT();
13: end if
14: end if
15: if b is in C then
16: C .UPDATE(b);
17: else
18: if C is full then
19: while B.Length < C .Capacity do
20: inputs← [];
21: if PB is empty then
22: start ← HB.Length;
23: start− =InputLength;
24: inputs.ADD(HB[start, ]);
25: else
26: if B.Length < InputLength then
27: start ← HB.Length;
28: start− = InputLength− PB.Length;
29: inputs.Add(HB[start, ]);
30: inputs.Add(PB[, ]);
31: else
32: start = PB.Length− InputLength;
33: inputs.ADD(PB[start, ]);
34: end if
35: end if
36: blocks = model.PREDICT(inputs);
37: PB.ADD(blocks);
38: NAB.DELETE(blocks);
39: end while
40: victim = NAB.HEAD().block;
41: NAB.DELETE(victim);
42: C .DELETE(victim);
43: end if
44: C .ADD(b);
45: end if
46: NAB.ADD(b);

from the cache. The reason is that the existing replacement
policy follows the LRU, so blocks in the non-access buffer are
stored in the order of the request from head to tail. Therefore,
in our replacement policy, the oldest requested block among
blocks that are not referenced in the future is selected for
replacement.
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TABLE 1. Dataset description.

Algorithm 1 shows the process that was previously
described when a new block is requested. Because the history
buffer (HB) is requested as much as the input sequence length
of the model, if it exceeds the input sequence length, the
oldest block is removed, and the currently requested block
b is added (lines 2–4). A comparison is performed between
the block that is located in the LRU of the prediction buffer
and the current block b. If the two blocks are different, the
number of model failures are increased (FaultCount) by one,
and the current prediction buffer is emptied if the threshold
and FaultCount are equal. If the prediction buffer is not empty,
the block at the LRU position of the prediction buffer is
removed (lines 6–14). If the currently requested block b exists
in the cache, it is moved to theMRU location according to the
LRU policy (lines 15–16). When the block does not exist in
the cache and the cache is full, the model makes predictions
that are based on the input sequence to fill the prediction
buffer (PB). The inputs consist of the input sequence of the
model, and there are three cases of input generation (see
Fig. 5 (a), (b), (c), lines 20–38). When a prediction block
exists in a non-access buffer (NAB), it is excluded from cache
replacement (line 39). Finally, if the prediction buffer is full,
the block at the head of the non-access buffer is removed
from the cache (lines 41-43). In the proposed algorithm, the
time complexity for cache replacement is O(1). The reason
is that the cache, prediction buffer, and non-access buffer are
implemented as a deque dictionary, so the query time has a
constant time complexity.

V. EXPERIMENTS AND EVALUATION
A. EXPERIMENTAL SETTINGS
For these experiments, a total of 10 traces [20] were used;
web07 and web12 are the traces that were used in [21] to
compare the efficiency of the replacement policy. In addition,
cscope, glimpse, postgres, and sprites are the traces that
are extracted from the various applications and they were
used in [7], [22], [23]. Two 2-pools, multi1, multi2, and
multi3 are the synthetic traces that are obtained by running
applications concurrently and they were used in [7], [22].
Table 1 provides a detailed description of the traces that are
used in the experiments. The reference count refers to the
number in the trace, and the coverage block numbers/deltas
see that the coverage of top 1000 block number/deltas for
all accesses.

Some of the aforementioned traces are classified as
four types of file cache access patterns according to
Choi et al. [23].
• Sequential Pattern: All the blocks are requested one after
another and are never re-accessed.

• Looping Pattern: All the blocks are requested repeatedly
after a regular interval (period).

• Temporally clustered patterns: The blocks that are
requested more recently are the ones that are more likely
to be requested in the near future.

• Probabilistic Pattern: Each block has a stationary refer-
ence probability, and all the blocks are requested inde-
pendently according to the associated probabilities.

