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ABSTRACT Precision livestock farming promises substantial advantages in terms of animal welfare, product
quality and reducing methane emissions, but requires continuous and reliable data on the animal’s behavior.
While systems suitable for use within the barn exist, grazing over long distances poses challenges. Here,
we address this issue by proposing an ultra low-power EdgeAI device, minimizing data transmission require-
ments and potentially improving accuracy as compared to classification-based solutions. Namely, we propose
cow behavior distribution regression with Recurrent Neural Networks (RNNs), dubbed TinyCowNet,
to estimate mixed-label sample spaces. Without quantization, the random search to minimize resources and
maximize accuracy shows networks requiring a memory of 76kB on average and offering an accuracy up to
95.7%. These are implementable on a wide range of low-power Micro Controller Units (MCU) and Field
Programmable Gate Arrays (FPGA). Furthermore, our proposed post-training full-integer quantization for
RNNs combined with power estimation on 45nm CMOS using experimental literature shows a TinyCowNet
occupying a memory around ≈2kB, having a hypothetical power consumption on the order of 200nW,
delivering an accuracy of 95.2% and a Matthews correlation coefficient of 0.86. This work paves the way
for the future creation of low-cost, highly accurate cow behavior estimation devices with long battery life
that reduce the entry barriers currently hindering precision livestock farming outside the barn.

INDEX TERMS Animal behavior, application-specific integrated circuits (ASIC), field programmable
gate arrays (FPGA), Internet of Things (IoT), Pareto optimization, recurrent neural networks (RNN),
quantization.

I. INTRODUCTION
Livestock farming is fundamental for economies around the
world, estimated to be worth 50% of the overall agricul-
tural GDP, coupled with a historical doubling over 40 years

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

(1969-2009) [1]. As such, a United Nations report in 2013
shows that 14.5% of all human-induced greenhouse gas emis-
sions originate from this industry, to which cattle farming
contributes more than half [2]. In addition to emissions,
the livestock sector causes environmental problems such as
freshwater eutrophication and soil over-nutrition [3]. Another
doubling of global livestock product demand is expected
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by 2050, as living standards attempt to improve in developing
countries [4]. Therefore, this industry is one of the critical
areas for succeeding in global sustainability and reducing
emissions in line with the climate agreements [5].

Recently, the field of Precision Livestock Farming (PLF)
has been gaining ground, which is based on the observation,
interpretation of behavior and control of animals. This field
aims to fulfil a number of related but distinct goals, including
improving animal welfare and product quality, as well as
enhancing the economic, social and environmental sustain-
ability of livestock farming [6], [7]. For example, the precise
control of cow feeding could reduce methane emissions by
up to 11% [8]. Moreover, optimal fertility maintenance could
reduce gas emissions by up to 20% per herd [9]. Furthermore,
early disease detection and improved animal welfare reduce
antibiotic use and culling [6]. These results imply that PLF
can effectively improve the ratio of meat or milk product
produced per unit of emissions. All these possible applica-
tions require accurate behavior estimation, which provides,
albeit indirectly, awareness about livestock health and con-
ditions [10]–[13]. However, the adoption of PLF is presently
hindered by technical complexity and variable levels of reli-
ability [7].

The field of dairy cow farming is highly automated,
and many commercially-available solutions enable detailed,
ongoing monitoring within the barn and milking sta-
tions [14]–[17]. Compared to dairy cows, the diet of beef
cows is more grass-based, which is necessary to achieve
the growth rate expected for meat production [18]. A low-
cost and generally used method of providing this nutrition
is by letting cows graze on large pastures. This, however,
poses particular challenges for monitoring technology, with
no currently available solution for health and behavior mon-
itoring outdoors over large areas. In this paper, we propose
a workable solution to this challenge, developed initially in
the context of Japanese beef cow farming, which traditionally
involves grazing.

Behavior estimation systems suitable for this purpose can
be created by implementing machine learning algorithms
on the cloud. When in the context of the barn, short-range
transmission for example via Bluetooth enables attaining a
battery life on the order of 2 years [17]. However, in a grazing
scenario the situation is different due to the longer distances
and less predictable environment. This seems to often result
in a shorter battery life caused by continuous sensor data
transmission. To solve this issue, Edge Artificial Intelli-
gence (AI) implements machine learning on the embedded
devices themselves, producing a 1000-fold increase in bat-
tery life, enabling Low-Power-Wide-Area (LPWA) networks
with temporally-sparse communication over long transmis-
sion distance [19], and therebymakes devices that can operate
for years a concrete possibility [20], [21]. Besides, accord-
ing to our knowledge, current animal behavior estimating
machine learning systems, whether at the edge or on the
cloud, often apply a moving average function (windowing)
when extracting features. This creates a situationwhere single

behaviors are rigidly assigned to mixed behavior data, gener-
ating significant error.

In this work, we describe the methodology of a random
search with post-training integer-only quantization applied to
RNNs, aiming to find energy- and memory-optimized archi-
tectures that regress cow behavior distribution from tri-axial
accelerometer data. The results show highly accurate (>95%)
distribution estimation with memory occupancy as low as
≈2kB and ≈43k Multiply-Accumulate (MAC) operations
that, based on experimental literature [29], [30], we estimate
would require 216nJ per inference at a power consumption
of 154nW on 45nm CMOS. These networks are in principle
implementable on low-cost hardware devices with an esti-
mated battery life on the order of years. Therefore, we believe
that this work will contribute to the broader adoption
of PLF.

The contributions of this work are:
• An analysis of recent animal behavior Edge AI lit-
erature, large classification error when considering
time-windowed data, and comparatively high power
consumption. (Section III)

• The introduction of the notion of using a neural network
such as RNN not to hardly classify behaviors, rather to
estimate in a graded form their prevalence within each
time window of the input time series. (Section III)

• The development of a novel distribution-regression algo-
rithm based on parametrized RNNs that are optimized
using random search, demonstrating highly accurate
cow behavior estimation on low-power, low cost MCUs
and FPGAs. (Sections III-VII and IX-X)

• A variable bit-width full-integer quantization scheme
that maintains similar accuracy combined with 45nm
CMOS RNN resource estimation, pointing to the possi-
bility of future cow behavior estimation devices having
years of battery life. (Sections VII-X)

II. RELATED WORK
In the academic literature, Edge AI systems suitable for
animal behavior classification outside the barn are limited
in number, and universally use accelerometers and learning
algorithms.

Reference [22] showed a K-Nearest Neighbor (KNN) clas-
sifier running on an ARM Cortex processor achieving 96.2%
accuracy for the discrimination of high vs. low activity of
sows with 0.542mJ energy consumption per inference. Sim-
ilarly, Reference [23] used heuristics, statistical analysis of
raw sensor data, to achieve 90% precision in the classification
of three postures combined with high and low activity of sows
using an FPGA. These works did not classify any feeding
behavior.

On the other hand, recent research on Edge AI applied
to sheep, cattle and horses is available. Reference [24] used
a Multi-Layer Perceptron (MLP) to achieve a precision of
80.8% in the classification of standing, walking, and trotting
in horses. ThisMLPwas implemented on a NucleoMCU (ST
Microelectronics, Spa, Agrate Brianza, Italy) using the Fast
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TABLE 1. Literature survey of animal behavior classification with machine learning intended to be implemented on Edge AI hardware using tri-axial
accelerometers.

