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ABSTRACT Smartphone-based digital biomarker (DB) assessments provide objectivemeasures of daily-life
tasks and thus hold the promise to improve diagnosis and monitoring of Parkinson’s disease (PD). To date,
little is known about which tasks perform best for these purposes and how different confounds including
comorbidities, age and sex affect their accuracy. Here we systematically assess the ability of common self-
administered smartphone-based tasks to differentiate PD patients and healthy controls (HC) with and without
accounting for the above confounds. Using a large cohort of PD patients and healthy volunteers acquired in
the mPower study, we extracted about 700 features commonly reported in previous PD studies for gait,
balance, voice and tapping tasks. We perform a series of experiments systematically assessing the effects of
age, sex and comorbidities on the accuracy of the above tasks for differentiation of PD patients and HC using
several machine learning algorithms. When accounting for age, sex and comorbidities, the highest balanced
accuracy on hold-out data (73%) was achieved using random forest when combining all tasks followed by
tapping using relevance vector machine (67%). Only moderate accuracies were achieved for other tasks
(60% for balance, 56% for gait and 53% for voice data). Not accounting for the confounders consistently
yielded higher accuracies of up to 77% when combining all tasks. Our results demonstrate the importance
of controlling DB data for age and comorbidities.

INDEX TERMS Digital biomarkers, machine learning, Parkinson’s disease, smartphones, wearable devices.

I. INTRODUCTION
Diagnosis of Parkinson’s disease (PD) still often relies on
in-clinic visits and evaluation based on clinical judgement
as well as patient and caregiver reported information. This
lack of objective measures and the need for in-clinic visits
result in the often late and initially inaccurate diagnosis [1].
Recent studies have identified digital assessments as such
promising objective biomarkers for PD symptoms including
bradykinesia [2], [3], freezing of gait [4], [5], impaired dex-
terity [6], balance and speech difficulties [7]–[9]. Most of
these results were obtained with a moderate number of par-
ticipants and in a standardized and controlled clinical setting,
reducing generalizability and limiting an interpretation with
respect to applicability of these measures to an at-home self-
administered setting [10]–[12].
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Asmost relevant sensors deployed in these in-clinic studies
are also embedded in modern smartphones, this opens the
possibility to collect such objective, reliable and quantitative
information as digital biomarkers (DB) in an at-home setting
and therewith to facilitate diagnosis, health monitoring or
treatment management using low-cost, simple and portable
technology [13]. Indeed, recent studies applying machine
learning algorithms to these high-dimensional data sug-
gested a good diagnostic sensitivity of the respective digital
assessments for detection of Parkinson’s disease [14]–[17].
However, such at-home assessments create a range of new
challenges including selection bias, confounding and sources
of noise that need to be understood and dealt with to ensure
good reliability of respective outcomes to a level that is
sufficient for at home data collection [18]. For example,
age, sex and comorbidities are known confounding factors
that impact many measures of disease symptoms across neu-
rodegenerative diseases including PD [19]–[23]. Yet, several
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TABLE 1. Demographics for PD and HC subjects for each experiment. Those cases where age or sex are significantly different between PD and HC are
indicated with an asterisk (2 sample t-test for age and Chi-square for sex with 95% confidence).

studies eluded the importance of matching and controlling
for these variables [24]–[26], including age, sex [24], [27] or
comorbidities which might induce motor (i.e. bradykinesia,
tremor or rigidity) and non-motor (i.e. fatigue, restless legs or
sleep) symptoms [25]. Other potential data collection biases
include small sample sizes [14], [28], inclusion of several
recordings per subject [15], [24] or signals of different time
lengths [27], which may potentially lead the classifier to
detect the idiosyncrasies of each subject rather than spe-
cific PD related symptoms, as demonstrated by Neto et al.
[29]–[31]. In addition, replicability of results is rarely per-
formed in current studies, which may lead to lack of gen-
eralizability. Despite the considerable promise for DB in
healthcare, these issues limit comparability across studies,
hindering interpretation and obstructing translation to the
clinic.

Recently, a large dataset of at-home smartphone-based
assessments of commonly applied PD tasks including gait,
balance, finger tapping and voice evaluations was collected
in the mPower study providing a unique resource to examine
DB in the study of PD [32], [33]. Indeed, several studies

applying machine learning (ML) algorithms have employed
this dataset in the study of PD diagnosis, achieving quite
different results across studies. Whilst plausible, the impact
of the aforementioned confounds on ML-based detection of
PD using different at-home digital assessments has not been
yet systematically established and has indeed been ignored in
many previous studies [15], [24], [27], [34], [35].

