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ABSTRACT A heuristic dynamic programming (HDP) algorithm for trajectory tracking and formation
control of multi-agent systems (MAS) is presented in this paper. The selected HDP method allows for an
online optimal control design. The multi-agent control problem is formulated as a leader-follower, where
it is necessary for followers to maintain the assigned formation, while the leader follows the specified
trajectory. Developed QR-Solver and RLSµ-QR-HDP-DLQR algorithms provide a new methodology to
obtain the solution of the Hamilton-Jacobi-Bellman (HJB) equation. These proposed solutions are based on
QR factorization to decrease the computational cost and avoid issues associated with numerical stability
of conventional least squares (LS) method. The algorithms’ performances such as convergence, numerical
stability, and computational metrics, were experimentally evaluated for two control systems: aerial altitude
control (one degree of freedom) and terrestrial robot (two degrees of freedom).

INDEX TERMS Heuristic dynamic programming, multi-agent systems, leader-followers, robots.

I. INTRODUCTION
To conduct large-scale tasks, such as inspection of electric
power transmission lines, monitoring leaks in gas and oil
pipelines, country border patrolling, agriculture, and trans-
portation, the use of multiple robots or agents is more feasible
and economical than using a single agent [1], [2]. The control
tasks are carried out by multiple agents simultaneously, and
new control algorithms must support such framework [3].

A multi-agent system (MAS) can be defined as a group of
autonomous agents that interact with each other and share the
same environment, which is perceived through sensors, where
they act by carrying out certain actions [4]. In a multi-agent
framework, two or more agents interact and work together
to conduct certain tasks or satisfy a set of goals [5]. The
scientific research and practical implementations of MAS
are focused on development of standards, principles, and
models that allow the creation of groups of autonomous or
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semi-autonomous agents, capable of interacting properly to
accomplish common objectives [6].

When working with multiple mobile agents such as drones
or robots, it is often necessary to establish a formation
between the agents [7]. Formations of agents can be char-
acterized by geometrical patterns to be applied by a multi-
agent team. Formations appear in biological systems, such as
the well-known V-shaped flight formation used by geese and
other large migratory birds that allow longer flight range of
a flock of birds compared to an individual bird. Formation
control remains one of the most challenging problems in the
control of MAS [8], [9].

Formation control of multiple agents is a challenging task
due to environmental disturbances such as wind and various
obstacles, leading to instabilities [10], [11]. There is a need
to develop an online control method that provides optimal
control solutions for the dynamic behavior of agents without
full knowledge of the system parameters [12], [13].

A promising solution to solve the online control prob-
lem with plant uncertainties is the adaptive dynamic pro-
gramming (ADP) method [14], [15]. This approach employs
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a ‘forward-in-time’ mechanism that looks for an optimal
control policy by successively adapting two parametric struc-
tures, i.e., an action network and a critic network, to approx-
imate the solution of the Hamilton-Jacobi-Bellman (HJB)
equation [16], [17].

In ADP, the action network calculates the control actions,
whereas the critic network learns to approximate the value
function. This function evaluates the effect of control on
the future performance and provides guidelines on how
to improve the control law. These structures are com-
bined with reinforcement learning (RL), which has been
used as a framework for solving real-time optimal decision
problems [18], [19].

In MAS, the problem of trajectory tracking and formation
control can be treated in isolation, and in the proposed control
system, the trajectory and formation are modeled in a single
dynamic system, where the trajectory reference is defined by
the leader (leader-follower), and the formation reference is
established according to the specific application.

The algorithm proposed in this work is intended for execu-
tion in microcontrollers that are present in the agents/robots
of the MAS. The main objective of this work is to design
a multi-agent control system using an HDP architecture for
a real-time implementation, that guarantees the convergence
and stability of the closed-loop system, while providing a
disturbance rejection.

This study presents two ADP algorithms for multi-agent
systems: the QR-solver (developed in this research) and the
RLSµ-QR-HDP-DLQR (initially developed for single-agent
systems), as described in [20], [21]. We compare their per-
formances, such as convergence of the gain, by analyzing the
parameter θ of the DLQR and convergence of the trajectory
and desired formation. The contribution of this study is the
development of optimal control algorithms for MAS, focus-
ing on embedded systems (terrestrial robots and aerial robots)
with specifications that guarantee numerical stability, fast
convergence time, and low memory use and computational
cost, thus ensuring applicability in the real-time control.

The main advantage of using the optimal control approach
over classical approaches to MAS, such as a consensus, is
the ability to provide a solution for time-varying systems,
where the dynamics of the agent and the environment can
vary due to disturbances or noises [22], [23]. The optimal
control approach also allows the optimization of a desired
performance metric by minimizing the specific cost function.

This paper is organized as follows: In Section II, the prob-
lem of trajectory tracking and formation (distributed forms
that agents/robots should take in space) forMAS is described.
In sequence, the optimal solution for trajectory control and
MAS formation is then demonstrated. In Section III, the two
control algorithms used in this study, i.e. the QR-Solver
and the RLSµ-QR-HDP-DLQR, are described and a brief
of Computational Complexity is introduced. Section IV con-
tains computational simulations of these algorithms. Finally,
some concluding remarks regarding the results of this work
are presented.