FIGURE 1. Energy consumption vs. accuracy of previous works compared
to the present one. Dot size denotes the number of classified behaviors.

Artificial Neural Network library [31]. Later work shows an
accuracy of 98.3% on the same three behaviors with a 163kB
three-layer MLP floating-point model on a similar MCU,
consuming 185.76mJ per inference [25].

Reference [26] combined energy consumption on a
MSP430FR5-739 MCU (Texas Instruments Inc., Dallas TX)
and accuracy to define and optimize a cost function towards
selecting features and machine learning algorithms such as
support vector machines, decision trees, random forest and
KNN. Using linear regression with 34 features, they clas-
sified five sheep behaviors, including grazing, with 89.6%
accuracy and 2050µJ energy consumption per inference.
As for cattle-based systems, Reference [27] introduced a
feature that determines the cow’s neck angle in the horizontal-
longitudinal axis. Using three features and a decision tree
on a Lattice ICE40UP5k FPGA (Lattice Semiconductor
Inc., Hillsboro OG), four cattle behaviors, including feed-
ing and rumination, were classified with an accuracy of

86.8% and energy consumption of 557µJ per inference.
Reference [28] shows anMLP network achieving aMatthews
Correlation Coefficient (MCC) of 0.934 for the classification
of four cow behaviors, including grazing and rumination
using neck-attached tri-axial accelerometers, estimated to
consume 2.29kB of memory. Notably, the MCC is a metric
relatively insensitive to dataset imbalance [32], [33].

Table 1 shows details about each of these works, i.e., the
window size, sampling frequency, sensor location, and so
forth. Previous works use time-based windowing and clas-
sification that can lead to error, when considering the fact
that animals provide mixed behavior data over time. In other
words, real-life behaviors are not neatly segregated. Further-
more, all works implement eitherMLP or other learning algo-
rithms that require feature extraction. This feature extraction
is well-documented, but may bias data processing, resulting
in sub-optimal feature sets. Hence, Ref. [34] introduced a new
library that statistically determines optimal time-series fea-
ture extraction. It is difficult to compare to other works with
windowing, since data are pre-processed differently for each
dataset, altering performance. Therefore, we propose com-
bining distribution regression of cow behavior with RNNs
since they mimic the behavior of time windowing without
requiring feature selection, and optimize their weights by
training with stochastic gradient descent.

Fig. 1 shows a cow behavior distribution estimating RNN
model created in this work with an 860k× lower energy
consumption than the highest-consuming estimation algo-
rithm [25] with 8.4% higher accuracy than the lowest
energy-consuming ones [27]. Table 1 compares this work
with existing ones; we introduce the first regression-based
algorithm applied to cow behavior for future hardware appli-
cations. What further distinguishes this algorithm is the
ability to learn features by itself by training weights with
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FIGURE 2. Label processing for pure data labels and raw data labels having a window size of 64. The colored stripes denote the behaviors of Resting
(RES), Rumination (RUM), Moving (MOV) and Eating (EAT) with blue, yellow, red and green respectively.

stochastic gradient descent. Overall, to our knowledge, it is
the most efficient cow behavior estimation algorithm in the
literature. We achieve this by the methods that are described
below.

III. WINDOWING WITH CLASSIFICATION ALGORITHMS
Windowing is the process whereby a data sequence is parcel-
lated over a pre-set sample space, the window size, through
time. For a window size ls, for every ls-th sample, the fea-
tures used in an ML algorithm are extracted and averaged.
This windowing reduces the amount of data, decreasing
transmission size and processing load, and often improves
performance when not considering the mixed-label error
introduced. Time-based windowing is described by

X =

∑ls
i=1m(i)

ls
(1)

where m is the vector representing the features and X is the
processed data used in training and inference.

A. LABELS IN CLASSIFICATION ALGORITHMS
For a labeled dataset in animal behavior estimation
(Section IV), each sample has a label assigned by an observer
based on video footage. The features are real numbers, but
the assigned labels are categorical. Therefore, one cannot
apply an averagingmethod during windowing, and a different
approach is necessary. According to our knowledge, most
PLF literature does not clearly describe this problem, its
impact, and the necessity to consider it in edge applications
for farmers [6].

Fig. 2 shows windowing over a window size of ls = 64
with the cow behavior dataset described in the next Section.
For ‘‘pure’’ mode, the raw data are sorted into behavioral
categories and then windowed, forming long homogeneous
behavior collations. Nevertheless, this method corrupts the
temporal relationships in the data, important for real-life
representation. On the other hand, ‘‘raw’’ mode includes

multiple categories within each window, preserving this
relationship. However, multiple categories pose a problem for
classification because there is a single label output. We con-
sider two ways in which this problem could be solved. In the
case of pure data, the label has to match the data input to
be correct. However, in the case of raw mixed-label data,
there is ambiguity. One way is to consider the majority label
as in Fig. 2, as the correct classification output. With this
method, there is a worst-case error of 75% in cases of equal
behavior distribution, and this error depends on the number
of behaviors, i.e.,

εmax = 1−
1
Nb

(2)

which approaches unity for a large amount of behaviors, Nb.
Another way is to apply a nearest-neighbor approach and
assign a label approaching the mean feature value of each
label category. However, this method is sensitive to outliers.
If one window contains label categories with largely sepa-
rated feature values, this assigns a nonsensical label. There-
fore, we posit that assigning the majority label as performed
in literature, might lead to large error whenever an animal
changes behavior. For example, in Table 1, across the existing
studies, the window size ranges from 1 up to 120 seconds.

B. PROPOSED DISTRIBUTION REGRESSION
Instead of a classification algorithm that involves mixed label
error, we hereafter propose a regression algorithm to estimate
a distribution. This regression eliminates the error in Eq. (2)
as it estimates the label category proportion over an arbitrary-
sizedwindow. The output vector of this algorithm is described
by

y = [α1, . . . αi, . . . αNb ] (3)

where Nb is the number of behaviors, four in this work, αi ∈
[0, 1] is the prevalence for behavior i and y is the output of
the regression algorithm. This y is a vector having unitary L1
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FIGURE 3. Video frames representing examples of the four labeled behaviors namely, Resting, (RES), Rumination (RUM), Moving (MOV) and Eating (EAT),
alongside an illustration of the tri-axial accelerometer attached to the neck.

FIGURE 4. Method of labeling raw data into distribution vectors. Instead
of a single label as in classification tasks, a distribution vector is used for
regression. The ls is the sample window size, normalizing the vector.

norm, i.e.,

||y||1 =
Nb∑
i=1

αi = 1 (4)

where αi is calculated as

αi =
mi
ls

(5)

and mi is the number of samples for each behavior i in a
window. The amount of time per behavior in a window with
window size ls is then

ti = αi
ls
facc

(6)

where facc is the sampling frequency of the accelerometer.
Fig. 4 shows raw data processed into distribution labels

according to Eq. (3). This method allows similar data size
reduction as classification, while enabling unbiased estima-
tion of the time spent in each behavior.