Here we systematically explore the influence of accounting
for age, sex and comorbidities in the detection of PD in a large
at-home dataset. Concretely, we use the mPower dataset to
evaluate the ability of common DB task (gait, balance, voice,
tapping) for differentiation between PD and HC. In addition,
we identify potential DB of Parkinson’s disease. With this
work, we aim to outline practical suggestions to guide future
studies practices and improve comparability across studies.

II. METHODS
A. DATA
Data used in this work were derived from the mPower
study [32]. MPower is a mobile application-based study to
monitor indicators of PD progression and diagnosis by the

28362 VOLUME 10, 2022



M. Goñi et al.: Smartphone-Based DB for PD in Remotely-Administered Setting

FIGURE 1. Illustration of signal processing and feature extraction based on the raw data for each task.
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TABLE 2. List of experiments indicating their corresponding processing steps.

TABLE 3. Balanced accuracy results for CV and holdout datasets and chance level at 95%.

collection of data in subjects with and without PD. Using this
app, subjects were presented with a one-time demographic
survey about general demographic topics and health history.
Completion of the Movement Disorder Society’s Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) and the
Parkinson’s Disease Questionnaire short form (PDQ-8) sur-
veys used for PD assessment was requested at baseline as
well as monthly throughout the course of the study. Due to
the length of theMDS-UPDRS instrument, subjects were pre-
sented only a subset of questions focusing largely on themon-
itor symptoms of PD [32]. Participants had to select ‘‘true’’
or ‘‘false’’ to the following question ‘‘Have you been diag-
nosed by a medical professional with Parkinson Disease?’’.
According to this answer, they were classified as Parkinson’s
Disease (PD) or Healthy Control (HC). Subjects who did not
answer this question were discarded from further analysis.
All subjects were presented with different tasks including
gait, balance, voice and tapping, which they could complete
up to 3 times per day. Subjects who self-identified as having
a professional diagnosis of PD were asked to perform these

tasks (1) immediately before taking their medication, (2) after
taking their medication and (3) at some other time (Table 8).
Subjects who self-identified as not having a diagnosis of PD
could complete these tasks at any time during the day. In the
gait task, subjects were asked to walk 20 steps in a straight
line. In the balance task they were required to stand still
for 30 seconds. During the voice activity task, subjects were
requested to say ‘Aaah’ into the microphone for 10 seconds.
Finally, during the tapping task participants were instructed to
alternatively tap two points on the screen within a 20 seconds
interval. We additionally excluded those subjects who gave
no information about their age, sex or had inconsistencies
in their clinical data (e.g. self-reported healthy controls who
answered questions about PD diagnosis or PD medication).
Since the mPower dataset is strongly slanted toward young
HC (Table 15), we restricted our analysis to those subjects
within the age range of 35 to 75 years old. This cleaning step
resulted in the exclusion of 40-50% of the data depending on
the task. To avoid ‘‘learning effects’’ and biases due to several
recordings, we only considered the first recording of each
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FIGURE 2. A) ROC curves and AUC values for 4 different classifiers for each task, during the main experiment (E3: no
comorbidities, matched). B) Balanced accuracy distributions for each task and experiment (E1-E6). E1: all data. E2: age and
sex matched. E3: no comorbidities, age and sex matched. E4: no comorbidities, age and sex matched, controlled for age.
E5: no comorbidities, age and sex matched, controlled for sex. E6: no comorbidities, age and sex matched, controlled for
age and sex.
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FIGURE 3. A) ROC curves at 95% CI during CV. B) ROC curves at 95% CI during validation of holdout set and at
the chance level. C) Scaled average weights of features for each task for the main experiment (E3: no
comorbidities, matched). Gait) acc - average acceleration, acc_path – acceleration along path,
AP – anteroposterior, FB – freezing band, LB – locomotor band, ML – mediolateral, pos – position, V – vertical,
vel – velocity. Balance) trem – tremor, post – postural, dist – distance, LF – low frequency, MF – medium
frequency, VHF – very high frequency, RHL – ratio between high and low frequency, F95 –frequency containing
95% of the power spectrum. Voice) c – cepstral coefficient, d – 1st derivative of cepstral coefficient, dd – 2nd

derivative of cepstral coefficient. Tapping) TapInter – tap interval. For details on features refer to Appendix A.
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TABLE 4. List of gait features.

subject in the analyses. Further details about data cleaning
can be found in Appendix A. Demographic details are shown
in Table 1.

B. PRE-PROCESSING
The tri-axial accelerometer integrated in the smartphone
records acceleration in the 3 axes (vertical, mediolateral and
anteroposterior) during the gait and balance tasks. A 4th order
20 Hz cut-off low-pass Butterworth filter was applied to the
3 accelerometer signals. An additional 3rd order 0.3 Hz cut-
off high-pass Butterworth filter was applied to minimize the
acceleration variability due to respiration [36]. Signals were
then standardized to eliminate the gravity component while
maintaining the information from outlier data. According to
Pittman et al. [24], 30% of the devices were not held in the
correct position and therefore, we additionally calculated the
average acceleration signal. Several signals were extracted

from the gait recordings including the step series, position
along the 3 axes calculated by double integration, velocity
and acceleration along the path [37] (Figure 1).