II. PRELIMINARIES
Here we present preliminaries related to the trajectory track-
ing and formation control problem for MAS. We use a state-
space model for a subsystem referred to as the leader, and an
exosystem referred to as the followers. In sequence, the opti-
mal control solution is demonstrated by minimizing a value
function for the trajectory tracking and formation control
of MAS.

The formation control problem can be defined by a shape
or a relative state. The first component of MAS dictates the
position of the leader, and the second component of MAS
corresponds to the overall formation (followers) [24]. The
dynamics of aMAS is represented by three sets of differential
and algebraic equations that correspond to the leader, follow-
ers, and the formation error model.

A. LEADER MODEL
The leader agent model is given in the state-space form

v̇ = Ev+ Hw, (1)

where v ∈ Rq is a state vector of the leader, and E ∈ Rq×q

and H ∈ Rq×q are the state and input matrices of the leader,
respectively. The agent inputw ∈ Rq is defined asw = ŵ+w̃,
where ŵ is a feedback control input ŵ = −Kl(v − v∗) with
the leader’s desired trajectory v∗ that satisfies v̇∗ = Ev∗, w̃ is
the external disturbance input (such as a wind gust for aerial
agents and slip for terrestrial agents), and Kl is the gain of the
leader.

Assumption 1: The disturbance w̃ is upper bounded by W
such that ||w̃(t)|| ≤ W .
Remark 1: The previous assumption specifies the upper

bound on the disturbance and is a standard assumption in the
literature [25], [26]. The assumption is not very restrictive, as
most disturbances in practice have an upper bound, such as
wind gust, friction, slip, and other unmodelled disturbances.

B. FOLLOWERS-AGENTS MODEL
The dynamics of the followers is given by

ẋi = Aixi + Biui + Div, (2)

where xi ∈ Rni is the state of the agent i, Ai, Bi, and Di are
the dynamics matrices of the agent i, ui ∈ R is the control
signal, and v is the state of the leader, for i = 1, 2, . . . ,N .
The formation error ei ∈ R is given by

ei = Cixi + Fiv i = 1, 2, . . . ,N , (3)

where Ci is the control matrix of the agents and Fi is
the formation matrix. The output of each agent is yi =
Cixi ∈ Rni , and y∗i = Fiv is the reference or expected
trajectory for each agent.

C. CONTROL OF AN AGENT
Adecentralized, closed-loop controller, proposed in [27], that
is used in this paper, is given by

ui = −Kxixi − Kzizi, (4)
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where Ki = [Kxi Kzi] is the gain of the ith agent, Kxi ∈ Rq×q,
Kzi ∈ Rq×q. An internal model zi ∈ Rq of the ith follower is
given by

żi = G1zi + G2ei, i = 1, 2, . . . ,N , (5)

where the characteristic polynomial of G1 is the same as the
minimal polynomial of E , and the pair (G1,G2) is control-
lable and incorporates an internal model of the matrix E .

D. OPTIMAL PROBLEM FORMULATION
To control the multi-agent system, we developed an optimal
controller that ensures stability of the system under distur-
bances. Moreover, as v ≡ v∗, the developed controller is
optimal in a sense that it minimizes the cost function given by

J =
∫
∞

0

(
|ξi|Q + |ui|R

)
dt, (6)

where ξi = [xi zi] ∈ R2ni is the ith subsystem. The optimal
control gains are

[
K∗xi K

∗
zi

]
= R−1i B̄i

TP∗i , where P
∗
i is the

unique solution to the algebraic Riccati equation (ARE)

ĀTi P
∗
i + P

∗
i Āi + Qi − P

∗
i B̄iR

−1
i B̄Ti P

∗
i = 0. (7)

The trajectory tracking and formation control methodolo-
gies are designed for a data-driven distributed controller using
an ADP, under a switching network topology. The developed
approach can approximate the control gains K∗i for each
follower without relying on the knowledge of the system
matrices Ai, Bi, and Di. The internal model (5) is modified
and is given by

żi = G1zi + G2êi, i = 1, 2, . . . ,N , (8)

where êi = yi + Fiζi. The dynamics of ζi ∈ Rq is given by

ζ̇i = Eζi +
∑

aij(t)(ζj − ζi), i = 1, 2, . . . ,N . (9)

with ζ0 = v. The ith subsystem augmenting ξi with the
internal model of (8) is

ξ̇i = Āiξi + B̄iui + D̄ψi, (10)

for i = 1, 2, . . . ,N , where

Āi =
[

Ai 0
G2Ci G1

]
, B̄i =

[
Bi
0

]
,

D̄i =
[
Di 0
0 G2Fi

]
,

and ψi =
[
v ζ

]
∈ R2q.