Assuming that a sequential pattern is a special looping
pattern case, cscope, glimpse, and postgres belong to the
looping pattern. In addition, the two 2-pools belong to the
probabilistic pattern, sprite belongs to the temporally clus-
tered pattern, and multi1, multi2, and multi3 belong to the
mixed pattern [7]. This study trained the proposed model
using the Pytorch library with an Intel (R) Xeon (R) CPU
E5-2609 v4 that operates on 1.70 GHz; the system contains
eight CPU cores and two GeForce GTX 1080Ti GPUs. For
all the experiments, the model was trained using the Adam
optimizer with a cross-entropy loss function and a learning
rate of 10−4 for a minimum of 100 epochs and a maximum
of 500 epochs. This investigation set the threshold of the
model for the re-prediction as the output sequence length.
The prediction buffer was added to the cache based on the
LRU replacement policy and it was displayed as a model in
the result graph (Figs 7–10). To evaluate the performance of
the proposed model, this study used the LRU, LFU, ARC,
Belady’sMIN algorithm, and state-of-the-art, LeCaR as com-
parison targets.

B. RESULTS
This section measures the performance of the proposed
method. First, after training the model based on the training
data separated from the trace, the accuracy of the actual
blocks and the predicted blocks in the traces are compared.
Second, the cache hit rate when the 10 traces mentioned
above are simulated.

1) PREDICTION ACCURACY
The goal of this study is to predict in advance the cor-
rect blocks in the order of future requests. Therefore,
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FIGURE 6. Accuracy of prediction blocks and real blocks.

Figure 6 means the ratio of the number of blocks correctly
predicted by the model to the total blocks requested. The
evaluation measured whether the block predicted in advance
at that point in time was the same as the actual requested
value when the cache simulation was run on a model trained
by a specific trace in advance. Overall, the evaluation shows
high accuracy in all traces, and 2-pools with the lowest accu-
racy shows 75% accuracy despite the difficulty of accurately
predicting future blocks due to frequent call sequence
changes.

2) LOOPING PATTERNS
The cscope (Fig. 7. (a)), glimpse (Fig. 7. (b)), and postgres
(Fig. 7. (c)) have various looping patterns at different inter-
vals. By contrast, because the LRU is based only on recency,
it cannot distinguish between the blocks that are frequently
requested and the blocks that are not frequently requested.
Therefore, if the size of the loop set is larger than the cache
size, the LRU will have the worst performance. Because the
LRU policy does not use the loop period information of the
looping reference, when the loop blocks with the short loop
periods and the long loop period blocks come in, the short
loop references can be removed from the cache before they
are re-referenced [22]. In this experiment, the hit rate of the
proposed model outperforms the LRU by 77%, the LFU by
2%, and the ARC by 77% in the cscope trace. When using
the glimpse trace, the proposed model outperforms the LRU
by 31%, the LFU by 4%, and the ARC by 21%. When con-
sidering the postgres trace, it outperforms the LRU by 29%,
and the ARC by 21%. Because the proposed method predicts
the block that is to be requested in the future and it knows
the block that needs to be kept in the cache in advance, it can
solve the weak characteristics of the LRU replacement policy
that occurs when the cache size is small in the LFU-friendly
workload. In glimpse trace, LeCaR shows similar behavior
to LFU when the same iteration set is requested at regular
intervals, it does not quickly recognize when various iteration
sets exist, such as glimpse and postgres, so the proposed
model shows high performance at a specific cache size.

3) TEMPORALLY CLUSTERED PATTERNS
The sprite (Fig. 8. (a)) is a trace with temporal locality; web07
(Fig. 8. (b)) and web12 (Fig. 8. (c)) are traces with a long-tail
distribution [21]. The sprite is LRU-friendly; therefore, if the
proposed model makes a wrong decision, the hit rate may be
worse than the LRU. However, as shown in Figure 6(a), the
basic operation of the proposed model is based on LRU, so it
brings the advantages of LRU as it is, and additionally checks
future references to show a few performance improvement
over LRU. In this experiment, the hit rate of the proposed
model outperforms the LRU by 2%, the LFU by 65%, and
the ARC by 3% when using the sprite trace. This is because
the proposed method can accurately predict the block to be
requested and prevent the risk that the block to be requested
will be selected as a replacement target within a short time.
In addition, because the working sets that frequently change
in the LRU-friendly workloads can be detected in advance,
the previously requested working set is prevented from being
evicted from the cache.