IV. DATASET AND ANNOTATION
This Section describes the pre-labeled dataset used in the
training and validation of the proposed neural network. Its

TABLE 2. Labeled data, description and corresponding prevalence.

preparation involved the gathering of 16-bit, 25Hz, ±2g
tri-axis accelerometer data (type KX126-1063, Kionix Inc.,
Ithaca NY) accelerometers [35], attached to the neck of six
adult Japanese black beef cows (Kuroge Washu) at a farm of
Shinshu University in Nagano, Japan. Over two days, these
cowswere observed in farm pens and a grass field while being
filmed with multiple video cameras. Hereafter, for each cow,
three experts labeled the data from the video footage. In total,
691 minutes of unlabeled video were parsed into 197 minutes
of high-quality labeled data by strict selection of segments
that did not involve simultaneous behaviors or excessively
frequent transitions. With an estimated 69 person-hours
for this labeling and the data gathering at the farm, costs
are high. Consequently, we are investigating self-supervised
learning [36] that has been used in many applications [37],
[38] but remains unexplored for cow behavior. Data gath-
ering with these cows was reviewed and approved by the
institutional animal care and use committee of Shinshu
University, Japan. This dataset has been made publicly
available under the Creative Commons CC BY-NC-ND
license [39].
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FIGURE 5. Labels per behavior for the reduced dataset with a distribution
of roughly 6:3:3:1, which indicates large imbalance.

Fig. 3 shows video frames of the four behaviors and an
illustration of the neck-attached accelerometer and its axes.
Table 2 describes the labeled behaviors. There was access
to water and hay in the pens with muddy floors, and the
behaviors were primarily characterized by walking, rumi-
nating, and resting. On the other hand, in the grass fields,
where the cattle were allowed to graze freely, the primarily
observed behaviors were grazing and running. In total, 94.4%
of the 197 minutes of data represented resting (RES), rumi-
nation (RUM), eating (EAT), and moving (MOV). Therefore,
we removed the remaining 5.6% that accounted for all other
behaviors, having only a minor impact on representativeness.
For the avoidance of misunderstanding, it should be clear that
the purpose of this work is not to model the full spectrum of
cow behaviors. The focus, rather, is on the most prevalent
ones, changes in the distribution of which may signal hid-
denly deteriorating health [12], [13]. Rare occurrences such
as encounters with other animals were not included in the
dataset.

Fig. 5 illustrates the imbalance in the reduced dataset, hav-
ing a distribution of roughly 6:3:3:1, i.e., six times more rest-
ing than eating data. Methods such as oversampling minority
classes or downsampling majority classes are often used to
address such imbalance [40]. For example, oversampling
may be simulated via random rotations of the accelerometer
around the cow’s neck [41]. However, here we decided not to
apply these methods for three reasons. First, downsampling
the majority classes would result in an unnecessarily smaller
dataset. Second, the dataset represents the actual distribution
of cow behavior. Therefore, oversampling would distort this
distribution and create overfitting [40]. Third, the distribution
of actual cow behavior is always imbalanced [42], [43] and
should be preserved to obtain ecologically valid algorithm
performance [44]. Data extension methods are not the focus
of this work and are outside scope.

V. NEURAL NETWORK METHODS
This Section presents themethodology of different neural net-
work layers essential for understanding the proposed model
architecture in Section VI.

A. RECURRENT LAYERS
Recurrent Layers (RL) are algorithmic units with the follow-
ing general input and output sequences

X = {x1; x2; . . . xTs} (7)

FIGURE 6. Architecture overview of (a) Simple Recurrent Layer, sRL,
(b) Long-Short Term Memory, LSTM, and (c) Gated Recurrent Unit, GRU.

Y = {y1; y2; . . . yTs} (8)

where X represents the input sequence and Y the output
sequence with a size of Ts timesteps. Using only the last
output of Y, yTs , is commonly called many-to-one and is
considered in this work. RLs can learn the characteristics of
time-dependent problem data sets as they recur their outputs
for each timestep. Fig. 6 shows three RNN architectures,
equivalent to those in TensorFlow 2.0 with Keras back-
end [45], [46], that are used in this work.

1) SIMPLE RECURRENT LAYER (SRL)
Recurrent Layers have their roots in cognitive science,
and early parallel computation [47], [48]. In its most
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TABLE 3. Weight dimensions and multiply-accumulate (MAC) operation
of the four different neural network layers. Variables i , n and m denote
the input size, recurrent layer width and output vector size.

simplistic form, the simple recurrent layer (sRL) has a train-
able bias, two trainable weight matrices, and one activation
function. The model equation for this layer is

ht = tanh(b+ Uht−1 +Wxt ) (9)

where ht , ht−1 and xt represent the recurrent output, the
previous recurrent output, and the input vectors. The recur-
rent, input, and bias matrices are denoted by U, W, and b.
Finally, the hyperbolic tangent, tanh(x), is chosen as acti-
vation function. Although least complex, this model suffers
from vanishing-exploding gradient, complicating the training
of large models. This problem can be solved with gradient
clipping [49] or stochastic diagonal approximate greatest
descent [50] during training.

2) LONG SHORT TERM MEMORY (LSTM)
Other than the above, Ref. [51] introduced Long Short Term
Memory (LSTM) that addresses the vanishing-exploding gra-
dient by introducingmore gates. Since its formulation, LSTM
has yielded amultitude of breakthroughs in sequence learning
problems [52]. The model equations are

ft = σ (bf + Uf ht−1 +Wf xt ) (10)

it = σ (bi + Uiht−1 +Wixt ) (11)

ot = σ (bo + Uoht−1 +Woxt ) (12)

c̃t = tanh(bc + Ucht−1 +Wcxt ) (13)

ct = ft ◦ ct−1 + it ◦ c̃t (14)

ht = ot ◦ tanh(ct ) (15)

where ft , it , and ot are the forget, input and output vectors,
respectively, the ◦ operator indicates the Hadamard product,
and σ (x) is the sigmoid activation function. Finally, there
is an additional output vector, cell state vector ct , which is
recurrent as ht , but not forwarded to the deeper layers.

3) GATED RECURRENT UNIT (GRU)
The GRU, introduced in Ref. [53], also addresses the
vanishing-exploding gradient but reduces the gates and out-
puts. The model equations of the GRU are

zt = σ (brz + biz + Uzht−1 +Wzxt ) (16)

rt = σ (brr + bri + Urht−1 +Wrxt ) (17)

h̃t = tanh(brh + bih + Uh(rt ◦ ht−1)+Whxt ) (18)

FIGURE 7. Layer width n for four different layer counts N plotted vs. total
number of weights using simple Recurrent Layers. The gray lines indicate
that a doubling of the layer width n for a quadrupling of the numbers of
layers N is possible at the same weight cost.

ht = (1− zt ) ◦ ht−1 + zt ◦ h̃t (19)

where zt , rt and h̃t are the update, reset and candidate activa-
tion gates. Furthermore br : and bi: represent the recurrent and
input biases. The GRU has one more bias term than LSTM
but a single recurrent output. An empirical study showed that
the GRU outperforms the LSTM on all tasks except natural
language processing [54]. However, both GRU and LSTM
suffer from gradient decay for deep multi-layer networks,
increasing the training time [55].