E. OPTIMAL SOLUTION FOR TRAJECTORY AND
FORMATION CONTROL
Using the Iterative Technique for Riccati equation computa-
tions of [28], one can determine P∗i and K

∗
i by

|ξi(t + δt)|Pki −
|ξi(t)|Pki

=

∫ t+δt

t

[
−|ξi|1 + 2ψT

i D̄
T
i P

k
i ξi

+2(ui + K k
i ξi)

T
RiK

k+1
i ξi

]
dτ, (11)

where 1 = Qi + (K k
i )
TRiK k

i . Using the Kronecker product,
the cost matrices of Eq. (11) imply that

8k
i

 Pki
K k+1
i

DTi P
k
i

 = yki , (12)

where

8k
i = [δξi ,−20ξiξi (I ⊗ (K k

i )
TRi)− 20ξiui (I ⊗ Ri), 20ξiψi ]

(13)

yki = −0ξiξi (Qi + (K k
i )
TRiK k

i ). (14)

Let us define 0 and δ as

0a,b =

[∫ t1

t0
a⊗ bdτ ,

∫ t2

t1
a⊗ bdτ , . . . ,∫ tf

tf−1
a⊗ bdτ

]
(15)

δa = [kron(a(t1))− kron(a(t0)), . . . ,

kron(a(tf ))− kron(a(tf−1))
]
, (16)

where kron(a) = [a2i , a1a2, . . . , a1am, a
2
2, a2a3, . . . , am−1am,

a2m]
T
∈ R

1
2m(m+1).

Equation (12) provides an update of the optimal gain K , as
well as the parameter P of the Riccati equation. The complete
closed-loop dynamics for a MAS is given by[

ξ̇

ζ̇

]
= Āc

[
ξ

ζ

]
+ B̄c (1N ⊗ v) , (17)

where Āc = IN ⊗
[
Āi − B̄iKi

]
and B̄c = IN ⊗

[
0 FTNG

T
2

]T .
The error of the close-loop system is given by

e = C̄ξ + F (1N ⊗ v) . (18)

More details and the proof of convergence of the LFS method
can be found in [27].

III. ALGORITHMS FOR TRAJECTORY AND
FORMATION CONTROL
In this section, two algorithms for trajectory tracking and
formation control of multi-agent systems are presented. The
QR-solver algorithm is based on the LS approach, and
the RLSµ-QR-HDP-DLQR algorithm uses a recursive least
square (RLS). The restrictions andmetrics associatedwith the
analysis of computational complexity in the implementation
of control algorithms are also presented.

A. QR-SOLVER ALGORITHM
QR-factorization has an important application in solving the
LS problems [29], [30]. Often, a matrix is poorly condi-
tioned, i.e., the matrix is extremely sensitive to errors owing
to approximations that occur in numerical computations [31].
The main advantage of QR factorization is that there is
no need to compute the inverse of variance or covariance
matrices. Instead, it only needed to find an inverse of R,
transpose Q, and the product is the LS coefficients. The QR
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factorization method is a stable elementary operation that can
be applied to any type of matrix. For real-time applications,
poor conditioning of the variance or covariance matrices
of LS can lead to the agent/robot instabilities, causing a
malfunction of the overall MAS. To overcome this problem,
an algorithm, called QR-solver, was developed using the
Householder transformation to calculate the values of QR
matrices in order to find the least squares solution [32]. The
QR-solver is described in the next paragraph.

Every non-singular 8i
k
∈ Rn×n has a QR factorization,

which is given by

8k
i = Qk

iR
k
i , (19)

where Qk
i ∈ Rn×n is an orthogonal matrix and Rk

i ∈ Rn×n

is an upper triangular matrix with positive diagonal elements.
The inverse is given by

(8i
k )−1 = (Qk

iR
k
i )
−1
= (Rk

i )
−1(Qk

i )
T . (20)

The algebraicmanipulation of (20)was applied to the solution
of (12), and with a non-singular 8k

i ∈ Rn×n, one has

Rk
i

 Pki
K k
i

DTi P
k
i

 = QT
i yi, (21)

whereRk
i is an upper triangular matrix whose inverse can be

easily be found without computing the determinant.
The QR factorization procedure for computing Pki (P of

Riccati), K k
i (gain of ith follower), and DTi Pi parameters of

Eq. (21) is presented in Algorithm 1 (called QR-solver).
Algorithm 1 proposes a computational structure with three

main functional blocks. The first block is associated with
steps 1-5, which is the setup of the algorithm with initial-
ization of all system dynamics matrices, initial positions and
velocity, gain matrices, simulation parameters, and finally
state vectors. The second block establishes the formation
topology in step 8. The data acquisition of the system is
carried out in steps 9-12, and the following steps are based on
the corresponding equations: step 9 applies Eq. (4), step 10
uses Eq. (17), step 11 applies Eq. (1) and step 12 uses
Eq. (17). The control update of the agent i, represented by
steps 16-19, is the third function block. The calculation of8i
in Eq. (13) is carried out in step 16, the value of yi in step 17
is calculated using Eq. (14), step 18 refers to the LS solution
of Eq. (12), and the new Ki value is obtained in step 19.
We propose improvements in the numerical stability of the
algorithm without compromising the convergence time.