Two additional signals were considered for the balance task
(Figure 1). Tremor frequency in PD is estimated to fall in
the 4-7 Hz band [38], whereas postural acceleration measures
(tremor-free) fall in the 0-3.5 Hz interval. To extract tremor-
free measures of postural acceleration, we applied a 3.5 Hz
cut-off low-pass Butterworth filter [39].

Voice was recorded at a sample rate of 44.1 Kbps.
Pre-processing included a downsampling to 25 KHz and a
noise reduction using a 2nd order Butterworth filter with a
low-pass frequency at 400 Hz. The fundamental frequency
signal was calculated using a Hamming window of 20 ms
with 50% overlap, and verified with the software Praat
(Figure 1). Time, frequency and amplitude series were
extracted from the voice signals.
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TABLE 5. List of balance features.
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TABLE 6. List of voice features.

Tapping recordings consist of the {x,y} screen pixel coor-
dinates and timestamp for each tap on the screen. Both the
inter-tapping interval (time) and the {x,y} inter-tap distance
series were computed (Figure 1). Further details about pre-
processing for each task can be found in Appendix A.

C. FEATURE EXTRACTION
A comprehensive search was conducted in PubMed
(https://pubmed.ncbi.nlm.nih.gov/) with the following search
terms ((Parkinson’s disease) AND (walking OR gait OR
balance OR voice OR tapping) AND (wearables OR smart-
phones)) to identify features commonly applied for each task
and corresponding signals generated. Based on the results of
this search, 423, 183, 124 and 43 features were identified and
computed using Matlab R2017a from gait [40], [42], [43],
balance [7], [36], [39], [44], voice [25], [26], [45] and tapping
data [15], [32], [46], respectively (Table 4-Table 7).

D. MACHINE LEARNING ALGORITHMS
As a different ML algorithm may provide the best perfor-
mance for a given task, we evaluated four commonly applied
algorithms for differentiation between PD and HC:

1) Least Absolute Shrinkage and Selection Operator
(LASSO) is a linear method commonly used to deal
with high-dimensional data. LASSO applies a regular-
ization process, where it penalizes the coefficients of
the regression variables shrinking some of them to zero.
During the feature selection process, those variables
with non-zero coefficients are selected to be part of the
model [47]. LASSO performs well when dealing with
linearly separable data and avoiding overfitting.

2) Random Forest (RF) uses an ensemble of decision
trees, where each individual tree outputs the classes.
The predicted class is decided based on majority
vote. Each tree is built based on a bootstrap training
set that normally represents two thirds of the total
cohort. The left out data is used to get an unbiased
estimate of the classification error and get estimates
of feature importance. RF runs efficiently in large
datasets and deals very well with data with complicated
relationships [48].

3) A Support Vector Machine (SVM) with Radial Basis
Function (RBF) kernel with Recursive Feature Elimi-
nation (SVM-RFE). An SVM is a linear method whose
aim is to find the optimal hyperplane that separates
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TABLE 7. List of tapping features.

between classes. When data is linearly non-separable,
it may be transformed to a higher dimensional space
using a non-linear transformation function that spreads
the data apart such that a linear hyperplane can be
found in that space. Here, we used a radial basis
kernel function. RFE is a feature selection method
that ranks features according to importance, improv-
ing both efficiency and accuracy of the classification
model. This model is known to remove effectively
non-relevant features and achieve high classification
performance [49].

4) Relevance Vector Machine (RVM), which follows the
same principles of SVM but provides probabilistic
classification. The Bayesian formulation prevents from
tuning the hyper-parameters of the SVM. Nonethe-
less, RVMs use an expectation maximization (EM)-
like learning that can lead to local minima unlike the
standard sequential optimization (SMO)-based algo-
rithms used by SVMs, that guarantee to find a global
optima [50].

E. FRAMEWORK
The following six experiments were performed to address
the questions on the impact of age, sex and comorbidities
that may influence task performance on the classification
accuracy for each task and on the combination of all tasks
for differentiation between PD and HC (Table 2):

1) Experiment 1 (E1: all) includes all subjects only
restricting the age range (35-75 years old).

2) Experiment 2 (E2: matched) includes subjects after an
age and sex matching between PD and HC, where we
strictly match one HC for each PD subject with the
same age and where possible with the same sex.

3) Experiment 3 (E3: no comorbidities, matched)
excludes all comorbidities that may affect task perfor-
mance (see Appendix A) and strictly matches for age
and where possible sex on the remaining subjects.