B. LINEAR LAYER (LL)
Linear Layers have two trainable weight matrices: the bias
and the kernel. Each layer is a linear function, i.e.,

o =Wx+ b (20)

where o and x are the output and input vectors. Furthermore,
W and b represent the trainable kernel and bias. This layer
is used frequently as an output layes, mapping features to
class labels. Alexnet, which revolutionized deep learning
for computer vision and Mobilenet, are networks that have
leveraged these in the past [56], [57].

C. HARDWARE CONSIDERATIONS
Recurrent layers incur a high number of multiplications,
proportional to the sizes of the input kernel, recurrent ker-
nel, and bias matrices. Furthermore, activation functions
are non-linear functions that require an approximation in
digital hardware such as Application Specific Integrated
Circuits (ASIC).

Table 3 shows the number of weights and Multiply-
Accumulate (MAC) operations for each of the layers, i.e.,
sRL, GRU, LSTM, and Linear. The number of MACs
increases linearly or quadratically with the number of
weights. Thus, sparsifying the network, that is, minimizing
the number of weights can reduce the amount of MAC
operations considerably. The majority of dynamic energy
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FIGURE 8. Cow behavior distribution estimating neural network, rolled out over time from left to right. The yellow blocks represent the recurrent layers
with outputs, hidden state vector h and cell state vector c, and contain the trainable weights {U,W,b}. The green block represents the linear output layer
with trainable weights {WL,bL}. Each state vector is indicated with entries (p,q) where p is the current timestep and q is the respective layer. The
hyperparameters included in the search space are architecture k , width n and layer count N and timesteps Ts. Finally, ŷ denotes the regressed distribution
vector containing cow behavior prevalence.

consumption of neural networks on hardware is due to mem-
ory access [58], which can be reduced by replacing dynamic
with static RAM (e.g., 128× on 45nm CMOS [29]). Never-
theless, minimizing n is essential.

Fig. 7 shows the relationship of the weights with layer
width n and the number of stacked layers N for the sRL.
With every doubling of layer width n, layer count can be
quadrupled at the same weight cost. Thus, stacking multi-
ple recurrent layers increases the amount of memory and
multiplications only linearly, in contrast with increasing the
weight dimensions with parameter n. According to experi-
mental characterization on 45nm CMOS, one 32-bit SRAM
access costs 5pJ of energy while 32-bit floating-point and
integer MAC operations cost a total of 4.6pJ and 3.2pJ,
respectively [29].

VI. PROPOSED COW BEHAVIOR DISTRIBUTION
ESTIMATING NEURAL NETWORK (TINYCOWNET)
Recurrent neural networks are known to learn time-based
relationships of generative processes and are prevalent in
applications of natural language processing, machine trans-
lation, and sequence modeling [59]. In hardware, over 70
implementations on ASIC, FPGA, or GPU/CPU have been
demonstrated in Ref. [60], but only twowere applied to action
recognition using video footage [61], [62]. To our knowledge,
no RNN for animal behavior monitoring on hardware has
been described.

TABLE 4. Hyperparameters defined for the search space of the recurrent
layers, i.e., the layer width n, the total number of layers N , the timesteps
Ts and the cell architecture type k .

The recurrent layers described in Section V are used to
optimize network architecture towards estimating cow behav-
ior distribution in a future low-power hardware implementa-
tion. This network is composed of one to four recurrent layers
and a linear layer that outputs a behavior distribution vector
as in Eq. (3). To find an optimal network in terms of accuracy
and model size, the parameters, including those of Table 3
are optimized with neural architecture search (explained in
Section VII). Fig. 8 shows the proposed parameterized neu-
ral network, TinyCowNet. Each yellow block represents the
architecture k (GRU, LSTM or sRL) with a width nf , train-
able weights Ul , Wl and bl , and activation functions tanh(x)
and σ (x). This nf is the layer width n divided by layer count
N to prevent the creation of excessively large models, i.e.,

nf =
⌊ n
N

⌋
(21)
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TABLE 5. Low-power programmable devices potentially viable as targets for TinyCowNet implementation. The Lattice UL640 and Microsemi AGLN250
FPGA are ultra low-power devices suitable for the smallest networks. The STMicroelectronics MCU and Lattice UP5K are low-power FPGAs better suited
for medium-sized models.

where the fraction is floored. For each time step, tri-
axial accelerometer data are submitted to the network until
timestep Ts. Furthermore, each layer recurs the previous
hidden state vector ht−1, that is also forwarded to the
next layer. At timestep Ts, the final output of the deep-
est recurrent layer is linearly mapped to output a cow
behavior distribution vector using the ReLU activation func-
tion, i.e., ReLU(x) = max(0, x). In the case of an
LSTM network, there is an additional recurrent output,
cell state vector ct , which is not forwarded to the deeper
layers.

Table 4 shows all parameter ranges of the search space
subject to optimization. Because of composite generative
processes in nature, it is expected that multi-layer networks
will outperform wide single-layer networks [67]. As regards
the layer width n, the minimum number (3) is determined by
the need to avoid a trivial response, whereas the maximum
number (250) reflects the maximum available memory in
the devices under consideration. As regards the number of
layers N , the minimum number (1) is self-evident, whereas
the maximum number (4) was determined based on existing
literature indicating that deeper networks are difficult to train
when considering the range of timesteps [55]. As regards
the timesteps Ts, the minimum number (2) is self-evident,
and the maximum number was set to 300 since this is an
intermediate level between the limits previously observed:
sRLs become increasingly difficult to train for Ts > 100,
whereas LSTMs and GRUs become increasingly difficult to
train for Ts > 500 [55].

A. TARGET NETWORKS
Table 5 describes three low-power FPGAs and one low-power
MCU with their total memory, clock speed, board area and
purchase price. These are indicated purely as representa-
tive examples. Each FPGA has enough resources for the
implementation of several multiply-accumulate units and
control logic. Furthermore, TensorFlow Lite [45] for MCUs
uses only 16kB of runtime memory, therefore we assume a
remaining memory of 68kB. The average price of all these
devices is 7.2$. In order to allow for future implementation
of TinyCowNets, we have set the target of building networks
which have a memory footprint below the smallest device.
Furthermore, to be competitive with other works, we aimed
to maintain an accuracy > 93%.

VII. FINDING THE TARGET NETWORKS
Recent advances in neural network design have yielded
computer-designed neural network architectures that outper-
form expert-designed neural networks in computer vision
tasks [68], [69]. This field of research, neural architecture
search, was first proposed in Ref. [70] using reinforcement
learning. Since then, different methods using genetic algo-
rithms and gradient descent have been applied to reduce
search time and further increase model accuracy [71], [72].
A comparison of these methods for cow behavior estima-
tion and recurrent neural networks is outside of the scope
of this work. We decided to apply random search to deter-
mine the recurrent layers in Section VI and Table 4 because
of its straightforward implementation and because defining
suitable heuristics for more advanced methods was beyond
scope. For example, determining a suitable fitness function
and chromosome structure for efficient optimization using
genetic algorithms requires careful consideration of a mul-
titude of aspects, to make sure the evolutionary aspect mean-
ingfully improves the process over a pure random search.
Random search generates a model according to randomly
assigned values within the allowed ranges of parameters, and
as such it is the most parsimonious possibility with respect
to the assumptions that have to be introduced. It was shown
in Ref. [73] and argued by Ref. [74] that current neural
architecture search methods do not significantly outperform
this brute-force search method.

