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ABSTRACT The Internet of Things (IoT) provides unprecedented opportunities for the access to and con-
flation of a myriad of heterogeneous data to support real-time decision-making within smart environments.
Augmented Reality (AR) is on cusp of becoming mainstream and will allow for the ubiquitous visualization
of IoT derived data. Such visualization will simultaneously permit the cognitive and visual binding of infor-
mation to the physical object(s) to which they pertain. Important questions exist as to how one can efficiently
filter, prioritize, determine relevance and adjudicate on individual information needs in support of real-time
decisionmaking. To this end, this paper proposes a novel AR decision support framework (STARE) to support
immediate decisions within a smart environment by augmenting the user’s focal objects with assemblies of
semantically relevant IoT data and corresponding suggestions. In order to evaluate this technique, a remote
user study was undertaken within a simulated smart home environment. The evaluation results demonstrate
that the proposed Semantic Augmented Reality decision support framework leads to a reduction in informa-
tion overloading and enhanced effectiveness, both in terms of IoT data interpretation and decision support.

INDEX TERMS Augmented reality, smart environment, decision support, semantic annotations, ubiquitous
computing.

I. INTRODUCTION
Today’s smart environments not only play a role in
monitoring and task execution, but pointedly they also
directly influence and serve to inform people’s decision-
making in undertaking routine daily activities [1]. The
increasing dataset scales brought by the smart environment
revolution however reveals the limitations of traditional
2D-screen-based smart environment data visualization inter-
faces [2]–[5]: decision-makers have to spend an additional
cognitive load on searching and filtering valuable Internet of
Things (IoT) data from the centralized long data lists.

The emergence of Augmented Reality (AR) techniques
has brought in new potential decision-support solutions to
spatially scatter these IoT data over a smart environment with
the proximity to the data sources, such as Situated Visualiza-
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tion [6] and Situated Analytics [7]. However, such situated or
in-situ visualization of scattered IoT datamay sometimes lead
to the separation between relevant data and the user’s focus,
thus generating inconsistencies. Also, possible redundancies
can gradually accumulate when the decision-maker switches
attention from their currently focused context to discover
the relevant information among other irrelevant IoT data
scattered over the smart environment. To avoid these possible
redundant and inconsistent artifacts which contribute to infor-
mation overload factors and hindered decision making [8],
this paper proposes the STARE (SemanTic Augmented
REality) decision support framework to augment the user’s
focal context with ubiquitous and seamless decision support.
To achieve this seamless focus augmentation, STARE tracks
the user’s focus and establishes multi-dimensional semantic
associations between the user’s focal objects and relevant het-
erogeneous IoT data according to their semantic properties.
Based on these semantic object-data associations, STARE

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 29543

https://orcid.org/0000-0003-2790-0626
https://orcid.org/0000-0002-5124-1686
https://orcid.org/0000-0002-4379-6059


M. Zheng et al.: STARE: AR Data Visualization for Explainable Decision Support in Smart Environments

can reflect on how the user’s focal object can be affected
by the relevant environmental changes through semantically
annotating it with all relevant IoT data that can change the
object’s current state or affect decision making about it.

Decision support systems (DSS) is commonly defined
as computer-based system used for assisting decision mak-
ing [9]. Prior data-oriented AR smart environment DSS
[10]–[16] demonstrated that they could assist in decision-
making by providing data retrieval and information anal-
ysis [17] but left the vital decisions to expert users who
are assumed to be equipped with enough professional
knowledge. However, non-expert users may benefit more
from the higher-level model-oriented decision support such
as consequence simulation and suggestions [17] for non-
vital decisions. Relevant literature search did not show
such high-level decision support from prior AR smart
environment interfaces. Therefore, utilizing the established
semantic object-data associations and the focus augmented
IoT data, STARE further encapsulates an ontology-based
suggestion model to provide explainable suggestions targeted
for non-expert users’ focal decision contexts within a dynam-
ically changing smart environment. For each type of focal
object, multi-dimensional semantic data-object associations
are dynamically constructed by the decision engine and a
semantic annotator. Based on these semantic data-object
associations, a type of focal object and its sub-types are
semantically annotated with explainable decision support
data that comprises the brief suggestions and relevant
environmental changes as the explanations. By encapsulating
a novel explainable suggestion model and the focus aug-
mentation modality, STARE achieved significantly improved
decision-support effectiveness and less perceived information
overload when evaluated against prior common AR smart
environment data visualization interfaces.

This paper makes the following novel contributions:
1) It delivers the first model-oriented AR smart envi-

ronment decision support framework (STARE) that
allows for semantic annotation for focal objects with
explainable suggestions.

2) It illustrates a proof of concept prototype that provides
decision support in a smart home using the proposed
STARE framework.

3) Through the vehicle of a remote simulated Mixed
Reality(MR) experiment, it benchmarks this proposed
approach against a common AR in-situ IoT data
visualization approach [11], [18] within a smart home
decision-making context. Thus, the principal focus of
the experiment is to explore the effects of the explainable
suggestion model and the focus augmentation modality
of STARE.

II. RELATED WORK
A. AR DECISION SUPPORT SYSTEMS IN SMART
ENVIRONMENTS
The research about AR decision support in smart envi-
ronments has emerged in recent years [10]–[16] as the
popularization of IoT and AR technologies in people’s daily

life. According to Alter’s Decision Support System (DSS)
taxonomy [17], compared to these data-oriented DSS, model-
oriented DSS utilizes a complex combination of decision
rules, models, definitional relationships, and formulas to pro-
vide higher-level decision support. Although providing such
higher-level decision support may benefit non-expert users
more, the system requirements are even more challenging
in a dynamically changing environment, which also has led
to a research gap of the AR model-oriented DSS in a smart
environment.