4) Experiments 4-6 (E4-6): Three additional experiments
assess if controlling for age and sex impacts the results.
These experiments exclude comorbidities, match for
age and sex and control for age and/or sex applying
multiple regression. For this, age and gender were
included as covariates in a multiple regressions using
the features for each modality as dependent variables.
The estimated beta coefficients for each covariate were
used to regress out the estimated effects of age and sex
on the respective feature. The resulting residuals for
each feature were used for subsequent classification.
Experiment 4 (E4): no comorbidities, matched, con-
trolled for age; Experiment 5 (E5): no comorbidities,
matched, controlled for sex; Experiment 6 (E6): no
comorbidities, matched, controlled for age and sex.

As the performance obtained after removing comorbidi-
ties and matching for age and sex (E3) provides a rel-
atively unbiased estimate for differentiation between PD
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TABLE 8. Medication status at the time of performing the tasks.

and HC, these results were used for selection of the best
performing ML algorithm for each task and interpretation
of the main outcomes throughout this work. Demographic
and clinical information for each experiment are provided
in Table 1.

Additionally, to compare the performance of our anal-
yses to those in the literature, we performed an analysis
including all data without restricting age range (Table 15)
and an analysis including all data and both age and sex as
features.

F. MODEL PERFORMANCE
Data leakage occurs when information of the holdout test
set leaks into the dataset used to build the model, leading to
incorrect or overoptimistic predictions. Therefore, in every
experiment and task, data was initially split into 2/3 of data to
build the predictive model and 1/3 of holdout data to validate
this model. To build the model, we performed 1000 repeti-
tions of 10-fold cross-validation (CV) in the 2/3 of the data for
each classifier to avoid data leakage and increase robustness.
The parameter Lambda of the LASSOmodel was set to 1 and
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TABLE 9. Cross-validation classification performances for each of the tasks (gait, balance, voice, tapping and multimodal features) for four different
classifiers.

the number of trees for RF to 100. A nested cross-validation
was implemented to tune the parameters of the SVM-RFE
classifier. The procedure consists of an inner CV to select
the best parameters of the model following a grid search
for the regularization constant (C) ranging from 2−7 to 27

and for gamma (γ ) ranging from 2−4 to 24 for the SVM.
Then, the outer loop is used to assess the model selected in
the inner CV. Extensive parameter optimization was applied
only on SVM-RFE classifier, given that the other algorithms
have already embedded optimization and that 1000 repeti-
tions of 10-fold cross-validation and multiple experiments

would have taken based on the estimated from a single run
each at least several months on the high-throughput cluster
available to us. For each model, we report the following
measures of predictive performance: balanced accuracy (BA),
sensitivity, specificity, positive (PPV) and negative predictive
value (NPV), mean receiver operating characteristic (ROC)
curves with 95% confidence intervals and area under the
curve (AUC). Comparisons betweenmodels are based on BA.

Once the best predictive model with the highest cross-
validation BA was identified using the CV dataset,
it was validated using the holdout dataset, reporting the
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TABLE 10. Classification performance for the gait task.

aforementioned performance metrics. In addition, to test
whether the BA of the predictive model is higher than chance
level (0.5 for binary classification), we ran 1000 permutations
randomly permuting the predicted classes, reporting BA at
95% confidence intervals.

III. RESULTS
A. CLASSIFIER SELECTION AND RESULTS FOR THE
CV DATASET
Four different classifiers (random forest: RF, Least Absolute
Shrinkage and Selection Operator: LASSO, support vector
machine: SVM, relevance vector machine: RVM-RFE) were
applied to each of the four tasks and their combination dur-
ing the main experiment (E3: no comorbidities, matched for
age and sex). Table 9 provides detailed information on the
classification performance for each ML algorithm and

each task. The ROC curves and corresponding AUC val-
ues for the four classifiers for each of the tasks during the
cross-validation (CV) step are displayed in Figure 2A. RF,
RVM and SVM-RFE performed similarly across all tasks,
whereas LASSO was the classifier performing the poorest.
Best performance was achieved on the combination of all
tasks using RF (balanced accuracy (BA)): 69.6%), followed
by tapping using RVM (BA: 67.9%), balance using RF (BA:
60%), voice using RVM (BA: 56.7%) and gait using SVM-
RFE (BA: 56.5%).

B. COMPARISON OF EXPERIMENTS IN THE
CROSS-VALIDATION SETTING
ML algorithms performing best for each task in the main
experiment (E3: no comorbidities, matched for age and sex)
were applied to corresponding task data of the other five
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TABLE 11. Classification performance for the balance task.

experiments (E1: all subjects, E2: matched for age and sex,
E4-6: same as E3 but additionally regressing out the effects
of age and/or sex). Classification performance for each task
and experiment during the CV and over holdout sets is sum-
marized in Table 3 and Table 10-Table 14. BA distributions
for each experiment and task during the CV are displayed in
Figure 2B.

