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ABSTRACT Forwireless communication systemswith a long distance or severe interference, the insufficient
transmit power limits the system performance. In this case, the maximum transmit power depends on the
nonlinearity and the saturation region of the power amplifier (PA), which is referred to as a nonlinearity-
constrained problem in this paper. To increase the transmit power as high as possible in a nonlinearity-
constrained system, this paper proposes an autoencoder-based system to jointly optimize the modulation
scheme and transmit power. The optimal solution can achieve a tradeoff between increasing the transmit
power and reducing the nonlinear distortion. Meanwhile, the optimized signal constellation and the neural
network-based receiver can effectively improve the capacity against nonlinear distortion. The simulation
results indicate that the proposed method outperforms conventional methods in terms of symbol error
rate (SER) and transmit power, and the SER of the proposed method is close to the SER lower bound of
the nonlinear PA.

INDEX TERMS High power, single carrier frequency division multiple access, autoencoder, symbol error
rate.

I. INTRODUCTION
In wireless communication systems, the transmit power is
usually adjusted to ensure that the received power of each
user is no more than the minimum level needed for demod-
ulation to reduce the energy consumption and interference
to adjacent users[1], [2]. Such systems can be modeled as
power-constrained systems. However, in certain communica-
tion systems with long-distance or severe interference, the
insufficient receive power is a crucial factor limiting the
system performance, and the transmit power should be as
high as possible. In this case, the constraint condition can be
regarded as the nonlinear and saturation property of the power
amplifier (PA), and the system is referred to as a nonlinearity-
constrained system in this paper. For example, in satellite
communication, due to the long distance to be covered from
the on-ground station to the satellite, a strong path-loss of
hundreds of dBwould be introduced to the satellite communi-
cation link. To overcome this problem, satellites are equipped
with high power amplifiers (HPA) that may operate close
to saturation [3]. Though the use of the maximum power of
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PA can improve the received signal power, it leads to severe
signal distortion and a significant performance loss. There-
fore, the optimal strategy for the nonlinearity-constrained
system should tradeoff between increasing the signal power
and reducing the signal distortion. To improve the perfor-
mance, two kinds of techniques should be jointly considered:
(1) modulation and demodulation techniques to improve the
capability against nonlinearity; (2) power control techniques
to achieve an optimal transmit power.

So far, the above-mentioned two kinds of techniques have
only been studied separately. Over the past decades, a great
number of studies investigated the methods to improve the
ability to overcome nonlinearity, such as feedforward lin-
earization techniques [4]–[6], feedback linearization/analog
predistortion techniques [4], [7]–[9], digital predistortion
(DPD) techniques [7], [10]–[14], post-distortion tech-
niques [14], [16], and constellation shaping [17]. In the feed-
forward linearization technique, the PA input signal is first
subtracted from the PA output signal to obtain the distortion
introduced by the PA. Then, the distortion is amplified by an
auxiliary PA and subtracted from the output signal. To com-
pensate for the distortion, feedback linearization/analog
predistortion is implemented by a closed-loop configuration.
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Cartesian feedback is often used for feedback linearization.
In the DPD technique, a digital-domain predistorter is added
before the PA to compensate for the nonlinearity of the PA.
In [14], a post-distortion algorithm is proposed for orthog-
onal frequency division multiplexing (OFDM) systems by
employing the nonlinear components of the received signal
to improve detection performance. Another symbol detection
improving method is proposed in [15], in this paper, the
author proposes a deep neural network-based (DNN-based)
symbol detector for highly dynamic channels (HDCs) and
a basis expansion model to reduce the network size dra-
matically while achieving similar performance. Both of the
proposedmodel have better performance for HDCs compared
with the traditional minimum mean square error (MMSE)
method. Some other post-distortion algorithms are realized
by using a learning method. For example, in [16], the effect
of nonlinear distortion on Quadrature Amplitude Modula-
tion (QAM) signals is investigated, and a bit-level demodula-
tor network (BLDnet) using DNN is proposed for nonlinear
compensation. BLDnet consists of a fully connected neural
network, and it is performed at the receiver to reduce the
binary cross-entropy function, thus improving the bit error
rate (BER) or symbol error rate (SER) performance. Further-
more, nonlinear interference models such as fiber channel
models can be embedded with an autoencoder-based DNN.
Through optimizing the mean square error (MSE) between
the input and output of the autoencoder, the geometric con-
stellation shapes can be learned under an average power
constraint [17]. In [18], the method of overcoming the nonlin-
earity of PA by optimizing the amplitude and phase of desired
beams is proposed, in which the PA nonlinearity is first
considered in beamformers. Therefore, the method is useful
in redesigning the beamformers for nonlinearity-constrained
systems.