For AR smart environment DSS, one important challenge
is how to filter and localize the heterogeneous IoT data at a
relevant place and time for optimal decision support effect.
AR in-situ visualization stressed spatial proximity between
the data representation and the environment where the data
is collected [18]–[24]; Situated Visualization and Embedded
Visualization both stressed the alignments between the phys-
ical referents and the individual data representation or the
entire visualization [25]. Following these AR visualization
paradigms, many AR sensor data visualization interfaces
overlayed situated or in-situ data over sensing instruments
to allow for a more continuous user experience. However,
for other decision-making contexts where these instruments
are not always located close to the decision-involved objects,
such in-situ or situated IoT data localization approaches may
separate the relevant data and the investigated objects, thus
leading to additional cognitive load.

Other novel approaches such as semantic filtering (or logi-
cal filtering [26]) have also been proposed to filter relevant
information according to the predefined user preferences,
user’s current goals, user’s focus, user’s contextual feedback
history, object’s subjective properties, and environmental
changes [26]–[31]. The semantic filtering approaches based
upon users’ current goals usually necessitate the explicit
specification of a user’s current task [26], [29]. The
user’s current location and focus were also tracked with
Fiducial markers [27], GPS [28], semantic zooming [32],
MagicLenses [33], [34], and cloud anchors [35]. On top
of constructing persistent data-location associations, object
classification was also applied to dynamically identify
objects within the user’s current focus [10], [18], [30], [31],
[35], [36], among which tracking the user’s focal object
based on natural feature analysis allows for relevant data
localization [10], [30] with less constraining knowledge [37].
In these past examples, there is a lack of association
definition between heterogeneous IoT data and various object
categories in a smart environment.

For decision support systems in a smart environment,
another key challenge is how to combine static predefined
decision rules and heterogeneous real-time updated IoT
data to provide timely decision supports in dynamically
changing environments. One common approach is to define a
single data threshold for each type of environmental change
collected by the IoT plants [13], [23] to give an alert for
irregular environmental changes. However, different objects
may require different thresholds to reflect how the data
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affect the object states and involved decisions even for the
same type of IoT data. Accordingly, this paper proposes
the first model-oriented smart home AR DSS to provide
suggestions and explanations based on the semantic data-
object associations.

B. AUGMENTED REALITY VIEW MANAGEMENT
As Bell et al. argued [38], AR view management requires
locating related objects near each other or preventing
occlusion. By attaching AR visual elements to the physical
objects [39], spatial analytic interfaces are allowed to
facilitate in situ spatial interactions with the AR data [40].
Similarly, Situated Analytics [7] argues that in situ AR data
projection directly associates AR information with relevant
physical objects, which were hereupon claimed to have
enhanced decision-making. Also, numerous solutions have
been explored to solve the AR visual clutter issues. Visual
clutter, as the leading cause of occlusion and fragmentation
of information [41], may make the AR display challenging
to interpret and thus lead to high cognitive load. By remap-
ping [42] and segregating [43] AR visual elements according
to the attached objects’ depth, or grouping the visual items
using hierarchical clustering [44], or affecting users’ visual
attention with subtle cueing methods [45], several AR visual
items may be sorted clearly for a better user experience.
Inspired by these prior work, STARE avoids visual clutters by
assembling and mapping relevant AR data to the associated
objects with the focus augmentation modality.

C. AR ONTOLOGY
Prior work has applied ontologies to facilitate the
context-awareness of AR systems by modeling an
information-rich context [46]. Perera indicated that AR
blended with ontologies provides a promising direction to
map the relationship among situation perception, ubiquitous
access, and natural interaction with the context [47].
Djordjevic et al. integrated a smart-home domain ontology
with mobile AR devices to allow for energy consumption
visualization [48]. Similar AR ontology-based information
browsing interfaces visualized Point Of Interests (POIs)
and historical events at cultural heritages [49]. Park et al.
proposed a conceptual AR ontology-based system framework
that integrated building information modeling (BIM) to
assure construction data quality and accuracy [50]. Her-
vas et al. proposed an AR ontology system to support
daily user needs through simple interactions with the
environments [51]. Toro et al. further applied AR ontologies
to support instant maintenance decisions [52] based on
maintainers’ past decisions. Based on the above prior work,
this paper constructs the semantic associations between IoT
data and smart home objects using a lightweight ontology,
which aims to mitigate common DSS issues about the
information overload [53] and user trust [54].

D. AR INTERFACE VALIDATION IN VIRTUAL SIMULATION
ENVIRONMENT
AR interface validation usually confronts challenges about
the in-situ evaluation within targeted physical contexts,

while VR environments allow for immersive emulation
of real-world application contexts with accurate control
of experimental factors. Immersive VR environments thus
have been exploited to conduct AR studies on AR item
searching [55], AR registration error [56], virtuality/reality
latency [57], AR agents [58], and smart home simulation [59].
By replicating the real-world AR experiments in simulated
VR environments, comparable results were found [60],
which has shown the feasibility of such a simulation
AR study approach. Such Mixed Reality (MR) simulated
experiments also showed their promise for smart environment
evaluation [59]. However, the differences between reality
and the computer-generated world have also led to several
limitations, which include the evaluation of AR interfaces that
require frequent interactions with physical objects as well as
outdoor light and tracking issues which can be challenging to
simulate [56], [61]. The AR smart home interface evaluated
in this paper does not require necessary tactile interactions
with physical objects, and it is designed for small-sized
indoor environments. Also, the repeated measure comparison
experiment may minimize the potential bias caused by these
confounding factors of the simulation settings.

E. REMOTE EXPERIMENTS
Common user studies require in-lab participation and super-
vision, thus are expensive and inconvenient for day-to-day
evaluation [62]. Remote user study methodologies have been
proposed to enable large-scale behavioral studies [62]. For
the experiments requiring dedicated equipment or specific
experiment context, Virtual Reality has been exploited to
simulate the workbench for tele-education and collaborative
work [63]–[67]. Although no prior work has been found to
evaluate the AR interfaces using VR simulated environment,
these prior works still indicate such feasibility, which
shows necessities under COVID-19 when close contact was
impossible. Following the principles provided by similar
studies, this paper illustrates this first attempt and gives
further guidelines.