A. RANDOM SEARCH
Each point in the search space as denoted in Table 4 is defined
as

θ = {nf ,N ,Ts, k} (22)

where nf is the floored layer width from Eq. (21), N is
the layer count, Ts is the amount of timesteps and k is
the recurrent layer type. There are 295,412 unique possi-
ble combinations with the indicated ranges, making a grid
search unfeasible. Therefore, we set the hyperparameters to
be uniformly-distributed discrete random variables so that
each point in the parameter range has an equal probability
of being selected. A total of 445 random searches were
performed.

Fig. 9 shows the method of randomly selecting hyper-
parameters and training TinyCowNets. For each iteration,
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FIGURE 9. Diagram showing a single iteration i of a random search applied to four hyperparameters of TinyCowNet (Fig. 8). These hyperparameters
represent layer width n, layer count N , layer type k , which have influence over the complexity of the network and timesteps Ts. For each iteration, a set of
hyper parameters θ in the uniformly distributed range R is randomly assigned to TinyCowNet, in this case Mi . Hereafter, a three-fold stratified split
training-validation dataset (Fig. 10) is used to train the model with Mean Squared Error (MSE) as loss function for 150 epochs. Finally the resulting three
model accuracies and weights are stored for later resource-optimized candidate selection.

FIGURE 10. Stratified splitting of the imbalanced cow behavior dataset.

one unique subset of the search space denoted as θi =
{nfi,Ni,Tsi, ki}, is randomly assigned from the uniform
range R. The parametrized neural network, TinyCowNet
(Section VI), is adapted with this subset and trained on a
supercomputer for 150 epochs and three different splits of
the cow behavior dataset using Adam optimizer and a batch
size of 8. After training, the model characteristics, weights,
subspace θi, and accuracy are stored, and a new iteration is
initiated.

B. TRAINING CONDITIONS
Fig. 10 shows the data splitting methodology. First, the data
are split into 80% and 20%, of which the latter are used
as test dataset. The remaining data is then split into 16%
and 64% representing the validation and training datasets,
repeated over three folds. Each fold’s data split is stratified,
i.e., the training, validation, and testing dataset have similar
distribution of labels as the original dataset (distribution as
in Fig. 5, i.e., 6:3:3:1). This validation dataset is used to
rate each candidate model by its accuracy. For each train-
ing iteration, the randomly assigned model is trained and
validated with different data, resulting in three different
models. Finally, the performance is averaged and stored for
both the validation and the test datasets. Stratified split-
ting ensures that the datasets have comparable distributions
and has been used to obtain reliable performance of cow
behavior classification [44]. Each of these three data splits
represents the original imbalanced dataset with possible over-
lapping, but performance on each fold is still considered as
independent [75].

The evaluated metric during training is the standard Mean
Squared Error (MSE) for a four behavior distribution vector
which is described by

MSE =
1
4

4∑
i=1

(ai − âi)2 (23)

where ai is the prevalence of the i-th behavior and âi is the
estimated prevalence from the selected TinyCowNet. This
MSE punishes the algorithm more heavily for error than a
L1 norm vector, decreasing training time.

C. CANDIDATE EVALUATION: ACCURACY,
MACS AND MEMORY
After training, the Mean Absolute Error (MAE) is used to
score each architecture over the validation dataset. This MAE
represents the absolute difference between each estimated âi
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and real prevalence ai averaged over all behaviors, i.e.,

MAE =
1
4

4∑
i=1

|ai − âi| (24)

Compared to the MSE, the MAE lends itself to a more
intuitive interpretation, in light of the fact that the network
output is a distribution of prevalence. On the other hand,
from a different perspective, the accuracy of the algorithm
in identifying the most prevalent behavior is obtained by
considering expectation, i.e.,

Accuracy =
1
M

M∑
i=1

E[y(i), ŷ(i)] (25)

where M is the length of the dataset and the operator
E[y(i), ŷ(i)] = 1 if the largest element matches between
the two vector, and E[y(i), ŷ(i)] = 0 otherwise. Next to the
MAE and accuracy, we employ the Matthews Correlation
Coefficient (MCC) that ranges from -1 to 1, as it is a stan-
dard metric used on imbalanced datasets [33], [76]. Besides
this, we have observed that the majority of the distribution
vectors processed from the dataset contain a single behavior.
However, TinyCowNet does not present a binary output (1 or
0) as the final layer is linear and non-ideal. As such, we use
the Receiver Operating Characteristic (ROC) curves and cal-
culate the Area Under Curve (AOC) instead of setting an
arbitrary threshold to classify each behavior from the output
vector independently. This a standard statistical procedure
used for imbalanced datasets [76], [77].

Other than performance metrics, the memory occupation
and number of MAC operations of each model are deter-
mined. The total number of MACs that a TinyCowNet uses,
Ok , for each layer type k including linear layer, layer count
N and timesteps Ts is given by

OsRL = Ts(n2f (2N − 1)+ 3nf ) (26)

OLSTM = Ts(n2f (8N − 4)+ nf (3N + 12)) (27)

OGRU = Ts(n2f (6N − 3)+ nf (3N + 9)) (28)

Oll = 4nf (29)

where the contribution of the deeper layers is more signifi-
cant. This is because the recurrent vector output, ht , from all
layers has a size of nf , changing the input weight matrix size
of the deeper layers to W = nf × nf . Furthermore, the Ts
term is necessary to determine the total amount of operations
as the networks recur until the final timestep. The number of
weights required to store the model for each recurrent layer
type k and output layer ll is given by

PsRL = n2f (2N − 1)+ nf (N + 3) (30)

PLSTM = n2f (8N − 4)+ nf (4N + 12) (31)

PGRU = n2f (6N − 3)+ nf (6N + 9) (32)

Pll = 4nf + 4 (33)

where the GRU has two bias weights instead of one. Overall,
the number of MACs in sRL TinyCowNet is between 3-4
times lower than that of LSTM and GRU.

VIII. POST-TRAINING QUANTIZATION
TensorFlow models are trained and inferred using 32-bit
floating-point representation. Such models on hardware use
large amounts of memory and high-complexity arithmetic
operations. By contrast, the industry standard in low-power
digital processing hardware is using 8-bit fixed point num-
bers. Quantization of neural networks is generally split into
two methods: pre- and post-training quantization. While
the former has led to better results than the latter [78],
quantization during training adds another dimension to the
optimization problem, further complicating decisions on opti-
mal architecture, beyond the scope of this work. Therefore,
we decided to create an ad-hoc method of post-training,
integer-only quantization aiming to minimize energy con-
sumption and memory occupancy. A similar, although not
fully equivalent, approach has been described in a recent
preprint report [79]. The novelty in this work is the activation
function scaling and dynamic bit-width optimization.

A. FULL-INTEGER QUANTIZATION FOR RNNS
Neural networks with integer-only arithmetic use lower-
power modules in hardware, and show a lower latency for
similar accuracy compared to floating-point models [80].
This fixed-bit-width integer-arithmetic-only quantization
scheme from Ref. [80] is used in TensorFlow Lite, but
limited to convolutional neural networks. Here, we adapt it
to RNNs. An analysis of different quantization methods is
out of scope and will be systematically performed in a future
study. For now, we considered variable bit-widths for differ-
ent parts of the RNN towards power-accuracy optimization
with an in-depth analysis but without comparing different
possibilities. This Section describes the proposed quantiza-
tion scheme.