Some other methods against nonlinearity focus on reduc-
ing the peak-to-average power ratio (PAPR) through cod-
ing and modulation schemes. In [19], an autoencoder-based
block error rate (BLER) reduction network is proposed for
OFDM systems. Through gradient-based training, the net-
work can achieve lower BLERwith a coding method. In [20],
an autoencoder-based DNN encoder is proposed to reduce
PAPR in OFDM systems. However, since the loss function
consists of the MSE between the input and output of the
autoencoder, and the PAPR of the transmitted signals, this
method can achieve lower PAPR and BER.

On the other hand, the transmit power control methods,
such as power back off (PBO) enable the PA to work in
the linear region. These methods are widely used in narrow-
band communication systems, such as the Global System for
Mobile (GSM) communication system. However, with the
increase of PAPR, the power efficiency of the PBO method
dramatically decreases, thus leading to a lower power effi-
ciency of the PA.

It should be noted that the above-mentioned methods have
their own limitations in the optimization for nonlinearity-
constrained system. The PBO method only optimizes the

power control without optimizing signal design, while the
other methods optimize the signal design without optimizing
the power control.

In this paper, the method of optimizing the modulation and
power control for the nonlinearity-constrained system simul-
taneously is proposed. This paper addresses the nonlinearity-
constraint system design problem by jointly optimizing the
modulator, the transmit power, and the demodulator. The-
oretically, signal waveform design can be considered as a
vector set design problem, and its complexity increases expo-
nentially as the vector length increases. To facilitate the
modulator design, this paper focuses on the constellation
design problem in a single carrier frequency division multiple
access (SC-FDMA) system with a low PAPR. As shown in
Fig. 1, the signal waveform of SC-FDMA can be regarded
as an orthogonal time-division multiplexing signal. There-
fore, its robustness against nonlinearity is mainly affected by
the constellation shaping of the symbols, so the waveform
optimization problem can be simplified to a constellation
shape optimization problem. To realize joint optimization
of constellation shaping, transmit power, and demodulator,
an Autoencoder is proposed, which consists of a constellation
mapping module, a power control unit, and a neural network-
based receiver.

FIGURE 1. The time-domain waveform of SC-FDMA.

The rest of this paper is organized as follows. Section II
describes the system model. Section III describes the algo-
rithm of the SC-FDMA Autoencoder. Its performance is
evaluated in Section IV, and Section Vconcludes this paper.

II. SYSTEM MODEL
The structure of the proposed nonlinear-constrained com-
munication system based on the SC-FDMA Autoencoder is
shown in Fig. 2.

First, the information source is transformed into complex
modulated symbols through the designed signal constellation.
Then, using a serial to parallel converter, the modulated sym-
bols are grouped into blocks with a length of symbols, i.e.,

s1 = [s1(0), s1(1), . . . , s1 (N0 − 1)]T . (1)
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FIGURE 2. The structure of the nonlinear communication system based on the SC-FDMA autoencoder.