III. SYSTEM OVERVIEW
By implementing STARE on aMicrosoft HoloLens, this proof
of concept system encapsulates the focus augmentation and a
novel explainable suggestion model to shorten the physical
and semantic distance between the user’s focal object and
its relevant decision support data. The following system
overview has been summarised before in a prior work [68].
However, this paper gives a more expansive description of
each of the components that make up the STARE approach.

A lightweight ontology annotates the focal objects with
a semantic annotator. The decision engine further creates
multi-dimensional semantic associations between the anno-
tated object and its relevant IoT data. From these associations,
the system can instantly augment the decision-maker’s
focal object with an assembly of relevant IoT data and
corresponding brief suggestions. This mechanism allows the
users to freely explore the smart environment by invoking
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FIGURE 1. Augment physical objects with all relevant IoT data and corresponding brief suggestions for instant explainable decision support.

the decision-support information for the objects they are
currently focused on. For example, a user wants to open the
window but is not sure about outdoor air quality, so they use a
voice command to trigger a decision-support AR annotation
about the window, which superimposes indoor and outdoor
air quality data over the windows and shows a suggestion to
close the window due to outdoor air pollution (Fig. 1).

A. SYSTEM ARCHITECTURE
As is illustrated in Fig. 2, this system consists of five
main modules: object classifier, semantic annotator, decision
support component, Bluetooth sensor data scanner, and AR
information visualization module. To achieve the focus aug-
mentation strategy, the system applies focus+voicecommand
modality to allow for the hands-free triggering of the AR
information over objects within the user’s focus. When the
voice command is detected, the cloud object classifier recog-
nizes the objects within the user’s focus and passes the object
label to the semantic annotator for object annotation and
localization. Next, the decision support module constructs the
semantic associations between this object and its relevant IoT
data to generate a semantic model for this focal object. This
system then passes the model to the AR front-end to generate
suggestions and explanations. The system then inputted the
BEACON IDs of relevant IoT data associated with the focal
objects to the Bluetooth Low Energy (BLE) sensor data
scanner to filter the relevant IoT data streams fed to the
information visualization module. Finally, using the semantic
models created by the decision support component, the AR
front-end superimposes the focal object with its semantically
relevant IoT data and corresponding suggestions to provide
instant-explainable decision support.

B. OBJECT CLASSIFIER
This system classifies objects through image analysis. The
web camera captures an image for analysis after detecting
the voice command. This image is then sent to the Microsoft
Azure Custom Vision1 cloud service for object classification.

1https://azure.microsoft.com/en-us/services/cognitive-services/custom-
vision-service/

FIGURE 2. System architecture diagram: the system consists of five main
modules: object classifier, semantic annotator, decision support
component, Bluetooth sensor data scanner, and AR information
visualization module. To achieve the focus augmentation, the
focus + voice command interaction approach is applied to allow for the
active triggering of the AR information for focal objects using a voice
command.

As recognizing all objects in the smart environment and
superimposing information over them will lead to informa-
tion overload, an object list was defined for each given
smart home context to filter only decision-involved objects.
Moreover, one matching percentage threshold and object
depth threshold are also defined to filter out the unclear
objects. For each matching object successfully recognized
from this image, the object classifier returns one bounding
box, which is then used for object localization in the physical
world. This decision-involved object list can be modified
or extended by removing or adding object images for
training.

C. LIGHTWEIGHT ONTOLOGY & SEMANTIC ANNOTATOR
The proposed lightweight ontology aims at providing a
semantic structure for the data collected from the different
sensors and serves as a stepping stone towards the more elab-
orated reasoning rules of the Decision Support component of
STARE. By extending the Semantic Sensor Network (SSN)
Ontology,2 each node provides a formal expression of the

2https://www.w3.org/TR/vocab-ssn/
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events captured by the sensors. The semantic annotator
extends the SOSA Ontology (Sensor, Observation, Sample,
and Actuator) [69] to formally express and record the object
recognition events captured by the object classifier. Utilizing
an object boundary acquired by the object classifier and the
object depth, the semantic annotator is allowed to precisely
localize the object in the physical world and initiates an
annotation for this focal object. Simultaneously, the STARE
lightweight ontology transfers the object label recognized
by the object classifier into Resource Description Frame-
work (RDF) documents (Fig. 2), which ensure that the label
structures comply with the semantic data models thus can
be easily consumed by the decision support component. The
STARE lightweight ontology further supports observations
registered by the sensors and provides a semantic structure
of the sensors by combining the vocabularies from SSN and
SOSA.

D. DECISION SUPPORT COMPONENT
The core of the STARE framework is a decision support
component that provides a novel suggestion model to
achieve high-level decision support within a dynamically
changing environment. As Fig. 2 shows, the decision support
component incorporates a triplestore and a decision engine
to generate suggestions and explanations. The object RDF
documents generated by the semantic annotator are all stored
in this triplestore, which serves as the repository to feed the
decision engine. This decision engine comprises a rule store
and a reasoning engine to construct the multi-dimensional
semantic associations between the object and its relevant
IoT data. The rule store assigns decision rules to the object
RDF, while the reasoning engine makes logical inferences
based on the object’s decision rules. In the rule store, general
decision rules are defined for several object superclasses
to indicate the optimal decision principles under different
smart environment conditions, based on which the specific
decision rules of object subclasses are further derived. These
decision rules are now defined by system designers at this
stage, while they can also be defined by domain experts in
the given decision area or be customized by end-users with
a customization component in the future. According to the
decision rules, the reasoning engine semantically annotates
this object RDF document with a list of relevant IoT data
and their descriptors. As Fig. 3 illustrates, this relevant IoT
data list contains all environmental parameters that may
change the object’s states (e.g. sunshine and moisture for
indoor plants; fridge temperature for the fridge, etc.) or
interfere with the usage decision about this object (e.g. air
quality for air purifier and windows; energy consumption
for the home appliances, etc.). Such a semantic data-object
association mechanism can be applied to various smart envi-
ronments as it considers heterogeneous data types and objects
types.