In the CV, E1 (all data) resulted in the highest but
modest BA for all tasks (gait: 56.6%; balance: 61.8%;
voice: 62.5%; tapping: 74.8; multimodal combining all
four tasks: 73.9%). Removal of comorbidities in E3 had
a marginal effect on BA as compared to E2 (matched
for age and sex) with increased BA for gait (E2: 50.3%;
E3: 56.5%), voice (E2: 53.9%; E3: 56.7%) and tapping
(E2: 66.8%; E3: 67.9%) but lower BA for balance

(E2: 60.4%; E3: 60.0%). After additionally regressing out
the effects of age and/or sex (E4-E6) the change in the BA
was negligible for all tasks (< 1%) except for voice when
regressing out sex (E3: 56.7%; E5: 60%) and both age and
sex (E3: 56.7%; E6: 59.2%) (Table 3, Tables 10–14).

Analyses including all data without trimming for age range
led to the highest accuracy of 74.4% using tapping data,
followed by 72.7% for the multimodal case and 58%, 52.9%
and 51% for balance, voice and gait data respectively. In all
cases specificity was close to 100% whereas sensitivity was
exceedingly low (Table 16-Table 20). When including both
age and sex as additional features, accuracy increased to
80.8% for tapping data, 75.3% for the multimodal case and
73.1%, 69% and 57% for voice, balance and gait data respec-
tively with high specificities and low sensitivities.
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TABLE 12. Classification performance for the voice task.

C. RESULTS FOR THE HOLDOUT DATASET
Best performing classifiers trained on the 2/3 of the initial
dataset used for cross-validation were applied to the 1/3
holdout dataset. Results for the holdout dataset were highly
similar to the CV results (Table 3, Tables 10–14). All results
are summarized in Figure 3 and Table 3. The multimodal
combination of all tasks resulted in the best performance
for differentiation of PD and HC in the holdout cohort
(BA: 73.5%) followed by the tapping features (67.2%). Voice
features achieved the lowest BA of 53% followed by gait
(55.7%) and balance (59.9%) features (Table 3). For the base
experiment E3, the difference in BA between CV and holdout
sets was less than 1% for all tasks except for a 3.7% reduction
in BA for voice data and a 3.9% increase for the multimodal
feature combination. Exclusion of comorbidities resulted in

only minor changes for gait, balance and tapping (<2%) with
a 6.8% drop only observed using voice data and a 3.5%
increase for the multimodal case. BA performance for all
tasks increased by 1.4% (gait) to 7.4% (voice) for all tasks
when using the dataset only restricting the age range (E1)
as compared to E3. No systematic effects of additionally
controlling for age and/or sex prior to classification (E4-E6)
were observed with BA changes being small and inconsistent
across tasks and experiments.

Analyses including all data without trimming for age range
reached the highest accuracy in the holdout set of 73.3% using
multimodal features, followed by 71.1% for the tapping task
and 55.8%, 52.6% and 51.6% for balance, voice and gait data
respectively (Table 16-Table 20). When including both age
and sex as additional features, accuracy in the holdout data
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TABLE 13. Classification performance for the tapping task.

raised to 78.9% for tapping data, 75.9% for the multimodal
case and 74.6%, 66% and 58.3% for voice, balance and gait
data respectively with very high specificities and very low
sensitivities.

D. PREDICTIVE FEATURES
Best performance during CV for the main experiment E3 was
achieved using the multimodal set of features. Figure 3 shows
the scaled average absolute feature weights for RVM and
SVM-RFE and the scaled average importance scores for RF,
calculated with the out-of-bag (OOB) permuted predictor
delta error across 1000 repetitions during the CV. Features
with the highest importance scores belong to the tapping
task followed by the balance task. Tapping features with the
highest importance scores comprised the range of intertap

interval (100), maximum value of the intertap interval
(99.8) and Teager-Kaiser energy operator of the intertap
interval (83.2). Balance features with highest importance
scores were the power ratio between high (3.5-15 Hz) and
low (0.15-3.5 Hz) frequency for anteroposterior acceleration
(31.5) and energy in the medium frequency band for medio-
lateral acceleration (25.3). Gait and voice tasks had the least
contributions in terms of importance scores.

IV. DISCUSSION
Here, we systematically evaluated the ability of four com-
monly applied DB tasks to differentiate between PD and HC
in a self-administered remote setting. Our findings indicate
that, depending on the constellation, not accounting for con-
founds in PD digital biomarker task data may lead to under-
but also over-optimistic results.
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TABLE 14. Classification performance for the multimodal features.