Afterward, each block is passed through an N0-point
discrete Fourier transform (DFT) to produce the
frequency-domain signal vector

S1 = [S1(0), S1(1), . . . , S1 (N0 − 1)]T , (2)

and its elements can be expressed as

S1(k) =
1
√
N0

N0−1∑
n′=0

s1
(
n′
)
e
−j 2πkn

′

N0 , 0 ≤ k ≤ N0 − 1. (3)

In localized frequency domain multiple access (LFDMA),
S1 is fed into a set of consecutive subcarriers from N0 subcar-
riers (N1 > N0) to obtain

S1 =
[
S̄1(0), S̄1(1), . . . , S̄1 (N1 − 1)

]T
, (4)

and its elements can be expressed as

S1(n) =

{
S1(n), f0 ≤ n ≤ f0 + N0 − 1,
0, others ,

(5)

where f0 is the starting index.
The frequency-domain signal S1 are then passed through

an N1-point inverse discrete Fourier transform (IDFT) to
produce s1 before parallel to serial conversion, which can be
expressed as

s1 = [s̄1(0), s̄1(1), . . . , s̄1 (N1 − 1)]T . (6)

The elements of s1 can be expressed as

s1(n) =
1
√
N1

N0−1∑
k=0

S1(k)e
j 2π fk nN1 , 0 ≤ n ≤ N1 − 1. (7)

The discrete symbols are then processed by a shaping
filter and converted into the analog domain for radio fre-
quency (RF) up-conversion. The up-converted signal s3(t) is
then amplified by variable gain amplifier (VGA) to obtain
s4(t) =

√
P ·s3(t), where P is the power of the digital-domain

signal; c(P) is the analog or digital control signal, which is
adjusted by the output of the power control unit of SC-FDMA
Autoencoder. s4 is then fed into the PA to obtain the transmit
signal x(t).

The channel ismodeled as amulti-path fading channel. The
received signal r1(t) is filtered and converted into a digital
domain after down-conversion. After the DFT demodulation
and subcarrier demapping, the signal R2 is equalized by
a zero-forcing (ZF) or MMSE frequency-domain equalizer
(FDE). After passing through the IDFT demodulator, r2 is
fed into a neural network-based demapping module, and r3 is
finally obtained in the form of aM -dimensional vector, where
M is the modulation order.

III. THE ALGORITHM OF SC-FDMA AUTOENCODER
The proposed SC-FDMAAutoencoder consists of three mod-
ules: a constellation mapping module, a power control unit,
and a neural network-based demapping module. In the train-
ing process of the SC-FDMA Autoencoder, the training data
is encoded as a one-hot vector with M elements. Then, the
one-hot vector is fed into the power control unit and the con-
stellation mapping module of the SC-FDMA Autoencoder.

A. THE OPTIMIZATION OF POWER CONTROL
The power control unit of SC-FDMAautoencoder is shown as
Fig.3. The goal of the power control unit is to find the optimal
transmit power for each symbol. After an M -dimensional
one-hot vector sin is fed into the power control unit, the
transformation P = p (sin ) is applied to generate the output
P of the power control unit. The function of the power control
unit can be expressed as

p (sin ) = σ [W2 [σ (W1sin + b1)]+ b2] , (8)

where Wq and bq are the parameters of the q-th linear fully
connected layer, and σ (u) = max(0, u) is the function of the
ReLU activation layer [22].

In the backpropagation process for optimizing the train-
able power control unit, assuming the loss of the SC-FDMA
Autoencoder is l, then the gradient of the loss to the power P
can be expressed as

∂l
∂P
=

Nbatch∑
i=1

∂l
∂s4(i)

[
∂s4(i)
∂P

]
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FIGURE 3. The structure of the power control unit of SC-FDMA
autoencoder.