B. RLSµ-QR-HDP-DLQR ALGORITHM
According to the standard LS estimator, the optimal value of
the parameter vector θ̂i is given by

8iθ̂i = yi, (22)

where θ̂i =
[
Pki ;K

k+1
i ; D̄Ti P

k
i

]T
. Let 8i be expressed in its

factored form, which is given by

8i = 8
1/2
i 8

H/2
i , (23)

Algorithm 1 QR-Solver
Setup (Initial Conditions)

1: Dynamic System Matrices: Ai, Bi, Ci, Di, E , Fi, G1, G2,
H , H.

2: Initial State: xi0, ζ0, v0, v∗0.
3: Initial Values of P,Q,R and K : P0,Ki,K0.
4: Number of Iterations: N ; Sample time: ts; Noise: ω.
5: Vectors ξi = [xTi z

T
i ]
T and ψi = [vT ζ Ti ]

T

——————————————————————
Iterative Process

6: for k ← 1 : N
7: do

Switch Signal
8: Hk

← chosen graph (G)
Environment Simulation

9: u̇ki ← Kixki + ω
10: ξ̇ ki ← Āixki + B̄iu

k
i + D̄iψ

k
i

11: v̇k ← Evk + H (−K0(vk − v∗)+ ṽ)
12: ζ̇ ki ← [(IN ⊗E)− (Hk

⊗ Iq)]ζi+ [Hk
⊗ Iq](1n⊗ v)

Calculation of δ and 0 to (t0 at ts)
13: end

——————————————————————
Control Update (for each agent i)

14: for k ← 1 : nint
15: do

Calculation of matrix 8i and vector 8i
16: 8k

i ← [δξ1 ,−20ξ1,ξ1 (I ⊗ (K k
i )
TRi) − 20ξ1,u1 (I ⊗

Ri),−20ξ1,ψ1 ]
17: yki ← 0ξ1,ξ1vec(Qi + (K k

i )
TRiK k

i )
Calculation of new gain K using LS

18: Qk
iR

k
i ← 8k

i

19: Rk
i

[
Pki ;K

k+1
i ;DTi P

k
i

]
← (Qk

i )
T yki

20: end
——————————————————————
Repeat the use of K (k+1)

i

where81/2
i is a lower triangular matrix defined as the square

root of 8i, and 8
H/2
i is the Hermitian transpose of 81/2

i .
Note, from the RLSµ-HDP-DLQR algorithm, that the

recursive updating equation of the correlation matrix 8i is
given by the following:

8i = µ8i−1 + x̄ix̄Hi . (24)

Pre-multiplying both sides of Eq. (23) bymatrix8−1/2i , a new
vector variable is given by

ωi = 8
H/2
i θ̂i = 8

−1/2
i zi. (25)

We obtain here a new form to represent the cross-correlation
vector between the input x̄i and the expected output di, which
is given by

yi = µzi−1 + x̄id∗i , (26)
or equivalently

8iθ̂i = µ8i−1θ̂i−1 + x̄id∗i , (27)
where the asterisk denotes a complex conjugate.
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Eqs. (24), (27) are described in their Hermitian transposed
forms, expressing each of the terms that appear in the second
member of each equation in its transposed forms as:

µ8H
i−1 = (µ1/28

1/2
i−1).(µ

1/28
H/2
i−1 ), (28)

µθ̂Hi−18
H
i−1 = (µ1/2θ̂Hi−18

1/2
i−1).(µ

1/28
H/2
i−1 )

= (µ1/2ωHi−1)(µ
1/28

H/2
i−1 ). (29)

Suppose one chooses a unitary rotation 2i transforming this
pre-array to produce a zero block in the second entry of the
post-array top-row block, as shown by the following form:

A2 = B, (30)

where

A =

µ
1/28

1/2
i−1 x̄i

µ1/2ωHi−1 di
0T 1

 and B =

BH11i 0

bH21i b∗22i
bH31i b∗32i

 . (31)

To evaluate the elements of the unknown blocks BH11i, b
H
21i,

b∗22i, b
H
31i, and b

∗

32i of the post-array B, the procedure is to
square both sides of Eq. (30). According to the matrix fac-
torization lemma, [31], 2i is recognized as a unitary matrix;
therefore, 2i2

H
i is equal to the identity matrix for every i.

Thus, Eq. (30) can be transformed into

AAH
= BBH , (32)

or in an expanded formµ
1/28

1/2
i−1 x̄i

µ1/2ωHi−1 di
0T 1

[µ1/28
H/2
i−1 µ1/2ωi−1 0

x̄Hi d∗i 1

]

=

BH11i 0

bH21i b∗22i
bH31i b∗32i

[B11i b21i b31i
0T b22i b32i

]
. (33)

Comparing the respective terms on both sides of Eq. (33), the
unknown block elements of a post-array B are determined.
Consequently, Eq. (30) with the values ofBH11i, b

H
21i, b

∗

22i, b
H
31i,

and b∗32i is expressed as follows:µ1/28
1/2
i−1 x̄i

µ1/2ωHi−1 di
0T 1

2i =

 8
1/2
i 0
ωHi ξiρ

1/2
i

x̄Hi 8
−H/2
i ρ

1/2
i

 , (34)

where ξi is the a priori estimation error given by ξi =
di − θHi−1x̄i, and ρi is a real parameter [33]. The equa-
tions in this subsection form the Algorithm 2, labeled
RLSµ-QR-HDP-DLQR.