TABLE 15. Demographics for PD and HC subjects including all data.

A. IDENTIFICATION OF PARKINSON’S DISEASE
Out of the four evaluated machine learning algorithms,
similar performance was achieved for all classifiers except
LASSO which showed the poorest performance. Whereas
some previous studies using the mPower dataset selected
different algorithms according to tasks [25], [26], others

simply applied a single classifier [27], [29]. No single classi-
fier performed best for all four tasks in our study. This is in
line with previous research showing that the selection of the
classifier depends mainly on the type and complexity of the
data [51], [52]. For instance, RF, RVMandGaussian SVMare
non-linear algorithms, offering more flexibility regarding the
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TABLE 16. Classification performance for the gait task.

TABLE 17. Classification performance for the balance task.

type of data. On the contrary, LASSO is a linear classifier and
thus, its performance depends on whether the data is linearly
separable. Whereas the generalizability of this observation is
limited by the use of only one linear classifier, it may point to
a better usability of non-linear approaches for classification
of digital assessments.

For discrimination of PD and HC, combination of all tasks
reached a BA of 74%, followed by tapping that achieved
67%, outperforming other tasks which were close to chance
level. These results are in line with previous literature using
the mPower dataset, where tapping reached the highest accu-
racies and gait and voice were closer to chance level [29].

Several studies reported higher accuracies for this type of data
[24], [27]. Yet, these studies followed certain ‘‘optimistic’’
approaches as discussed below.

B. POTENTIAL CONFOUNDERS
Exclusion of comorbidities resulted in increased accuracies
by a few percent, suggesting that other diseasesmay addmore
variability to the signal. Prediction performances consider-
ably decreased for all tasks after matching for age and sex
indicating the importance of controlling for such confounds
in DB data. When including all data without trimming age
range, accuracies greatly increase. Nonetheless, specificity
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TABLE 18. Classification performance for the voice task.

TABLE 19. Classification performance for the tapping task.

values are exceedingly high whereas sensitivity values are
vastly low. This indicates a greater prediction ability for the
HC group, which is considerably larger than the PD group for
subjects under 35 years old. Including age and sex as part of
the features resulted in further accuracy increases, yet with
very low sensitivities. Since the dataset is strongly slanted
toward young HC, the model is most likely distinguishing HC
based on age and gender in this case. Such effects may also
explain the high accuracies in some of the previous studies
using mPower dataset, where no proper matching for these
confounds was performed, age and/or sex were used as fea-
tures despite a large imbalance across groups or non-balanced

accuracies were reported [24], [26], [27], [34]. In example,
in the overall mPower dataset HC outnumber PD by a factor
of five and age and sex alone provide a high discrimination
accuracy between PD and HC with PD being on average
28 years older and more often female (34% of PD vs 19%
of HC). Our findings are also in line with previous studies
demonstrating a similarly strong decrease in accuracies when
accounting for respective confounds. Neto et al. [53] studied
the effect of confounders on gait data. They reached very high
accuracy when not accounting for confounders, compared
with a very modest accuracy when using unconfounded mea-
sures. Schwab and Karlent [25] performed analysis with all
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TABLE 20. Classification performance for the multimodal features.

the tasks from the mPower dataset with and without including
age and sex, the latter resulting in a similarly low accuracy as
in our study.

For all classification experiments, we used only one
recording per subject to prevent the classifier from detect-
ing the idiosyncrasies of each subject rather than spe-
cific PD related symptoms [29]–[31]. Single measures are
likely to contain more noise due to higher variation in task
administration as well as in individual performance in a
poorly-controlled setting [54]. Using multiple time points
may therefore further increase the discrimination between
PD and HC as demonstrated in several previous studies
[29]–[31]. Yet, our results in this respect highlight the need
of further understanding and better control of the individ-
ual parameters which impact the task performance during a
single administration.

C. PREDICTORS OF PARKINSON’S DISEASE
Features with largest weights in the multimodal discrimina-
tion between PD and HC were derived from the tapping task.
These features mostly related to the inter-tapping interval
(time), presumably reflecting bradykinesia-like symptoms.
These results are in line with previous studies, where tapping
features related to speed and accuracy had the strongest cor-
relation with clinical scores [55], [56]. Balance task features
related to tremor measures had larger weights than postu-
ral ones. In addition, features from the frequency domain
had greater weights than spatiotemporal features. Spatiotem-
poral features have been extensively studied and applied,
due to their ease of computation and interpretability [57].
However, these features offer information limited primarily
to leg movement, whilst frequency features add information
regarding asymmetry and variability. Furthermore, balance
features with higher weights belonged to the mediolateral

and anteroposterior signals, related to stability. Even though
gait had limited contribution to the classification accuracy,
acceleration features had the highest weights from this task.
This observation is in linewith previous findingswhere accel-
eration proved to better capture PD-related gait changes [58].
In line with some previous studies, features with the highest
weights from the voice task were all based on Mel Frequency
Cepstral Coefficients which can detect subtle changes in
speech articulation that are common in PD [59], [60].