=

Nbatch∑
i=1

∂l
∂s4(i)

· s3(i) ·
1

2 ·
√
P
, (9)

where Nbatch is the size of each training batch; s3(i) and
s4(i) respectively denote the value of s3(t) and s4(t) of the
i-th sample in the training batch; ∂l

∂s4(i)
is the gradient of the

loss to s4(i), and it is determined by the operation function of
the followingmodules and the loss function of the SC-FDMA
Autoencoder. After the gradient of loss to P is calculated,
the transmit power P can be optimized by using the adaptive
moment estimation (Adam) optimization method [21]. The
optimization steps of the transmit power P can be expressed
as (10)–(14), shown at the bottom of the page, where χτ and
vτ are the first-order momentum term and the second-order
momentum term at iteration τ , respectively; the hyperpa-
rameters β1 and β2 are the dynamic values of the first-
ordermomentum term and the second-ordermomentum term,
respectively; χ̂τ and v̂τ are the estimated value of first-order
momentum term and the second-order momentum term at
iteration τ , respectively; ε0 is a very small number added to
prevent the denominator from being 0; lr is the learning rate
of the optimizer, and Pτ is the trainable transmit power at
iteration τ .

B. THE OPTIMIZATION OF MODULATION
The constellation mapping module and the receiver neural
network of the SC-FDMA Autoencoder is shown in Fig. 4.

χτ = β1χτ−1 + (1− β1)
∂l
∂P

= β1χτ−1 + (1− β1)
Nbatch∑
i=1

∂l
∂s4(i)

· s3(i) ·
1

2 ·
√
P
, (10)

vτ = β2vτ−1 + (1− β2)
(
∂l
∂P

)2

= β2vτ−1 + (1− β2)

[Nbatch∑
i=1

∂l
∂s4(i)

· s3(i) ·
1

2 ·
√
P

]2
, (11)

χ̂τ =
χτ

1− β1τ

=

β1χτ−1 + (1− β1)
∑Nbatch

i=1
∂l

∂s4(i)
· s3(i) · 1

2·
√
P

1− β1τ
, (12)

v̂τ =
vτ

1− β2τ

=

β2vτ−1 + (1− β2)
[∑Nbatch

i=1
∂l

∂s4(i)
· s3(i) · 1

2·
√
P

]2
1− β2τ

, (13)

Pτ = Pτ−1 −
χ̂τ√
v̂τ + ε0

· lr

= Pτ−1

−

β1χτ−1 + (1− β1)
Nbatch∑
i=1

∂l
∂s4(i)

· s3(i) · 1
2·
√
Pτ−1

1− βτ1√√√√√√β2vτ−1 + (1− β2)

[
Nbatch∑
i=1

∂l
∂s4(i)

· s3(i) · 1
2·
√
Pτ−1

]2
1− β2τ

+ ε0

·lr, (14)
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The goal of the constellation mapping module is to find a
two-dimensional representation of the input M -dimensional
one-hot vector. The value of each dimension of the two-
dimensional output refers to the in-phase and quadrature
component respectively. After an M -dimensional one-hot
vector sin is fed into the constellation mapping module, the
transformation sout = f (sin ) is applied to generate the output
signal sout . It should be noted that the power of sout is
normalized to 1. The function of the constellation mapping
module can be expressed as

f (sin ) = Norm [σ (W4 [Norm [σ (W3sin + b3)]]+ b4)] ,

(15)

where Norm (ui) is the function of the batch normalization
layer [23], and it can be expressed as

Norm (ui) = γ

ui − 1
Nbatch

Nbatch∑
i=1

ui√√√√ 1
Nbatch

Nbatch∑
i=1

(
ui −

Nbatch∑
i=1

ui

)2

+ ε0

+ δ,

(16)

where γ and δ are parameters to be learned, ui is the
i-th output of the ReLU layer. The receiver neural network
operates similarly to the constellation mapping module.
It applies the transformation r3 = g (r2) to generate the
output signal r3 of the receiver neural network. The function
of the receiver neural network can be expressed as

g (r2)=Norm [σ (W6 [Norm [σ (W5r2 + b5)]]+b6)] . (17)