Each type of semantically associated IoT data is also
semantically annotated using the STARE lightweight ontol-
ogy. For each semantically annotated IoT data, the data

FIGURE 3. Decision engine provides decision rules and IoT data
descriptors for explainable decision support data visualization.

descriptor contains the objective properties, such as the
sensor/device name and a BEACON ID used for BLE
data scanning (Fig. 2). IoT data descriptors also contain
decision-involved properties to support dynamic suggestion
generation, which includes decision-required thresholds of
this IoT data and recommended actions for its associated
objects. For example, indoor plants are semantically asso-
ciated with soil moisture sensors, whose decision-involved
properties can contain the optimal moisture range under
the current plant growth stage and sunshine level. Based
on these properties, the recommended watering actions are
predefined for the sensor observations that moisture is lower
than this optimal range. These decision-involved properties
reflect how the moisture sensor data can change the indoor
plants’ health states, thus affecting the watering decisions,
therefore are defined in the descriptors of the moisture sensor
data associated with the indoor plants (Fig. 3). Following
the decision rules defined for the indoor plants, basil and
roses will be assigned with the same type of relevant IoT
data but with slightly different descriptors according to
their different growth conditions. Hence, under any certain
condition reported by this list of IoT data, the reasoning
engine can find abnormal IoT data that falls into its decision-
required thresholds, and infer the logical consequences
about the object’s state changes or usage requirements, thus
generating suggestions based on their descriptors(Fig. 3).
However, due to the interrelationships and interference
among different object properties, object RDF documents
are needed to formally express and record these different
object properties and their inner connections. Therefore, the
object RDF documents that the decision engine has further
semantically annotated are then passed to the AR front-end
to enable decision support data visualization. Simultaneously,
the relevant IoT data list associated with this object RDF
is also passed to the BLE sensor data scanner, which
scans all neighborhood sensor data streams. Accordingly,
the BLE scanner filters relevant IoT data with the matching
BEACON IDs from all real-time sensor data streams. Then
it encapsulates the current values of these relevant IoT data
into RDF documents to feed the AR information visualization
module.
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FIGURE 4. VR simulation experiment platform (left: interface A: smart home interface applying the STARE framework; middle: interface B: smart home
interface applying the suggestion model of the STARE framework without focus augmentation; right: interface C: a common smart home interface which
in-situ visualizes all sensor data).

E. AR EXPLAINABLE DECISION SUPPORT DATA
VISUALIZATION
As Fig. 3 illustrates, utilizing the decision rules and IoT data
descriptors derived from the STARE lightweight ontology,
the AR front-end can superimpose suggestions over the focal
object to support decisions about it. However, such high-level
suggestions or recommendations without any explanation
do not generate trust from a decision-maker. Nunes and
Jannach [54] indicated that explanations could provide more
information about the interrelation among relevant entities in
the knowledge base to help the decision-maker better under-
stand and trust the provided suggestions or recommendations.
Accordingly, STARE explains the provided brief suggestions
with an assembly of semantically relevant IoT data (Fig. 3)
as the decisive input values that are used to determine the
resulting advice [54].

For a decision to be generated, input values must reach
the decision-required thresholds; once this is achieved, the
key features within that decision are then highlighted with
high color codes and alerts (Fig. 3). Hereupon, the AR
information visualization module real-time superimposes all
decisive input values over the object’s semantic annotation
to clearly explain the decision logic behind the suggestions.
Such explainable decision support not only helps the user to
trust and learn from the illustrated decision logic (e.g. with
what air quality should they turn on the air purifier), but
also provides them with more freedom to make their own
decisions based on the visualized IoT data and the decision
logic they learned from the prior user experience.

In prior work that used in-situ or situated visualized IoT
data with AR headsets, the situated information is typically
transferred into text [35], color values [70], shape sizes [71],
transparency [23], height [71], gauges [20] to allow for effort-
less comprehension, while detailed information is normally
considered less important. To retain these details without
causing visual clutter, this system provides a simplification
for all superimposed data and allows for further investigation
utilizing the concept of details-on-demand [72] when this
simplification is insufficient for the user. As Figure 1 shows,
one data icon was used to represent each IoT data type
and its color was mapped to the corresponding value. The
IoT data value and data name are also displayed above the

icon for precise data reading [20], [23]. By clicking (gesture
interaction) on any IoT data annotation, detailed information
will be visualized in the form of line charts, histograms, or pie
charts, which are determined by the data types.

Moreover, customized display preference (Fig. 2) of each
semantic data-object association is also recorded in the
descriptors according to a user’s historical interactions with
the system. In practice using historical interactions, the user
can remove any superimposed IoT data annotation over any
object, and this data will not be displayed for this object in
the future.

F. IMPLEMENTATION
This system was developed using Unity3D,3 and the
Microsoft Hololens4 was used for the proof of concept
interface development. The Unity3D plugin Mixed Reality
Toolkit5 provided the basic support for MR interface devel-
opment. Microsoft Azure Custom Vision6 cloud service was
applied for object classification. For the remote experiment,
the simulated VR smart home and smart home interfaces
were developed with SteamVR.7 The Unity3D plugin Http
Client8 was applied to upload experimental data to an online
database. Due to the potential risk of VR symptoms [73],
it was declared on the participant recruitment poster that
the computer used to conduct the experiment tasks must be
equipped with a minimum graphics card requirements of
GTX 1060 or RX 480.