Algorithm 2 has three main functional blocks. The first
block is associated with steps 1-6, which sets up and ini-
tializes the algorithm, i.e., all system dynamic matrices, the
initial positions and velocity, the gainmatrices, the simulation
parameters, the state vectors, and the forgetting factor of
the RLS. The second block establishes the formation topol-
ogy in step 9, and the data acquisition of the system that

Algorithm 2 RLSµ-QR-HDP-DLQR
Setup (Initial Conditions)

1: Dynamic System Matrices: Ai, Bi, Ci, Di, E , Fi, G1, G2,
H , H.

2: Initial State: xi0, ζ0, v0, v∗0.
3: Initial values of P,Q,R and K : P0,Ki,K0.
4: Number of Iterations: N ; Sample time: ts; Noise: ω.
5: Vectors ξi = [xTi z

T
i ]
T and ψi = [vT ζ Ti ]

T

6: Forgetting Factor: 0 < µ ≤ 1.
——————————————————————
Iterative Process

7: for k ← 1 : N
8: do Switch Signal
9: Hk

← chosen graph (G)
Environment Simulation

10: u̇i← Kixi + ω
11: ξ̇i← Āixi + B̄iui + D̄iψi
12: v̇← Ev+ H (−K0(v− v∗)+ ṽ)
13: ζ̇i← [(IN ⊗ E)− (Hk

⊗ Iq)]ζi + [Hk
⊗ Iq](1n ⊗ v)

Calculation of δ and 0 for (t0 at ts)
14: end

——————————————————————
Control Update (For each agent i)
Basis Set - Kronecker Product

15: x i← [x21i; x1ix2i; . . . ; x
2
4i]

Target Assembly
16: d(x, c, f ,P)← xTi Qxi + u

T
i Rui + γ x

T
i+1Pxi+1 QR

decomposition-based RLS

17: Ai←

µ1/28
1/2
i x̄i

µ1/2ωHi d(·)
0T 1


18: QiRi← Ai

19: Ri→

 8
1/2
i+1 0

ωHi+1 ξiρ
1/2
i+1

x̄Hi 8
−H/2
i+1 ρ

1/2
i+1


Vector updating θ̂

20: θ̂Hi+1 = ω
H
i+18

−1/2
i+1

Recovery matrix P from vector θ
21: Pθ̂i+1 ← [θ̂1, θ̂2/2, . . . , θ̂9/2; . . . , θ̂10]

Feedback Optimal Gain K
22: Ki+1←−γ (R+ γBTd P

θ̂i+1Bd )−1BTd P
θ̂i+1Ad

——————————————————————
23: End - Iterative Process

is represented by the model in steps 10-13. The following
steps of this block are based on the following equations:
step 10 applies Eq. (4), step 11 uses Eq. (17), step 12
utilizes Eq. (1), and step 13 applies Eq. (17). The control
update of the agent i, represented by steps 15-22, is the third
function block. In step 15, the vector x̄i is assembled using
by Kronecker product of the state vector xi. In step 16, the
target vector of the ADP is formed. In step 17, the matrix
Ai is assembled according to Eq. (31). In step 18, the QR
factorization is applied, generating the matrices Qi and Ri
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according to Eq.(34). In step 19, the values of 8 and ω are
defined, and the calculation of θ̂i in step 20 is applied using
Eq.(25). In step 21, the matrix Pθ̂ is formed with the elements
of the vector θ̂i, and step 22 applies the update of the Ki gain
with the solution of HJB-Riccati equation.

C. COMPUTATIONAL COMPLEXITY
The amount of resources required to run an algorithm is
closely related to computational complexity [34]. The com-
plexity analysis, for applications with embedded systems
(robots) in real-time, can be performed using metrics that are
minimized and/or achieved. To evaluate the performance of
the proposed algorithm, computational complexity metrics
are established in terms of the numerical stability issues
including ill-conditioned time vectors, the quantity of the
operations, the storage scaling, and the dynamic system crit-
ical time.

1) NUMERICAL STABILITY
The numerical stability analyzes how errors introduced dur-
ing the execution of an algorithm affect the result. It is
a property of an algorithm rather than the problem being
solved [35]. In computing, numerical stability refers to how
a malformed input affects the execution of an algorithm.
In a numerically stable algorithm, errors in the input lessen
in significance as the algorithm executes, having little effect
on the final output [36].

Some numerical algorithms may damp out the small fluc-
tuations (errors) in the input data while others might amplify
such errors. Calculations that are shown to attenuate approx-
imation errors are called numerically stable. One of the com-
mon tasks of numerical analysis is to try to select algorithms
which are robust, i.e., do not produce significantly different
results for a very small change in the input data. In terms of
numerical stability, the main concern is addressed by apply-
ing strategies to avoid ill-conditioned time vectors.

2) COMPUTATIONAL COST
The computational cost is the number of floating point opera-
tions (FLOPs) needed to execute a computational command,
which can be a mathematical operation (e.g., addition, sub-
traction, or multiplication) or writing to, or reading from, the
memory.