In addition, web07 and web12 show the temporal locality,
sequential reference, and the other references. The LFU can
distinguish the most popular data from a long-tail distribution
but it cannot take advantage of the temporal and spatial
locality of the user access [24]. The LRU has a higher hit
rate than the LFU because the period of blocks that are
frequently referred to in web07 and web12 is short and it can
use temporal and spatial locality. Because the ARC manages
the LRU list and the LFU list separately, locality data and
popular data can be maintained even when sequential or other
references come in. However, because the LRU relies only on
recency, the locality data can be replaced by the LRU. In this
experiment, the hit rate of the proposed model outperforms
the LRU by 3%, the LFU by 24%, and it shows a hit rate
equal to or slightly higher than the ARC when using the
web07 and web12 traces. This is because when the data
that do not have temporal locality such as the sequential
reference and the other references that come in, the locality
data and popular data that are highly likely to be re-requested
can remain in the cache. When compared with LeCaR, the
proposed model shows similar performance to slightly higher
than LeCaR.

4) PROBABILISTIC PATTERNS
The 2-pools (Fig. 9) trace is a synthetic trace that is obtained
by simulating a multi-user database application to evaluate
whether the cache replacement policy can recognize request
patterns over a long period of time. When considering the
two 2-pools, a request with a low frequency and a request
with a high frequency are requested alternately [8]. Because
the LRU and LFU only consider recency and frequency, it is
difficult to distinguish when the cache size is small. However,
because the ARC remembers the previous request pattern by
adding a ghost buffer, the LRU and LFU list can be flexibly
adjusted in consideration of the current request. In this experi-
ment, the hit rate of the proposed model outperforms the LRU
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FIGURE 7. Block reference and hit rate of the looping pattern workload.

by 10%, the LFU by 13%, and the ARC by 2% when using
the two 2-pools. This is because the proposed model does not
consider the blocks that have been replaced in the past, but
only the blocks that exist in the cache. In addition, it predicts
the sequence of the future requests for a certain period of

time; thus, it can adapt to future request patterns faster than
the LRU that is based on past request patterns. LeCaR overall
shows a higher hit rate than the proposed model. The reason
is that the LRU itself cannot distinguish between low and
high frequencies, so it relies on future references. However,
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FIGURE 8. Block reference and hit rate of the temporally pattern workload.

if the cache size is small, since the future reference that the
proposed model can memorize is limited, it is more likely to
be operated based on LRU, which may have a negative effect.

In contrast, as the cache size increases, at the Figure 9 can
be seen that the hit ratio of the proposed model gradually
increases.
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FIGURE 9. Block reference and hit rate of the probabilistic pattern workload.

5) MIXED PATTERNS
Multi1 (Fig. 10. (a)), multi2 (Fig. 10. (b)), and multi3
(Fig. 10. (c)) are traces that are obtained by executing var-
ious applications simultaneously; they have various request
patterns, such as looping and temporal locality. Because a
looping pattern appears for each request, it can be observed
that the hit rate is improved when the cache size of the LRU
can accommodate all of the looping sets. As ARC is also
vulnerable in the looping patterns, the hit rate is lower than
the LFU when the loop is frequent. In this experiment, the hit
rate of the proposed model outperforms the LRU by 31%, the
LFU by 11%, and the ARC by 22% when using the multi1
trace. When considering the multi2trace, it also outperforms
the LRU by 23%, the LFU by 7%, and the ARC by 8%.
Finally, when using themulti3 trace, the performance is better
than the LRU by 16%, the LFU by 8%, and the ARC by
10%. This is because the proposed model can predict the loop
set in advance; thus, it can prevent the removal of blocks
that are close to the LRU that may be re-requested. Com-
pared to LeCaR, the proposed model shows overall lower
performance. Therefore, the LRU policy, which is the basis
of the proposed model, has the characteristic of being weak
in the corresponding traces when the future sequence is short
enough to not be able to distinguish various features.