IV. REMOTE USER STUDY WITH MIXED REALITY
SIMULATION
It is expensive and time-consuming to construct a fully
equipped smart environment for evaluation. Additionally, the
user study would potentially require close contact between
the participant and experimenter, which is impossible during

3https://unity.com/
4microsoft.com/en-us/hololens
5https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-getting-

started
6https://azure.microsoft.com/en-us/services/cognitive-services/custom-

vision-service/
7https://store.steampowered.com/steamvr
8https://assetstore.unity.com/packages/tools/network/http-client-79343
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the COVID-19 crisis. Therefore, a remote user studywas used
to compare the designed AR smart home interface with two
alternative interfaces in a virtual smart home (Figure 4). This
study allowed the remote participants to experience the AR
smart home interfaces within an immersive simulated context
using their Virtual Reality headsets. Quantitative experiment
results, including participants’ movements, answers, and
questionnaire feedback, were automatically collected and
uploaded to an online database from the remote simulated VR
experiment testbed.
STARE encapsulates two strategies to improve the decision

maker’s user experience. Firstly, the focus augmentation
allows users to trigger the AR decision support service
for their focal object, which is achieved by the focus +
voice command modality in the proof of concept interface.
Secondly, the proposed explainable suggestion model assem-
bles object-data associations to provide direct-immediate
decision support within smart environments. To clearly
evaluate the benefits and limitations of these two strategies
in STARE, the work listed six research questions to explore
the effects of the proposed suggestion model and the focus+
voice command modality (Table 1). To evaluate the explain-
able STARE suggestion model, this proof of concept interface
was compared against an alternative interface, which used the
most common in-situ IoT data visualization metaphor [11],
[18] to provide data-oriented decision support in a smart
environment. Additionally, to evaluate how the application of
focus augmentation affected the user experience, a proof of
concept interface was compared against another alternative
interface that applied the same suggestion model but without
the focus augmentation. By comparing against these two
alternative smart home interfaces, the benefit and limitation
of the twomain strategies applied in the STARE can be clearly
evaluated.

Therefore, three smart home interfaces were compared:
• Interface A: the proof of concept interface that applies
to STARE, which cooperates the focus augmentation
(focus + voice command interaction modality) and a
novel suggestion model to provide decision support
(Figure 4, left).

• Interface B: a smart home AR interface that applies to
STARE while not applying focus+voicecommand inter-
action modality to augment focus. Instead, it displays all
AR information over relevant objects at once from the
beginning (Figure 4, middle).

• Interface C: A common AR in-situ smart home data
visualization interface [11], [18] that directly superim-
poses all sensor data over corresponding sensors at once
(Fig. 4, right). As this data-oriented decision support
interface did not directly provide suggestions, extra
information, such as decision rules, is provided to help
participants complete the tasks (Subsection IV-C1).

As a prior MR simulation user study ( [74]) suggested
to ‘‘avoid the introduction of unwanted between-subject
variables’’, so a within-subject experiment was designed
and conducted to compare these three interfaces. The order

of these three test conditions was counterbalanced between
participants to mitigate the transfer effect. As Table 1
shows, by comparing these three smart home AR interfaces,
six research questions were explored from the aspect of
effectiveness, user satisfaction, and information overload of
the proposed suggestion model and its cooperation with focus
augmentation strategy. To quantitatively answer the research
questions about the effectiveness, the main experimental
task required the participants to answer questions about the
smart environment with the aids of different given interfaces.
In this way, the error rate and task completion time could
quantitatively reflect how the tested interfaces help users
understand the smart environment andmake correct decisions
from different aspects.

A. HYPOTHESES AND EXPERIMENTAL VARIABLES
As explained above, the only independent variable was
the smart home interface, and it had three test conditions:
interface A, interface B, interface C. This common in-situ IoT
data visualization interface interface C was regarded as the
baseline condition. Both objective measures and subjective
feedback were collected as dependent variables. To answer
the research effectiveness question, the testbed collected
the task completion time and error rate as the objective
indications of the system effectiveness. Subject ratings about
the effectiveness were also collected to check if they coincide
with the objective measures. To answer the other four
research questions, the testbed collected subjective ratings
from a questionnaire to measure the information overload and
user satisfaction. Based on these experimental variables, apart
from the null hypothesis, six hypotheses are listed in Table 1
to answer the corresponding research questions on the left.
H0 There is no difference between the three tested AR smart

home decision support interfaces.

B. REMOTE PARTICIPANTS
Participant recruitment advertisements were posted in Face-
book groups to recruit remote participants over 18 and
had access to a VR headset and a computer at home.
26 people sent the request to participate in the remote
experiment, among which 3 of them did not meet the
equipment requirements, and 5 of them did not complete
the experiment. Therefore, experimental data was collected
from 18 participants. All these 18 participants had prior
experiences in using Virtual Reality products. 7 participants
had prior experiences using Augmented Reality products.

C. EXPERIMENTAL PROCEDURE
After the participants signed the consent forms, the instruc-
tion documents and the simulation experiment testbed were
sent to the participants. After finishing the before-task
training provided by the simulated experiment testbed, each
participant performed three experimental tasks using the
three smart home interfaces in counterbalanced orders. Each
participant was asked to fill in a questionnaire about each
interface separately, and they did this immediately after they
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TABLE 1. Research questions (left), corresponding hypothesis (middle), and corresponding results (right).

finished a given task. Instead of supervising the experiment
tasks by arranging the online meetings between remote par-
ticipants and experimenters, an automatic experiment process
navigation and supervision component was developed for the
VR smart home testbed (Subsection IV-D). This autonomy
is crucial for the experiment as it reduces the potential
for experimenter bias [75]. This bias can be caused by
experimenters’ expectancy effects [75] when the experi-
menters are fully engaged in the whole task procedure for
either supervision or guidance aims. Virtual and Augmented
Reality technology could be particularly vulnerable due to
the novelty of the technology to a participant. Past simulated
experiments have even gone as far as using dedicated agent
systems [58] along with the corresponding avatar to give
their testbed autonomy to conduct the whole experiment
without the need of input from the experimenter. In this case,
the UI itself was sufficient to guide the participants, and
given the tracking data from the resulting experiment, this
proved to be the case. Only two outliers were discovered
when this data was analyzed. Finally, this approach was
taken to avoid the psychological pressure on the participants:
the experimental tasks required no time limits to encourage
participants to carefully answer the in-task questions, while
when experimenters are staying in the online meetings to wait
for the participants to finish each task, the participants may
fail to answer in-task questions calmly and carefully out of the
time pressure. This experimental procedure would not have
been different, even if an in-person experiment was possible.