The cross-entropy loss is used in the training of the
SC-FDMA Autoencoder. First, the Softmax function is oper-
ated on the output of autoencoder r3 to generate the probabil-
ity distribution of the output belonging to each input symbol:

pi,j =
exp [Ri(j)]∑M
j=1 exp [Ri(j)]

, (18)

where pi,j is the prediction probability that the real category
of the i-th transmitted signal is equal to j. Then, the loss and
the parameters of the autoencoder are calculated. The loss
function can be expressed as

l = −
1

Nbatch

Nbatch∑
i=1

M∑
j=1

yi,j log
(
pi,j
)
, (19)

where Ri is the i-th row of r3; Ri(j) is the value of the
j-th column of Ri; yi,j is a symbol-function. If the real cat-
egory of the i-th transmitted signal is equal to j, yi,j takes 1;
otherwise, it takes 0.

IV. SIMULATIONS AND DISCUSSIONS
In this section, the simulation results of the proposed method
are provided. In the simulation, the mapping pattern of
SC-FDMA is localized mapping; the size of frequency-
domain data is 32, and the number of subcarriers is 256.

FIGURE 4. The structure of constellation mapping module and receiver
neural network of SC-FDMA autoencoder.

Besides, the size of the training set is 51200; the batch size
is 256; the initial learning rate is 0.001, and it decreases by
20% every 5 epochs. The training is stopped when the loss
does not drop for 10 epochs.

In the simulations, for convenience, the output signal of
PA is calculated by the parameters and the behavioral model
of PA. The behavioral model of the PA performs odd-order
Taylor series expansion of the Saleh model, and it has the
form [24]:

xout = α1xin + α3xin 3
+ · · · + anxin n, (20)

where xin and xout are the PA input and output magnitude,
respectively; αn is the n-th coefficient of the odd-order Taylor
series, and it can be expressed as [25]:

a1 = 10
G
20 , (21)

an = −
2
n−1
2(
n

n+ 1
2

)10
−(n−1)IPn+nG

20 , (22)

where G is the power gain in dB, and IPn is the output
n-order intercept point in dBw. For a practical PA module
ZRL-2400LN, G is 28 dB, and IP3 is 15 dBw. Substituting
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these values into (20) and (21), we have α1 = 17.8 and
α3 = −118.6. For ZRL-2400LN+, another PA module with
more severe nonlinearity, G is 28 dB, and IP3 is 12 dBw.
Based on this mode, we have α1 = 17.8, α3 = −666.7.
First, the SER and the transmit power of the proposed

method are compared with those of the PBO method with
64-square QAM (64-SQAM), which is a square shaped con-
stellation. In Fig. 5, the peak transmit power is decreased to
the compression point of 1 dB to make the PA operate at a
linear region. When the four curves have an identical SER
of 10−2, the proposed method achieved a gain of 3.9 dB in
the noise power compared with PBO for ZRL-2400LN, and
the gain increases to 4.6 dB for ZRL-2400LN+. Therefore,
it can be seen that the proposed method can achieve more
performance improvement for the PA under more serious
nonlinearity. The ratio of the average power of PA to the
saturated power of PA is shown in Fig. 6, it can be found that
the proposed method enables the PA to operate at a higher
power than the PBO method, and the power improvement is
greater for ZRL-2400LN+, which has a more serious nonlin-
earity. This is because the PBOmethod reducesmore transmit
power to make a more nonlinear PA operate at a linear region.
Therefore, the gain of the proposed method should be greater
when the nonlinearity of PA is more serious. Besides, Fig. 5
and Fig. 6 also demonstrate that the reduction of SER by the
proposed method is attributed to the optimization of transmit
power.

FIGURE 5. The SER of the proposed method and the PBO method for
different PA.