Consider the mapping of a real number r to an integer q
with scale S and zeropoint Z

r = S(q− Z ) (34)

the scale is then defined as

S =
a

2l − 1
(35)

where a is the range, and l is the bit-width. In the case of a
staticmatrix such as the trainable weights of a neural network,
i.e., TinyCowNet, we assign this range to

aw = |max(W)| + |min(W)| (36)

as W is one of the matrices to be quantized. The zeropoint
offsets any negative numbers avoiding the use of two’s com-
plement representation, further reducing logic occupancy.
We do this by relating the zeropoint to the minimum number
in the weight matrix as in

Zw =
⌊
−min(W)

Sw

⌉
(37)
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FIGURE 11. Example of full-integer quantization for RNNs with a weight
matrix and bias matrix for which the range is defined by the activation
function at 8-bit bit-width.

where Sw is the scale of quantizedW, and bxe denotes round-
ing. Each weight of the matrix is subsequently quantized by

q(i,j)w =

⌊
r (i,j)w

Sw
+ Zw

⌉
(38)

where r (i,j)w is the floating point number and q(i,j)w is the
quantized number.

In the case of bias b, terms Uht−1 andWxt , the scales and
zeropoints have to be equivalent for straightforward element-
wise addition. Therefore, the domains of the activation func-
tions are considered to set the quantization range α as in
Eq. (35). We assume the sigmoid has a range value, aσ = 12,
and the hyperbolic tangent has a range value of 6, atanh = 6,
considering their asymptotes. The above described terms use
the same quantization scheme as in Eq. (38), but their scale
S3 and zeropoint Z3 are determined by the activation function.
This is aσ , for LSTM and GRU networks or atanh for the sRL
network. Fig. 11 shows an example of quantizing a 3 × 3
matrix and a 1 × 3 bias matrix with the methods described
above.

A matrix multiplication involves two differently-quantized
numbers for each entry with different scale and zeropoint.
In that casemultiplication for each entrywith the quantization
scheme is described as

q3 =
S1S2
S3

(q1 − Z1)(q2 − Z2)+ Z3 (39)

where S3 and Z3 are the scale and zeropoint of the resulting
number. The results of matrix multiplications with U and W
are added to the bias matrix b. This means that S3 and Z3
have the range of aσ or atanh. In turn, S1 and Z1 are defined
by U and W. Similarly, S2 and Z2 are set to the ranges of
the accelerometer data (± 2g) and the recurrent output vector
with range atanh. Multiplication of an I × M and an J × M
matrix are performed according to

q(i,m)3 =
S1S2
S3

M∑
j=1

[
(q(i,j)1 − Z1)(q

(j,m)
2 − Z2)

]
+ Z3 (40)

FIGURE 12. Overview of the simple recurrent layer with integer
quantization. The red and green blocks represent the input/output and
stored weights, respectively. The light blue stripes indicate the bit-width
of the buses, output bit-width hq, weight bit-width wq and bias bit-width
bq. The dark blue multipliers are equivalent to the matrix multiplication
as described in Eq. (41). The hyperbolic tangent function is implemented
as a look-up where h′

t are the indices. The orange blocks are
element-wise operation blocks where the output of the addition
operation is rescaled to hq bits.

TABLE 6. Quantization parameters defining a quantization search space
to be used on three TinyCowNets selected from the random search. While
the weight bit-width wq and hq are selected arbitrarily and independent,
bq is dependent on the former because of the relationship with matrix
multiplications in the recurrent layers.

which can be rewritten as

q(i,m)3 =
S1S2
S3

[
MZ1Z2 − Z2

M∑
j=1

q(i,j)1 − Z1
M∑
j=1

q(j,m)2

+

M∑
j=1

q(i,j)1 q(j,m)2

]
+ Z3 (41)

where the first two terms in the brackets are known in
advance since each entry in weight matrix q(i,j)1 is avail-
able [80]. Therefore, these can be stored to speed up the
multiplication. However, for large bit-widths, this second
term takes up a considerable amount of memory. For this
reason, we have decided to store no other than the zeropoints,
scales, and column size M . These equations are similar
to Ref. [80].

B. OPTIMAL QUANTIZATION WITH GRID SEARCH
Fig. 12 shows the above-described quantization scheme
applied to a simple recurrent layer considering the weight bit-
widthwq, bias bit-width bq and output/activation bit-width hq.
These parameters replace l in Eq. (35) for each weight matrix.
Matrices U and W are quantized with wq, bias matrix b with
bq and the recurrent output vectors ht and ct are quantized
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with hq. The Sbq/Shq term rescales the added matrices to
hq for activation function tanh(x). This hyperbolic tangent
and the sigmoid use, possibly with interpolation, a Look-Up
Table (LUT) with size 2hq . As such, rescaled h′t is used as
an index of this LUT. The size and precision of this table
are other important factors for performance and memory.
The architecture search space already includes hundreds of
thousands of possibilities. Therefore, we only consider the
three best-trained candidates from the random search for
the quantization scheme to limit the compute required for
dynamic quantization.

Table 6 shows the quantization search space with bq, wq
and hq. The bias, b, needs sufficient precision as it is involved
with the element-wise addition with the two other terms in
Eq. (9). Therefore, we select this precision as bq = 3wq
since the number of weights, especially for the GRU and
LSTM layers, is large. This bq has the smallest influence
over the memory occupancy, because it is only involved
in the addition of vectors with size nf (layer width) and
rescaled to hq. Nonetheless, the inclusion of wq and hq with
ranges of 13 steps in the random search, would increase the
involved search space by 169×. In other words, perform-
ing quantization before random search drastically enlarges
the required computation load as the unique combinations
increases from 300 thousand to 50 million. In addition,
as quantization injects noise into the dataset, the training
process would be further complicated. Therefore, we use a
separate grid search to find bit-width combinations that yield
a minimum loss of accuracy after training. We define this
loss as the absolute distribution error, the absolute differ-
ence between the quantized model and TensorFlow model
output vectors using the test dataset. Next to this, we con-
sider the minimum memory and energy consumption to
balance resources and performance. Starting from the three
best trained candidates given by the random search, a total
of 507 quantized models are generated and tested on the test
dataset.

C. MEMORY ESTIMATION FOR THE QUANTIZED MODELS
Eqs. (30)-(33) are transformed to include the two parame-
ters wq and hq, and determine the memory in bits for all
layers, i.e.,

PqsRL = wq(n2f (2N − 1)+ 3nf )+ bqnf N (42)

PqLSTM = wq(n2f (8N − 4)+ 12nf )+ 4bqnf N (43)

PqGRU = wq(n2f (6N − 3)+ 9nf )+ 6bqnf N (44)

Pqll = 4wqnf + 4bq (45)

wq and bq are 32-bit floating-point for vanilla TensorFlow
models [81]. Furthermore, the memory required by the hyper-
bolic tangent and sigmoid LUTs for layer type k is

Pqact,k =


2hq−1, if k = sRL
2 · 2hq−1, if k = LSTM
2 · 2hq−1, if k = GRU

(46)

where hq is the output bit-width and the 2−1 term indicates
half LUT size since the functions are both odd. In the case
of a 32-bit implementation, these functions would use up the
majority of resources. However, with small bit-widths, the
LUTs are few and only a single SRAM access per activation
is required.