1) TASKS
For a remote user study that assumes no supervision
and guidance from experimenters, the experiment tasks
were simplified, making no requirements for any long text
input or complex data manipulation. Therefore, each task
only required the participant to answer 13 multiple choice
questions with the assistance of a given interface. Four types
of questions were designed to test the effectiveness of the

given interface (Table 2) from the aspects of decision support
or smart home information interpretation. Each question
targeted one object and one or more types of IoT data that
are accessible through the smart home interface, thus the
participant needed to explore the virtual smart home with the
assistance of the interface to be able to answer each question.

The orders of the within-task questions were counterbal-
anced to mitigate the transfer effect, and the same number
of these four types of questions were provided for each
task to keep the consistent difficulty. In addition, in each
task, one extra question was inserted to detect contradictory
answers, and this technique also allowed us to invalidate
any user questionnaire result. While after checking the
questionnaire responses, no responses were discarded as
all remote participants answered these additional questions
correctly.

As Interface C did not provide any brief suggestions like
the other two interfaces, two extra charts containing the
indoor plants’ optimal growth conditions and home appli-
ances’ information were provided as extra decision-support
information to enable the participant to finish the interface
C task. These extra charts were also applied to simulate
the common application scenario of such AR in-situ IoT
data visualization interfaces which the user may need
to search online for extra relevant information to make
decisions according to the superimposed IoT data in the smart
environment.

2) QUESTIONNAIRES
Each questionnaire consisted of three parts to measure system
effectiveness, user satisfaction, and information overload. For
each part of a questionnaire, 3 or 4 statements were listed
to collect responses on 5-point Likert scales from ’not at
all’ to ’extremely agree’. Similarly, cross-checking questions
were inserted to test the validity of the questionnaire answers
(APPENDIX A Table 3).
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TABLE 2. The within-task questions were designed to evaluate the interface effectiveness in terms of the decision support and smart home information
interpretation.

D. VR SIMULATION REMOTE TESTBED
The testbed provided a medium-fidelity VR smart home as
the experiment environment. Four indoor plants, nine types
of home appliances, and thirteen smart home sensors were
placed within this virtual home. Smart home applications
normally assumed the users were familiar enough with the
application environment, while this was hard to achieve for
the simulated smart home in a short time. To make sure the
participants knew where each object was placed in the virtual
smart home, this testbed attaches a name label to each indoor
plant or home appliance. This testbed also simulates the three
tested smart home interfaces within the virtual smart home
(Figure 4). Except for the usage of the proposed suggestion
model and focus augmentation modality, all user interface
designs of these three simulated interfaces were identical and
strictly aligned with the actual proof of concept AR interface.

Apart from the simulated AR interfaces and the virtual
smart home, this testbed was also embedded with the
automatic experimental navigation and supervision services
to guarantee the experiment’s integrity. The experiment’s
integrity was also protected using a built-in automatic data
collection module that collected and uploaded accurate
experimental data, including heat maps of a user’s movement
during the experiment. Users were informed of this anony-
mous automatic data collection through the consent forms for
the experiment.

1) AUTOMATIC EXPERIMENT PROCESS NAVIGATION AND
SUPERVISION
As it was explained in Subsection. IV-C, automatic built-in
experiment navigation and supervision were developed for
the VR testbed to automatically guide the experiment pro-
cedure without biasing the experimental results. To achieve
this goal, the testbed provided extra guidance information
throughout the whole experiment process, which included an
overall training, before-task warm-up, within-task question
answering (Figure 4, left), after-task instruction, and extra
authentication steps to guarantee the correct experiment
procedure.

For the first time when the participant opened the VR
testbed, an overall training phase was provided. This training
phase ensured that the participant felt confident to use
the smart home interface before each experimental task
started. After this overall training, every time the participants
began to use a new test interface, a before-task warm-up
phase was provided to guide the participant to practice the

interaction with this interface. As Figure 4 (left) shows,
to avoid distracting the participant from the immersive
experiment context, all within-task questions were displayed
and answered within the VR testbed. After each task was
finished, the after-task instructions asked the participant to
have a break and fill in the correct questionnaire before
starting the next task. To guarantee that the participant fills
in the correct questionnaire before starting the next task,
the testbed required the participant to input the correct
authentication code provided by the last questionnaire to start
the next task.

2) AUTOMATIC EXPERIMENTAL DATA COLLECTION
All quantitative experiment data was collected automatically
within this remote VR testbed in real-time and was uploaded
to an online database after all experimental tasks were
finished. Apart from task completion time, error rate,
participant’s assigned id, and task completion order were
recorded, extra data was also collected to help replicate the
participants’ within-task behaviors. This extra data included
the number of removed IoT data annotations, the number
of voice commands triggered by the participants, and the
participant’s movement routine within the virtual smart
home. By checking the participants’ movement routine and
the time they spent in each place, the experimenters can
identify if potential distractions happened during the tasks.

V. RESULTS
In this section, the study results with statistical analyses
(α = .05, unless noted otherwise) are reported. Mauchly’s
Test was conducted before eachANOVA analysis and showed
no violation to the Sphericity of the data.

A. EFFECTIVENESS
1) TASK COMPLETION TIME
As the task completion time box chart in Figure 5 illustrated,
on average, participants took the longest time to complete
the tasks using interface C, and took the shortest time to
complete the tasks using interface A. A Shapiro-Wilk test
found some of the conditions were not following a normal
distribution, so the Align Rank Transform (ART) ( [76])
was applied before conducting a Repeated-Measures one-
wayANOVA for factorial analysis. After theART, the outliers
in the task completion time box chart (Figure 5) disappeared
([77]). The ANOVA result showed the significant main effect
of the tested smart home interface (F(2, 17) = 11.479,
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FIGURE 5. Experiment results through the comparison of three tested AR smart home interfaces(interface A: a smart home interface applying STARE,
interface B: a smart home interface applying the suggestion model of STARE without focus augmentation, interface C: a common smart home interface
which in-situ visualize all sensor data).

p = .00016). Thus the Null hypothesis H0 was rejected.
Further post hoc tests using the Bonferroni corrected t-tests
revealed significant differences between interface A and
interface C (p = .000239) as well as between interface B and
interface C (p = .00053). No significant differences were
found across the task completion time using interface A and
interface B.