VI. LIMITATIONS AND FUTURE WORK
This section describes the three limitations that can be found
by linking the machine learning model to predict the future
block sequence with the cache replacement policy. In addi-
tion, this section describes the future directions of research.

First, the model uses past requests as the inputs to predict
the next request. The blocks that are predicted by the model
can also be used as the input to fill the prediction buffer. If the
predicted value by the model is ‘‘<unknown>’’, the previous
block cannot be known even if the next block is predicted;
therefore, the prediction buffer cannot be filled anymore.
To solve this problem, this study proposes a new method of

filling the prediction buffer when the prediction of the model
is incorrect by the set value. However, because this method
has to fill the prediction buffer, there is a temporal overhead.
If the prediction is frequently wrong, the performance will
be the same as the performance of the existing replacement
policy.

Second, the model was trained for each workload so that
similar I/O access patterns of the different workloads were
not utilized. To demonstrate the reusability and practicality
of the model, it is necessary to be able to learn common
patterns of the workloads that have not been seen before
and the workload that the model has learned. In addition, for
high-accuracy predictions in the workloads that have never
been observed, as well as common patterns, the model must
be trained online. However, because the LSTM model is
trained offline, it only works well on the trained data.

Third, the buffer size is fixed to the cache size; hence,
the next request time for the block that is being currently
held in the cache, such as Belady’s MIN, cannot be deter-
mined. Therefore, there is still a possibility of an inefficient
replacement.

Therefore, when the prediction fails, a secondarymethod is
required to allow the model to continue making predictions,
and an onlinemodel is needed so that the LSTM that is trained
in the individual workloads can learn the various workload
patterns. In addition, future research is needed to improve the
predictions.

This work focuses on the ML challenges of predicting the
future block reference patterns; it does not explore the prac-
ticality. To address these concerns, future studies can focus
on investigating techniques such as a method of reducing
the inference time of a trained model by caching the hidden
layer output [25] and a method of solving the LSTMmemory
overhead by compressing the model [26]. Finally, when com-
pared with the latest study, certain patterns showed higher
performance, but other specific patterns showed similar or
lower performance. This is a disadvantage derived from the
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FIGURE 10. Block reference and hit rate of the mixed pattern workload.

heuristic replacement policy, which is the default operation,
and it is necessary to select a default cache replacement
policy that can be well combined with the future sequence

and replacement policy. By considering this trend, it is pos-
sible to confirm the feasibility and the direction of the deep
learning-based system performance improvement.
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VII. CONCLUSION
This study proposes a machine learning model called
Seq2Seq to predict the future block sequences, a prediction
buffer that stores the predicted value of the trained model,
a re-prediction process that increases the accuracy of the
prediction buffer, and a method to determine the target to be
evicted based on the future block sequence in O(1) time com-
plexity by adding the non-access buffer. When the machine
learning model that interprets the input sequence pattern and
predicts the future sequence is applied to the existing heuristic
cache replacement policy, the proposed method outperforms
the LRU by 77%, the LFU by 65%, and the ARC by 77%.
Therefore, by combining the proposed method with a heuris-
tic cache replacement policy, such as the LRU, adaptation
is possible in the LRU-friendly or LFU-friendly workloads.
In addition, we explore the improvement direction of the
proposed method by showing slightly higher, lower, and sim-
ilar performance with the state-of-the-art cache replacement
policy. In conclusion, we propose an improved cache replace-
ment policy that allows the heuristic cache replacement pol-
icy to utilize both past and future information by using future
reference information. We think that the ML-based cache
replacement policy for efficient caching has the potential to
improve efficiency when handling various workload patterns.
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