D. POWER AND ENERGY ESTIMATION
Starting from the stated 32-bit SRAM access energy of 5pJ
on 45nm CMOS [29], we can as a first approximation
assume that a bit-by-bit operation can be linearly scaled for a
multiplier-adder and SRAM considering the defining proper-
ties of logic circuits [82]. Therefore, we estimate the energy
consumption of all SRAM accesses for a single inference to
be

EDSRAM =
5(Ts(Pqk + Cqact,k )+ Pqll)

32
pJ (47)

where the recurrent layer memory is accessed for each
timestep until Ts and Cqact,k is the number of activation
function bit look-ups. This is represented by the following
equation

Cqact,k =


hqnf , if k = sRL
hq5nf , if k = LSTM
hq3nf , if k = GRU

(48)

Differently from SRAMs, we estimate the dynamic energy
consumption of MAC operations by transforming the
experimentally-verified 32-bit integer MAC energy con-
sumption of 3.2 pJ [29]. This transformation similarly
scales the experimentally-verified energy as a multiplier
with a single bit-width determined by either hq or wq,
wherein

EMAC =
3.2(Ok + Oll)max(wq, hq)

32
pJ (49)

which would offer flexibility on hardware. This energy per
MAC and SRAM effectively provides a lower bound of the
dynamic energy requirement. Regarding the static energy
consumption, as a first approximation we focus on the
SRAM, neglecting everything else, on the assumption that
its contribution is dominant. We therefore consider a 45nm
CMOS 1kb SRAM that has been experimentally determined
to consume 3.7nW of static power [30] and calculate the
required amount as

mSRAM =

⌈
(Pqk + Pqll + Pqact,k )

1024

⌉
(50)

to store all bits of themodel inmemory. The total static energy
consumption for maintaining the weights and activation func-
tions in the multiple SRAMs for a single inference is then
shown to be

ESSRAM = 3700
mSRAMTs
facc

pJ (51)

where facc is the accelerometer sampling frequency. Assum-
ing that Pqk � (Pqll + Pqact,k ) in case of large networks
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FIGURE 13. Scatterplots of the 445 TinyCowNets (parametrized RNNs) found using random search. In the left column, the color denotes layer type
k . In the right column, the colors denote number of layers N . Furthermore, the top, middle, and bottom row show the mean absolute error vs. the
number of weights Pk , the MAC operation count Ok , and timesteps Ts.

and sufficiently small hq, we can estimate the relationship
between the energy required to store the weights and the total
SRAM access energy, i.e.,

ESSRAM ≈
23
facc

EDSRAM (52)

showing that the static energy will dominate for accelerom-
eter frequencies under 23 Hz. Importantly, this indicates that
the power consumption cannot be arbitrarily reduced by low-
ering sampling rate. The total energy for a single inference is
thus

Einf = EMAC + ESSRAM + EDSRAM pJ (53)

from which the power consumption in can be calculated as

Powm =
faccEinf
Ts

pW (54)

where the facc is the sampling frequency of the accelerometer,
25Hz in this work. It is important to underline that this

estimation approach only considers a lower bound, and in
practice factors such as the static current in the MAC unit,
other logic etc. are likely to have a substantial impact. Nev-
ertheless, this approach allows a meaningful comparison and
ranking of networks, which suffices for the present work’s
purpose.

IX. RESULTS OF TINYCOWNET WITH RANDOM
SEARCH AND QUANTIZATION
For each of the 445 iterations of random search, three
TinyCowNets were trained for 150 epochs subject to strat-
ified splitting. Overall, this process took a compute time
of 859 hours on a Xeon E5-2680 v4 2.4GHz core, averaging
116 minutes per iteration [83].

A. WEIGHT, MAC AND TIMESTEPS ANALYSIS
Fig. 13 shows the Mean Absolute Error (MAE) of 445
random search iterations in six scatter plots. The number of
weights, Pk , is strongly inversely related to the MAE, which
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TABLE 7. Average mean absolute error (MAE) of the best-performing 10% of found models per decade vs. the model weights Pk and MACs per inference
Ok (101-108) with random search. This is considered with the hyperparameters for recurrent layer type k and layer count N as well as the result of the
entire random search results regardless of hyperparameter (All (average)).

TABLE 8. Number of weights, total MACs per inference, timesteps, recurrent layer count and recurrent layer type of the best implementable 32-bit
floating-point TinyCowNets for each of the four devices considered (Tables 5, 9). In addition, the independent accuracy for each of four cow behaviors,
i.e., resting (RES), rumination (RUM), moving (MOV) and eating (EAT) on the test dataset is described as determined by optimal ROC threshold.

TABLE 9. Maximum number of 32-bit weights and MACs per timestep
when assuming a single multiplier unit on three low power FPGAs and
one MCU as described in Table 5. In light of these resources, the best MAE
on the validation dataset of an implementable TinyCowNet (described in
Table 8) from the random search results is indicated.

decreases near-logarithmically over the first two decades
(101-103). Furthermore, four- and two-layer models seem to
be most MAC-efficient. In addition, it seems that sRL net-
works have increasing error forMACs and number of weights
above 106 and 104, confirming the vanishing-exploding
gradient problem that makes large sRL models harder to
train.

Of the in total 445 models, 148 have an MAE equal
to or lower than 0.1. Within this error bound, 85 or 59%
are of the layer type GRU followed by 55 LSTM and
only 8 sRL models. Similarly, 48 and 56 of all the models
within this region have two or four layers, representing the

majority. The bottom row of Fig. 13 shows the best mod-
els to maintain similar accuracy with changing Ts. In other
words, there is a weak relationship between the timesteps and
the MAE.

We statistically analyzed the models within each decade’s
10% lowest average MAE in terms of number of weights
and MACs. Table 7 describes the results of this analysis.
Supporting our earlier claim, the MAE decreases by 0.0707
for the initial weight decade, the highest drop within all
decades. Furthermore, the MAE slightly increases over the
last decade, indicating a possible lack of training epochs.
The best performing models are GRUs at the lowest average
MAE of 0.0557 and 0.0573 within 104 weights and 106

MACs. Also, GRU represents the best models at low decades,
i.e., an average MAE of 0.0738 within 102 weights and 103

MACs. The second block of Table 7 shows the layer count
vs. MAE. The best-performing models tend to be those with
four layers. In other words, the best models in terms of
resource and accuracy are four-layer GRUs. This is in line
with Ref. [54].

B. 32-BIT MODELS ON LOW-POWER MCU AND FPGA
Table 9 shows the maximum number of weights and MACs
for each of the devices in Table 5. In addition, the MAE of
the best implementable model found in the random search
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TABLE 10. Three selected TinyCowNets that are smallest or have best performance for a validation dataset accuracy above 93%. In addition to amount of
weights, MACs, timesteps and layers, the performance on the test dataset for each behavior is described from the optimal ROC threshold.