2) ERROR RATE
The error rate was calculated as the ratio of the wrongly
answered questions over the total number of questions
provided in each task. Overall, the error rates of all tasks
were low and at most 2 errors were made within one task (the
highest error rate was 0.15 and there were 13 questions for
each task). As the error rate box chart in Figure 5 showed,
averagely, participants made the least errors while using
interface A and made the most errors while using interface C.
However, using a Repeated-Measures one-way ANOVAwith
ART ( [76]), no significant differences across the error rates
under the three test conditions (F(2, 17) = 1.172, p = .322).

3) CORRELATIONS BETWEEN TASK COMPLETION TIME AND
ERROR RATE
AKendall’s Tau-b test was performed to test the relationships
between the task completion time and error rate for each
test condition among the 18 participants. Positive correlations
were found between these two dependent variables for all the
three test conditions, and the correlation between the task
completion time and the error rate under the condition of
interface A was statistically significant (tb = .442, p =
.0223). This correlation is discussed in section VI-D.

4) RATE OF THE CORRECT SCORE
To get an integrated objective measure of the effectiveness,
the Rate of the Correct Score (RCS) ([78]) was calculated for
each tested interface, which has been used to ‘‘transforming
and combining response time and response accuracy vari-
ables’’ to ‘‘represent an index of response speed adjusted
for errors’’ ( [78]). The combined results showed that the
interface C led to the lower effectiveness (RCS = .0228)
than the others: interface A (RCS = .0364) and interface B
(RCS = .0319).

5) SUBJECTIVE RATINGS ON EFFECTIVENESS
The subjective ratings of the system effectiveness were
measured with the average scores of the responses from the
corresponding part of the questionnaires. The average score
of the effectiveness rating about the interface C was the
lowest (effectiveness analysis in Figure 5). The result of a
Repeated-Measures one-way ANOVA with ART ( [76]) also
indicated significant differences across the effectiveness of
three test conditions. Post hoc tests using the Bonferroni
corrected t-tests showed that the interface Cwas significantly
less preferred than the other interfaces: interface A (p = .006)
and interface B (p = .013). No significant difference was
found between the interface A and interface B. Therefore,
the subjective rating on the interface effectiveness showed
the significant main effect that coincided with the objective
measure of task completion time: the interface Cwas the least
effective among three tested interfaces. Thus the hypotheses
H1 was supported according to the significant improvement
of Interface A and Interface B in terms of task completion
time, RCS, and effectiveness ratings. While the hypotheses
H4 was rejected as no significant differences were found
between interface A and interface B in terms of decision-
support effectiveness.

B. USER SATISFACTION
The user satisfaction was measured with the average
scores of the responses from the corresponding part of the
questionnaires. As Figure 5 illustrated, the interface A had
the highest average satisfaction score. However, a Repeated-
Measures one-way ANOVA with ART ( [76]) showed no
significant differences (F(2, 17) = 2.591, p = .09) across
the satisfaction ratings of the three tested interfaces. Thus
hypotheses H2 and H5 were both rejected.

C. INFORMATION OVERLOAD
The information overload was measured with the average
scores of the responses from the corresponding part of the
questionnaires. From the average rating scores, participants
perceived the least information overload from the interface
A and perceived the most information overload from the
interface C. By performing a Repeated-Measures one-way
ANOVA, a significant main effect was found across the three
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tested interfaces (F(2, 17) = 5.518, p = .008). The further
pairwise sample t-tests with Bonferroni correction showed
significant differences in favor of interface Awhen compared
to the others: interface B (p = .015) and interface C (p =
.0057). No significant difference was shown between the
interface B and interface C. The result strongly supported
hypotheses H6 while rejected hypotheses H3.

D. CORRELATION BETWEEN INFORMATION OVERLOAD
AND EFFECTIVENESS
The Kendall’s Tau-b test was performed between the
information overload and effectiveness ratings, significant
positive correlations were shown across all measures of these
two variables for interface A and interface B. Significant
positive correlations were found between the information
overload and objectivemeasures of effectiveness for interface
C.

VI. DISCUSSION
By comparing three different smart home decision sup-
port interfaces, this user study evaluated the explainable
suggestion model and the focus augmentation modality of
STARE in terms of effectiveness, satisfaction, and infor-
mation overload. By supporting the hypothesis H1 while
rejecting the hypothesis H4, these results showed that the
suggestion model helped improve effectiveness, while the
focus + voice command focus augmentation modality did
not bring higher effectiveness. By supporting the hypothesis
H6 and rejecting the hypothesis H3, these results proved
that by applying the focus augmentation modality, STARE
achieved less information overload. No improvement in user
satisfaction was observed from the results as hypotheses H2
and H5 were both rejected.

A. USER SATISFACTION
The technique did not lead to significant improvements in
terms of user satisfaction. As mentioned in section III, the
focus augmentation modality shortens the distance between
the user’s focal object and its relevant decision support data.
Thus the users do not need to approach the data sources to
read the required information. However, as the experiment
was conducted in a virtual world that allowed for instant
navigation, this shortened distance provided by the focus
augmentation modality may not have been noticed by the
users even if the quantitative data showed that they took
substantially less time using the interface A and interface B.
Also, the in-task questions’ complexity was not high enough
to lead to significant differences in user satisfaction and error
rate.