3) DATA STORAGE
The LS demands memory storage, which depends on the time
size batch mode data processing. The same is true for the
RLS processing mode, but in an amount that depends on the
quantity output variable measurement and the regressors.

4) DYNAMIC SYSTEM CRITICAL TIME
The critical time of the dynamic system is the overall lim-
itation to establish an online optimal decision, i.e., in our
context, a constraint that the optimal controller (CPU time)

must provide an action response faster than the time constant
of the controlled dynamic system.

To ensure the functionality of the robotic embedded sys-
tem, the response time (control output) of the control algo-
rithm must be less than the dynamic system critical time.
If this condition is not met, the control methodology must
provide some response in time, i.e. an alternative response
as the previous gain or a sub-optimal gain will be used to
maintain the multi-agent system running.

IV. COMPUTATIONAL EXPERIMENTS
In this section we present the computational results of the
algorithms and evaluate capability of the agents to follow the
leader while maintaining the desired formation. With focus
on performance for online control methodology in multi-
agent systems, the QR-solver and RLSµ-QR-HDP-DLQR
algorithms are evaluated in relation to convergence of param-
eter θ and the evolution of the control process. Furthermore,
the reference policy is established using the offline Schur
solution to the HJB-Riccati equation. The evaluations aim to
verify the convergence behavior of the estimators.

Computational tests were carried out using MATLAB R©

and comparisons were performed to evaluate the accuracy
and convergence of the solutions provided by the algorithms.
To demonstrate the effect of the forgetting factor µ, several
simulations were conducted. The convergence process of
RLSµ-QR-HDP-DLQR for the HJB-Riccati equation solu-
tions for different µ values was verified in [37].

We consider a multi-agent system consisting of three
agents: the leader and two followers. The connectivity topol-
ogy is shown in Figure 1.

FIGURE 1. Topology of multi-agent system.

Based on Figure 1, the Laplacian matrices for multi-agent
systems T1 and T2 are given by

LT1 =

 1 −1 0
−1 1 0
0 0 0

 , LT2 =

 1 0 −1
0 0 0
−1 0 1

 .
A. DRONE MODEL IN Z-AXIS AND
NUMERICAL SIMULATION
The first model is the altitude control of the mini-drone
Parrot R©. Considering only the quad-rotor altitude control,
the equation that governs the dynamics of this system is
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given by [38]

Fz = Fc − Fg, (35)

where Fz is the force applied along the Z -axis, Fc is the force
of drone propellers, andFg is the force of gravity on the drone.
This is equivalent to

d2z
dt2
= z̈ =

Fc
m
− g, (36)

for a multi-rotor moving only along the Z -axis, without any
angular motion in which the four motors exert the same force,
resulting in Fc = 4kf ω2. The angular velocity of the blades is
ω = 22000rpm, the power constant is kf = 3.1×10−8, mass
is m = 0.08kg, and the gravity constant is g = 9.81m/s2.
The matrices of the dynamic system are as follows:

Ai =
[
0 0
1 0

]
, Bi =

[ Fc
m
0

]
, (37)

where the states are the speed of the rotors (Vz) and the
vertical position of the quad-rotor (Pz).
The simulation experiments are presented for the

mini-drone Parrot R© and the functionality of theQR decom-
position is verified on the RLS estimator of the approxi-
mated state-value function for the online HDP-DLQR control
system, as well as on the linear, least-square solution in
QR-solver. The numerical stability, trajectory, and formation
convergence of the QR-solver and RLSµ-QR-HDP-DLQR
algorithms are analyzed using a systemwith three agents, i.e.,
the leader and two followers.

The desired trajectory of the leader and the followers are
shown in Figure 2, where the former starts from point A
(2m high) to point B (3m high) and returns to the starting
point. The followers execute the same form of trajectory
following the formation points (A1,B1) for Follower 1 and
(A2,B2) for Follower 2.

FIGURE 2. Formation and trajectory of leader and followers in Z -axis.

1) QR-SOLVER EVALUATION
The control update using the QR-solver algorithm is shown
in Figure 3, for a cycle of 10 iterations. Figure 3 shows the

convergence of p11, p22, p33, and p44 of matrix P correspond-
ing to components θ1, θ5, θ8, and θ10 of the parameter vector
θ for Follower 1, respectively.

FIGURE 3. Evolution of the iterative process for the parameters p11, p22,
p33, and p44 for a cycle of 10 iterations, in the QR-solver algorithm for
Follower1.

The parameter Pestim reaches the optimal solution P0

(Schur solution) after approximately 10 iterations of the con-
trol update. The evolution of the iterative process for the
QR-solver algorithm is shown in Figure 4 for a 10s cycle
of the control process.

FIGURE 4. Evolution of the control process for position of the agents
along the Z -axis during a 10s period, on the QR-solver algorithm.

Figure 4 shows the trajectory of the elements (leader,
Follower 1, and Follower 2) and the desired trajectory
(leader∗, Follower 1∗, and Follower 2∗) of the multi-agent
system during the iterative process.