D. LIMITATIONS AND FURTHER RESEARCH
Whereas sensors-integrated in smartphones open new oppor-
tunities for at-home continuous, reliable, non-invasive and
low-cost monitoring of PD, our finding highlight the need
for further development, optimization and standardization of
specific measures for such applications.

The interpretation of our findings is limited by several
aspects, including the lack of standardization, poor control
of environmental and medication effects during performance
of the tasks and intentionally or unintentionally incorrect
information provided by the participants. In addition, removal
of comorbidities and matching for age and sex led to exclu-
sion of about 50% of data, which may affect the training of
classifiers [53].

Further use of smartphones in the detection of Parkinson’s
disease symptoms include detection of hypomimia from face
expressions, socializing and lifestyle behavior and typing
patterns among others [61], [62].

APPENDIX A
SUPPLEMENTARY METHODS
A. DATA CLEANING
MPower dataset offers demographic, PDQ8 and MDS-
UPDRS surveys and task-based data. The demographics table
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contains data for 6805 subjects. In order to establish a diag-
nosis, participants had to select ‘‘true’’ or ‘‘false’’ to the
following question ‘‘Have you been diagnosed by a medical
professional with Parkinson Disease?’’. According to this
answer, they are classified as Parkinson’s Disease (PD) or
Healthy Control (HC). Some subjects left this question unan-
swered and thus they were discarded from further analysis.
Those subjects classified as PD which did not completed the
PDQ8 and MDS-UPDRS questionnaire were also excluded.
Subjects with no information on age, sex or any task data
were also removed, resulting in 6614 subjects. Those empty,
null or corrupted files for each task were deleted, resulting
in 2807 subjects with gait and balance data, 4925 with voice
data and 6366 with tapping data. Since a large number of
subjects are HC under 35 years old, our analysis focused on
a subset of subjects within the age range of 35 to 75 years
old, leading to 1435 subjects with gait and balance data,
2186 subjects with voice data and 2644 subjects with tapping
data. Finally, all subjects with inconsistencies for each of
the tasks were discarded (i.e., subjects that reported not to
have been diagnosed with Parkinson’s disease but filled in
PD medication questions, year of diagnosis of PD, surgery
or deep brain stimulation). This last elimination resulted in
1416 subjects with gait and balance data, 2153 subjects with
voice data and 2600 subjects with tapping data.

B. SIGNALS LENGTH
Gait task consists of walking 20 steps in a straight line.
In order to analyse the same signal length for each subject,
we examined how many subjects had gait data for different
time durations. We observed that after 10 seconds, partici-
pation was dropping heavily. Therefore, we selected a time
length of 10 seconds and discarded those participants with
shorter signals. Following the same reasoning, we chose
voice signals of 7 seconds, trimming the first second and last
two seconds, and tapping signals of 20 seconds. Similarly,
balance task consists of standing still for 30 seconds although
just 20 seconds were selected. Nonetheless, whereas gait,
voice and tapping are independent tasks, and therefore they
are started by the user, balance task starts straight after the
gait task. This is, as soon as the gait task ends, the app plays
out loud ‘‘turn around and stand still for 30 seconds’’. As a
result, most of the balance recordings include initial slots of
noise, which most likely coincide with the time that subjects
listen to the instructions, react, turn around and start the
task. Therefore, we trimmed the first 5 seconds of the signal,
resulting in balance signals of 15 seconds for all subjects.
Final number of subjects consisted of 1397 subjects with gait
data, 1415 subjects with balance data, 2150 subjects with
voice data and 2600 subjects with tapping data.

C. PRE-PROCESSING AND SIGNAL EXTRACTION
Gait and balance data consists on vertical (V), anteropos-
terior (AP) and mediolateral (ML) acceleration signals. For
these 3 gait acceleration signals, we applied a Butterworth
low pass filter with cut-off frequency at 20 Hz followed by

a 3◦ order high pass filter at 0.3 Hz. According to
Pittman et al. [24], around 30% of devices were not held
in the correct position. Therefore, the greatest gravitational
displacement is not always along the vertical axis. Then,
we standardized these three signals and calculated an addi-
tional average acceleration signal. Based on the standardized
acceleration signal, we extracted the step series. We calcu-
lated position signals along the three axes by double integrat-
ing the acceleration signals and the average position. Then,
we extracted velocity and acceleration along the path by
derivation [37].