B. INFORMATION OVERLOAD
The results showed that STARE significantly mitigated the
information overload issue by applying the focus augmenta-
tion modality to trigger the decision support data for focal
objects. Regarding the highest ratings of interface A in terms
of information overload, one possible reason might be that

it displayed the least amount of information at any given
time. The focus + voice commands modality helped reduce
the amount of displayed information: all data irrelevant to the
object within the participant’s focus are hidden.
Without the application of the focus augmentation modal-

ity, STARE did not lead to the significant decrease of
perceived information overload so the hypotheses H3 was
rejected. This result proved that simply augmenting all smart
environment objects with decision support data will lead to
duplication.
However, interestingly even though such duplication

increased the total amount of information displayed by the
interface B, the interface B still showed slightly lower
perceived information overload compared to the interface
C which displayed much less information (information
overload analysis in Figure 5). This result indicated that
the possible duplication caused by the suggestion model of
STARE was less important compared to the advantages of
the reduced distraction brought by the focus augmentation
modality. Moreover, although interface C displayed the
least amount of information within the user’s field of view
among the three tested interfaces, it still led to the highest
perceived information overload. This surprising result might
have suggested that interface A led to the least perceived
information overload not only due to the reduced amount
of information, but also, the superimposition of the decisive
input data assembly over the decision-involved objects
led to less cognitive load for the user compared to the
scattered in-situ superimposition of sensor data. Therefore,
the focus augmented within STARE although displays more
information within the user’s field of view compared to the
common approach of in-situ sensor data superimposing, still
leads to less perceived information overload by allowing for
a proactive trigger of decision support data over the focal
objects.

The positive correlation between the effectiveness mea-
sures and the information overload ratings showed that the
information overload perceived by the participants could have
affected their decision performance. The increased amount of
displayed information within the user’s field of view, as well
as the distraction of scattered irrelevant information, might
have both led to more extra time and effort spent on searching
for useful information.

C. EFFECTIVENESS
The results illustrated in section V-A1 indicated that the
STARE suggestion model led to the highest efficiency.
Interestingly, the close results achieved by interface A and
interface B in task completion time (Figure 5) have shown
that the usage of focus+ voice command focus augmentation
modality did not lead to longer decision-making time,
although it as the extra step to proactively trigger information
display usually takes extra interface interaction time. This
surprising result shows that participants spent longer time
on searching and filtering helpful information to support
decision making than proactively triggering the information
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TABLE 3. Post task questionnaire A.

display for decision-involved objects. Therefore, reducing
distractions caused by information redundancies could
be more important than simplifying interface interactions
regarding decision efficiency improvement.

The hypotheses H1 was supported according to the
significant improvement of Interface A and Interface B
in terms of task completion time, RCS, and effectiveness
ratings. However, despite the significantly improved decision
efficiency achieved by the proposed suggestion model, the
results illustrated in section V-A2 indicate that the suggestion
model did not make significant improvements on the decision
accuracy. As section V-A2 showed, although this suggestion
model did slightly reduce the error rates, the error rates under
all test conditions were meager. This result might indicate
that the designed questions within the tasks were not difficult
enough to cause errors. Thus, the participants could still find
the correct answers using any smart home interface even
though it might take longer to use certain interfaces. On the
other hand, the overall low error rate also shows that the
automatic supervision and guidance worked well to assist the
smooth task procedures.

D. LIMITATIONS
The remote MR study allowed for a user study during
COVID-19. Meanwhile, the outliers in task completion
time analysis of Figure 5, as well as the movement heat
map collected from the VR testbed, indicated potential
distractions during the task procedures. This distraction was
hard to avoid without the close supervision of experimenters.
However, thanks to the automatic experiment supervision
and navigation feature of the VR testbed, such situations
were very few and did not lead to significant bias to the
results. Additionally, the positive correlation between the
task completion time and the error rate of the interface
A might indicate that some participants did not get fully
trained by the warm-up phases before the tasks thus needed
to check the introduction document during the task. The
reason behind this assumption is that Interface A required the
additional use of voice command interaction, which was an
additional modality that a participant needed to remember.
These limitations will be easily mitigated in a future physical
user study using the AR smart home interfaces with physical
smart home settings to compare these results.

VII. CONCLUSION
This paper has presented an innovativeAR smart environment
decision support framework (STARE) which incorporates a
novel suggestion model and a focus augmentation modality
to allow for immediate-continuous decision support within
the user’s currently investigated context without information
inconsistency and redundancy. Such enhanced user expe-
rience is achieved by seamlessly augmenting the user’s
focal objects with the assembly of semantically relevant IoT
data and the corresponding suggestions generated from the
semantic data-object associations. A prototype interface has
been implemented using a Microsoft Hololens AR display,
however, due to COVID-19 social distancing requirements
and prohibitive costs associated with the commissioning of
a fully equipped smart home, a VR smart environment was
adopted as the testbed. This approach led to the creation of a
remote user studywhich enabled a cross-comparison between
the STARE and the typical in-situ smart home data-oriented
decision support interfaces. The results emanating from this
work serve to answer some key research questions:
• When compared to the typical in-situ smart home
data visualization metaphor that provided data-oriented
decision support, STARE has been shown to sig-
nificantly lessen the information overload problem
and significantly enhance system effectiveness for
decision-making tasks in smart environments.

• While applying the STARE, the usage of the focus +
voice command focus augmentation significantly mit-
igated the information overload issue; however, it did
not bring significant improvement overall for system
effectiveness.

• STARE failed to achieve scientifically significant
improvement in user satisfaction.

Lessons learned from this novel remote MR simulation
experiment also form an important contribution offering a
novel alternative to in-person research studies.

Future work in this area needs to be conducted to replicate
these results with a larger participant cohort, together
with a comparison study in a physical smart environment.
The provision of suggestions and relevant IoT data for
explanation can be independently evaluated in the future to
compare which of them contributed more to the enhanced
decision support brought by STARE. Further enhancements
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to STARE incorporating machine learning will enable the
automatic construction of semantic data-object associations.
This enhancement will ensure STARE extensibility allowing
for the creation of smart environments that deliver truly
intuitive interfaces for a future empowered ubiquitous IoT
world.

APPENDIX
POST TASK QUESTIONNAIRE A
See Table 3.
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