The leader moves from position A (2m) to position B (3m)
several times, changing its altitude (Z -axis). The followers
maintain the altitude distance with respect the flight forma-
tion plan shown in Figure 2. After the control update (gain
update for the optimal solution) is applied within a 5s period,
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Follower 1 and Follower 2 trajectory tracking is set by the
leader, and after 9s they reach the desired formation.
The QR-solver showed satisfactory results for trajectory

tracking and formation control. It required 5s to compute the
new gain (batch solution), and this time is used to fill the
matrices 0 and δ of Eq. (15-16), necessary for the calculation
of 8k

i and y
k
i in Eq. (12).

2) RLSµ-QR-HDP-DLQR EVALUATION
The results of the RLSµ-QR-HDP-DLQR experiments are
presented in an analogous form to those of the QR-solver.
A cycle of 200 iterations of the control update and 20s of
the control process (sample time 0.1s) for Algorithm 2 are
shown in Figure 5 and Figure 6. Using the forgetting factor
µ = 0.9142, Figure 5 shows the convergence of parameters
θ1, θ5, θ8, and θ10 of the parameter vector θ for Follower1.

FIGURE 5. Evolution of the iterative process for the parameters p11, p22,
p33, and p44 for a cycle of 200 iterations, with forgetting factor
µ = 0.9142, on the RLSµ-QR-HDP-DLQR algorithm, of Follower1.

The convergence of the θ parameters (p11, p22, p33,
and p44) presents numerical instabilities in the first
50 iterations, after which the solution around iteration 80 is
already admissible.

Figure 6 shows the results of the RLSµ-QR-HDP-DLQR
algorithm. Here, Follower 1 and Follower 2 spend more time
acquiring the desired formation compared to the previous
algorithm, which shows only a simulation within the interval
of 10s to 20s. This is a period during which followers track
the desired trajectory and formation; the remainder of the
simulation is not presented owing to a lack of significant
information, and to stress the convergence of the trajectory
tracking and formation control.

The RLSµ-QR-HDP-DLQR algorithm also showed sat-
isfactory results for multi-agent control despite the delay
in assembly of the desired formation. As the advantage of
this algorithm, if any variation in the process parameters
occurs, the adaptability ensures that a new control policy P
will be calculated for a controller gain K update (actor/critic
architecture).

FIGURE 6. Evolution of the control process for position of agent along the
Z -axis during a 20 s period, on the RLSµ-QR-HDP-DLQR algorithm.

3) RESULTS OF THE NUMERICAL SIMULATION
The convergence results of the P matrix for the drone model
of Algorithm 1 and Algorithm 2 are presented for the first
follower (Follower1), along with the numerical values of
Schur’s solution in Table 1.

TABLE 1. Numerical values of the P matrix for drone model.

The convergence values of the matrix P presented in the
graphs of Figure 5, are multiplied by 10−3. The computa-
tional costs for applying the control update of Algorithm 1
and Algorithm 2 in the drone model along the Z -axis is
calculated using [31], and can be seen in Table 2.

TABLE 2. Results of computational cost during Experiment 1.

Analyzing the results of Experiment 1, it can be observed
that the computational cost of RLSµ-QR-HDP-DLQR is
lower than that of QR-solver, suggesting that the algorithm
is more viable for real-time implementation with microcon-
trollers. However, this cost is repeated at each iteration of
Algorithm 2, resulting in a higher cost in the long run.

B. TERRESTRIAL ROBOT MODEL IN X- AND Y -AXIS
To verify the operation of the control algorithms in models
with more degrees of freedom (DoF), the model of a ter-
restrial robot with two DoF (X-axis and Y-axis) is chosen.
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The state-space matrices A and B are given by [39]

Ai =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and Bi =


0 0
1 0
0 0
0 1

 , (38)

where the states are the position and velocity along the
X -axis (Px , Vx) and the position and velocity along the Y -axis
(Py,Vy). The simulation results are presented for a terrestrial
robot, and the numerical stability, trajectory, and formation
convergence of the QR-solver and RLSµ-QR-HDP-DLQR
algorithms were analyzed for a system with three agents – the
leader and two followers.

The desired leader and followers trajectories are shown
in Figure 7, where the leader trajectory is a circle along
the X -axis and Y -axis with a 2m diameter. The followers
must follow this circular trajectory, while maintaining the
formation distance of 0.2m between each agent.

FIGURE 7. Formation and Trajectory of Leader and Followers in X -axis
and Y -axis.

1) QR-SOLVER EVALUATION
The evolution of the iterative process for the QR-solver is
shown in Figure 8 and Figure 9, for a cycle of 10 iterations
of the control update part in Algorithm 1, and 10s for the
iterative process. Figure 8 (a)-(d) shows the convergence
behavior of the elements p11, p22, p33, and p44 of matrix P
corresponding to the components θ1, θ5, θ8, and θ10 of the
parameter vector θ of Follower 1, respectively. The param-
eter Pestim reaches the Schur solution P0 in approximately
7 iterations.

Figure 9 shows the trajectory of the agents during the iter-
ative process, showing the circular motion of the leader. The
followers maintain the distance with respect to the desired
formation shown in Figure 7.

After the control update has been applied (at 5s),
Follower 1 and Follower 2 tracking the trajectory are defined
by the leader, and after 6s they reach the desired formation.
TheQR-solver algorithm used for the control of terrestrial

robots has presented significant results for trajectory and
formation control.