Balance acceleration signals were filtered with a low pass
Butterworth filter at 20 Hz. Since tremor in PD usually falls in
the 4-7Hz frequency band [38], [39], the interval 0-3.5 Hz is
considered for tremor-free or postural acceleration measures.
Hence, we applied a Butterworth filter at 3.5 Hz to extract
postural acceleration measures. We also calculated the aver-
age of the tremor acceleration in the 3 axes and the average
of the postural acceleration in the 3 axes.

Voice signals were recorded at a sample frequency of
44.1 KHz. We downsampled the signal to 25KHz, applied
a second order Butterworth filter with cut-off frequency
at 400 Hz followed by a pre-emphasis FIR filter for noise
reduction and correct for distortions. We extracted the fun-
damental frequency (f0) series, which was verified with the
Praat software.

Tapping recordings consists of the {x,y} screen pixel coor-
dinates and timestamp for each tap on the screen. Signals
derived out of these recordings were the inter-tapping inter-
val (time) and the {x,y} inter-tap distance series.

D. FEATURE EXTRACTION
1) GAIT

We extracted 11 signals from the original accelerome-
ter recordings during gait tasks. These are V, AP and
ML acceleration, the step series, the average of the
acceleration in the three axes, the V, AP and ML posi-
tion, the average position in the three axes, the velocity
and the acceleration along the path. Table 4 collects a
list of features extracted for these signals along with
their acronyms.

2) BALANCE
Balance signals consist in the V, AP and ML tremor
acceleration (4-7 Hz), the average of these 3 signals, the
V, AP and ML postural acceleration (0-3.5 Hz) and the
average of these 3 signals. We extracted displacement-
related postural features from ML, AP and average
of both distance signals, following the formulation in
Martinez-Mendez et al. [36] (Table 5).

3) VOICE
Most of voice features were extracted following the
formulation in Tsanas et al. [45]. Tsanas et al. state
that the period (T) signal provides different infor-
mation than f0. Therefore, we additionally extracted
the T series. Further signals include glottis quotient
and 14Mel Frequency Cepstral Coefficients (MFCCs),
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including the 0th coefficient and the log-energy of the
signal, along with their associated delta and delta-delta
coefficients as applied in the Voicebox Matlab Tool-
Box [63] (Table 6).

4) TAPPING
We considered a set of features computed from the
inter-tapping interval (time) and the {x,y} inter-tap
distance signals, according to Bot et al. [46] (Table 7).

E. COMORBIDITIES
Comorbidities selected for removal in the experiments
E3-E6 include ‘‘Alzheimer Disease or Alzheimer demen-
tia’’, ‘‘Dementia’’, ‘‘Schizophrenia or Bipolar Disorder’’,
‘‘Alcoholism’’, ‘‘Multiple Sclerosis’’, ‘‘Leukemia or Lym-
phoma’’, ‘‘Acute Myocardial Infarction/Heart Attack’’,
‘‘Stroke/Transient Ischemic Attack’’, ‘‘Breast Cancer’’,
‘‘Colorectal Cancer’’, ‘‘Prostate Cancer’’, ‘‘Lung Cancer’’,
‘‘Endometrial/Uterine Cancer’’, ‘‘Any other kind of can-
cer OR tumor’’, ‘‘Heart Failure/Congestive Heart Fail-
ure’’, ‘‘Ischemic Heart Disease’’. These comorbidities were
removed since they may lead to brain damage or to undertake
chemotherapy or other therapy, which might induce brain
changes.

F. MEDICATION STATUS
Table 8 shows the number of subjects that performed the
task just before taking their medication, after taking their
medication, at another random time, number of those who
were not taking any medication and number of those who did
not give any information about their medication status.

G. SELECTION OF THE BEST CLASSIFIER DURING THE
MAIN EXPERIMENT (NO COMORBIDITIES; MATCHED)
Table 9 shows the classification performance for the four
classifiers under consideration for each task.

APPENDIX B
SUPPLEMENTARY RESULTS
Table 10-Table 14 summarize the results for each task (gait,
balance, voice, tapping) and the combination of all the tasks,
for the experiment 1 (all data), experiment 2 (matched data),
experiment 3 (no comorbidities and matched data), exper-
iment 4 (no comorbidities, matched, controlled for age),
experiment 5 (no comorbidities, matched, controlled for sex)
and experiment 6 (no comorbidities, matched, controlled for
age and sex).

A. ADDITIONAL EXPERIMENTS
Our results may differ to those in the current literature using
the mPower dataset since we follow different approaches.
To explain these discrepancies and compare with the liter-
ature, we included two additional experiments including all
data without trimming for age range and all data including
both age and sex as features in the analyses (Table 15).
Classification performances for both additional experiments
for each tasks are summarized in Table 16-Table 20.
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