Next, the influence of the modulation order M on the
performance is analyzed for ZRL-2400LN. The designed
constellation shaping under M = 4, 16, 64 is shown in
Fig. 7, and the SER of the proposed method and the PBO
method under M = 4, 16, 64 is shown in Fig. 8. When the
different curves have an identical SER of 10−2, the proposed
method has a gain of 2 dB in noise power when M = 4,
but the gain becomes 4.7 dB and 4.3 dB when M = 16
and M = 64. Compared with the PBO method, the SER
improvement of the proposed method when M = 4 is lower

FIGURE 6. The average transmit power/saturated power of the proposed
method and the PBO method.

than that when M = 16, 64. This is because the PAPR
of the proposed constellation and the quadrature phase shift
keying (QPSK) is equal to 1 forM = 4. As shown in Table. 1,
for M = 16, 64, the PAPR of the proposed constellation is
lower than 16-SQAM and 64-SQAM, which makes the PBO
for 16-SQAM and 64-SQAM reduce more power than PBO
for QPSK.

TABLE 1. The PAPR of the proposed method and SQAM under
M = 4, 16, 64.

Furthermore, the proposed method is compared with the
DPD method of M -SQAM and polygon constellation [26]
with traversed power. In the comparison, the transmit powerP
is traversed from 0 to the saturated power Psat at an interval
of 10−3 to find the transmit power that leads to the lowest
SER. The optimized power of the comparison method can be
expressed as

Popt = argmin
0<P≤Psat

1
M

M∑
m=1

Pr
(
fm /∈ Zm |

√
P · dm

)
, (23)

where dm is the m-th signal of the M possible transmitted
signals with normalized power; fm is the received signal when
dm is transmitted; Zm is the decision region of the transmitted
signal dm. The SER of the proposed method and the DPD
method of 64-SQAM and 64-order polygon constellation
with traversed power is shown in Fig. 9.
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FIGURE 7. Constellations of proposed method under M = 4, 16, 64.

It can be found that although the proposed method and the
DPD method of 64-SQAM and 64-order polygon constella-
tion have an identical SER of 10−2, the DPDmethod operates
at the traversed power that minimizes the SER. Compared
with the DPD method of 64-order polygon constellation, the
proposed method achieves a gain of about 1.5 dB in noise
power, and the DPD method of 64-SQAM achieves a gain of
about 1.3 dB. For these given constellations, the DPDmethod
obtains a lower SER performance than the proposed method
at any transmit power, which demonstrates the benefits of the
joint optimization of constellation shape and transmit power.

FIGURE 8. SER of proposed method and PBO under M = 6, 16, 64.

FIGURE 9. SER of the proposed method and the DPD method with
traversed power.

FIGURE 10. The SER of the linear PA and the proposed method.

In Fig. 10, the SER of the proposed method is compared
with that of the linear PA with the same modulation and
PA output power under M = 16, 64. It can be seen from
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Fig. 10 that while the proposed method and the linear PA
have an identical SER of 10−2, the proposedmethod is 0.1 dB
worse than the linear PA in noise power when M = 16, and
0.15 dB worse than linear PA in noise power when M = 64.
The SER lower bound of nonlinear PA cannot be even lower
than that of linear PA, and the SER of nonlinear PA with the
proposed method is close to the SER of linear PA with the
same modulation. Thus, the SER of the proposed method is
close to the SER lower bound of nonlinear PA.

V. CONCLUSION
In this paper, a system design for a nonlinearity-constrained
system is proposed. By training the constellation mapping
module, the power control unit, and the receiver neural net-
work of the SC-FDMAAutoencoder, the constellation shape,
transmit power, and the demodulation scheme can be jointly
optimized to minimize the SER for the given channel and the
PA in the SC-FDMA system. This can increase the trans-
mit power and make the PA operate in a region of severe
nonlinearity. Based on this, the high-power transmission per-
formance can be improved for the scenarios such as satel-
lite communication and communication systems with severe
interference. The simulation results indicate that the proposed
method outperforms conventional methods in terms of SER
and transmit power, and the SER of the proposed method is
close to the SER lower bound of nonlinear PA.
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