FIGURE 8. Evolution of the iterative process for the parameters p11, p22,
p33, and p44 for a cycle of 10 iterations, on the QR-solver algorithm of
Follower 1.

FIGURE 9. Evolution of the control process for the position of the agents
along the X -axis and Y -axis for 100s, on the QR-solver algorithm.

2) RLSµ-QR-HDP-DLQR EVALUATION
A cycle of 200 iterations of the control update of the
Algorithm 2 is shown in Figure 10. Using the forgetting factor
µ = 0.9142, Figure 10 shows the convergence of θ1, θ5, θ8,
and θ10 of the parameter vector θ of Follower 1.

Figure 11 presents the results of the RLSµ-QR-HDP-
DLQR algorithm. During 20s of the control process,
Follower 1 and Follower 2 begin a back and forth movement,
and after 5s, they copy the trajectory of the leader (circular
motion). After 10s, they start to follow the formation, and
at close to 15s, followers track the desired formation and
trajectory.

The RLSµ-QR-HDP-DLQR algorithm also showed good
results for convergence of the trajectory and formation in
multi-agent control.

3) RESULTS OF NUMERICAL SIMULATION
The convergence results of the P matrix for the terrestrial
robot model of Algorithm 1 and Algorithm 2 are presented
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FIGURE 10. Evolution of the iterative process for the parameters p11, p22,
p33, and p44 for a cycle of 200 iterations, with forgetting factor
µ = 0.9142, on RLSµ-QR-HDP-DLQR algorithm, of Follower 1.

FIGURE 11. Evolution of the control process for position of agents in
X -axis and Y -axis during 20 s on RLSµ-QR-HDP-DLQR algorithm.

TABLE 3. Numerical values of the P matrix for Terrestrial Robot Model.

TABLE 4. Result of computational cost in Experiment 2.

for the first follower (Follower 1), along with the numerical
values of Schur’s solution in Table 3.

The convergence values of matrix P presented in the graphs
of Figure 10, are multiplied by 10−3. The computational
costs for applying the control update, of Algorithm 1 and
Algorithm 2, in terrestrial robot model in X -axis and Y -axis
are calculated using [31], and can be seen in Table 4.

Analyzing the results of Experiment 2, it was observed
that the computational cost of RLSµ-QR-HDP-DLQR is
lower than that of QR-solve. However, in this experiment,

Algorithm 2 required twice as much time as Algorithm 1
to achieve the convergence for the trajectory tracking and
formation control.

C. COMPARISON BETWEEN MAS CONTROL ALGORITHMS
To evaluate the merits of the QR-Solver and RLSµ-QR-
HDP-DLQR algorithms for trajectory tracking and formation
control of MAS, a comparison is performed among the algo-
rithms presented in this work and an approach based on a
consensus algorithm [40]. The algorithms were compared in
relation to time needed to reach the desired trajectory and
mean absolute error of formation of N agents. The results
obtained are shown in Table 5.

TABLE 5. Comparative between algorithms proposed and
consensus-based*.

The formation error of each agent isE(L,1) = h(L,1)−d(L,1),
where h(L,1) and d(L,1) are the desired and measured distance
between the leader and Follower 1, respectively.

We conclude that Algorithm 1 has a higher cost in applying
the control update, generating a higher consumption burden
on the CPU and memory resources, whereas Algorithm 2 has
a lower cost that occurs on a recurring basis, generating a
continuous usage of the CPU and memory resources, leading
to greater energy consumption, and reducing the operating
time of the agent/robot.

Simulations with a larger number of agents are per-
formed to evaluate the convergence of the control algorithms.
The achieved results show convergence of the algorithms
QR-Solver and RLSµ-QR-HDP-DLQR in trajectory track-
ing and formation control of systemswithmultiple agents and
with any viable formation [41].

For collision avoidance, a well-established technique is
to add a barrier function term in the optimal control cost
function Eq. (6) (see [42]–[44]), which prevents collisions
between agents.

V. CONCLUSION
We presented two algorithms for the trajectory tracking
and formation control of multi-agent systems. Based on
numerical simulations, theQR-solver and RLSµ-QR-HDP-
DLQR algorithms show satisfactory results for trajectory
tracking and formation convergence. TheQR-solver required
less time to achieve convergence of the estimated param-
eters because of fewer updates. The algorithm based on
HDP-DLQR is adaptable to exogenous perturbations in the
plant in terms of the assigned trajectory and formation.

Based on the analysis, focusing on embedding the two
algorithms in microcontrollers for real-world applications,
theQR-solver algorithm is computationally more stable and
faster in terms of convergence of the gain – two essential
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features for real-time control applications. The RLSµ-QR-
HDP-DLQR algorithm has a superior adaptability, i.e., it is
better at overcoming system uncertainties.

The futureworkwill involvemobile robots implementation
of QR-solver and RLSµ-QR-HDP-DLQR algorithms. For
this, it is also necessary to add a collision avoidance routine
to the presented algorithms, preventing the agents from col-
liding with any obstacle.
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