FIGURE 14. Scatterplot of all TinyCowNets from the random search with
an MAE below 0.07. The three models plotted with a cross indicate the
candidates subject to full-integer quantization and ASIC resource
estimation.

is described. The maximumMACs are calculated by dividing
the max operating frequency with the accelerometer fre-
quency at 25Hz. In other words, for FPGA, this order-of-
magnitude estimate simply assumes that at least one MAC
unit fits the device. This MAC count should be at least more
than the term factorized by Ts in Eqs. (26)-(29). We set
this limit to ensure that the network can be implemented
with a single multiplier-accumulator module. Table 8 shows
the model weights, MACs, timesteps, and the best accu-
racy determined from the ROC curve independently for each
behavior with the test dataset. Each of these models is the best
model that could be implemented on any of the four devices.
The accuracy as in Eq. (25) is 95.7% for model [D], 95.2%
for model [C], [A], and 95.3% for model [B].

C. MINIMUM MEMORY AND QUANTIZED ARITHMETIC
FOR ASIC IMPLEMENTATION
The above models use 32-bit floating-point arithmetic, which
requires complex logic and is wasteful of memory because of
redundant precision. Fig. 14 shows a scatterplot of all models
below an MAE threshold of 0.07 with number of weights
Pk . The three selected candidates subject to quantization and
45nm CMOS resource estimation are indicated with a cross
and described in Table 10. The sRL shows anMAE of 0.0669,
and the sGRU and bGRU have anMAE of 0.0671 and 0.0502.
As these are the best GRU, best sRL, and smallest GRU,
we shall call these models bGRU, bsRL, and sGRU. The
bsRL is the same model for implementation on MCU [C]
and FPGA [A]. Below 0.07 MAE, most models are GRU
with many MACs, making these impossible to implement

FIGURE 15. Absolute distribution error vs weight bit-width and output
bit-width, which is the error between the full-integer and floating point
counterparts for the bsRL, bGRU and sGRU models, described in Table 10.

FIGURE 16. Estimated power consumption for eight weight and output
bit-widths of full-integer quantization applied to the bsRL, bGRU and
sGRU models.

on low-power devices with 32-bit floating-point precision.
As we shall show, our dynamic full-integer quantization
allows all models to be implemented on low-power FPGAs
and MCUs.

Fig. 15 shows the Absolute Distribution Error (ADE) vs.
the weight and output bit-width for integer-quantized bsRL,
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TABLE 11. Characteristics of the selected best-performing quantized models, i.e., energy, power, memory and accuracy vs. weight bitwidth wq and output
bit-width hq.

FIGURE 17. The Receiver Operating Characteristic (ROC) curves of the
three models; best sRL, best GRU and smallest GRU from top to bottom.

sGRU, and bGRU. Differently from Section VII-C, this ADE
is the absolutemean difference of the estimated floating-point
and full-integer distribution output vector entries. The output
bit-width, hq, influences this error most, as it controls the
precision of the activation functions and recurrent outputs.
On the other hand, the weight bit-width wq, which controls
the quantization of U and W, ceases to improve around a
bit-width of 10. The bsRL has the lowest ADE, followed by
the sGRU and bGRU. We posit this is because of the differ-
ence in size while the quantization search space is equivalent.
Therefore, larger models incur more operations, resulting in a

TABLE 12. Matthews correlation coefficient (MCC) and area under
curve (AUC) per behavior from the ROC curves of Fig. 17.

higher ADE fromweight quantization error. Furthermore, the
bias bit-width bq, set to a value of 3wq, might be insufficient
for larger models.

Fig. 16 shows the estimated power consumption for the
ranges of wq and hq. The power consumption increases by
2.7× between bit-width wq of 6 and 16 for all models. On the
other hand, the output bit-width, hq, has a similar influence
for bsRL at 2.8× but only 1.5× for bGRU in the same range.
Furthermore, hq influences the power mostly linearly up till
hq = 12. Therefore, we select an output bit-width, hq = 12,
for bsRL and sGRU because of its large influence over the
ADEwith a small weight bit-width,wq = 10, to balanceADE
and power consumption. Furthermore, we select {wq,hq} =
9 for the bGRU as the ADE remains constant at higher
precisions.

Fig. 17 shows the ROC curves of these threemodels that we
have selected from the above discussion. These curves show
the sensitivity and specificity in false and true positive rates
as a function of different thresholds for each behavior versus
all others. Although our cow dataset is highly imbalanced
(6:3:3:1), all curves approach the vicinity of the left-upper
corner and reach an Area Under Curve (AUC) near unity,
indicating a high accuracy across all behaviors.

Tables 11 and 12 further describe these models. While the
bGRU has the highest overall accuracy at 97.4%, the bsRL
and sGRU models have an accuracy of 95.2% and 95.6%.
However, the estimated memory and power consumption of
the bsRL is roughly 33 and 35 times lower than the bGRU
and 4.1 and 4.3 times lower than the sGRU. Next to this, the
bsRL, bGRU, and sGRUmodels report anMCC of 0.86, 0.93,
and 0.88, showing that these three models distinguish well
between behaviors regardless of dataset imbalance. This is
further reinforced with the AUC at an average 0.94, 0.97 and
0.90 over all behaviors for the bsRL, bGRU and sGRU mod-
els. Because of its low estimated power andmemory, we think
that the bsRL is the best option for future ASIC creation or
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TABLE 13. Different possible applications for bsRL determined from the
amount of 12-byte LPWA transmissions each day consisting of 12 hours
using a AX-Sigfox module and a 1300mAh battery.

implementation on the embedded devices ([A]-[D]) with long
battery life.

X. DISCUSSION AND FUTURE WORK
The discretized bsRL model increases the accuracy by 8.4%
(86.8% to 95.2%) compared to the lowest power-consuming
machine learning algorithm considered in Section II [27].
In addition, our model’s hypothetical power consumption
represents a 99.93% decrease compared to 216µW when
inference is implemented on FPGA [D] in Ref. [27]. In gen-
eral, ASICs are more power-efficient than FPGAs. Refer-
ence [84] experimentally determined that GRUs are around
7×more efficient in terms of performance per watt on ASICs
than on FPGAs, which was obtained from experimental data
and normalized attempting to account for CMOS technol-
ogy differences. We estimate that bsRL may consume an
energy per inference of at least 1.51µJ on FPGA, which
is 369× less than Ref. [27] per inference. By contrast, the
highest-accuracy algorithm discussed in Section II at 98.3%
has a 185.8 mJ energy consumption per inference [25]. This
energy consumption is drastically higher than ours. In other
words, although our estimation is hypothetical, the methods
we have applied unquestionably lead to more efficient net-
works than previous works considering a large margin.

In practice, attaining lowest power consumption also
hinges around system-level improvements and reduction
methods for neural networks. One technique is network prun-
ing [85], as an alternative to searching for small networks
as in this work. Other than using Edge-AI with LPWA, the
distribution of algorithms over diversified scales and stages
of computing, such as cloud, edge and intermediate or ‘‘fog’’
level, can provide substantial improvements in energy effi-
ciency and latency in high-speed wireless environments [86].

For a hypothetical future device, purely as a representa-
tive example, one could use an AX-SIGFOX module [87]
which consumes 0.14C/day in sleep mode and 0.46C to
transmit a single 12-byte message. Furthermore, Kionix
KX126-1063 [35] accelerometer consumes 0.605C/day at
25Hz. Assuming that the bsRL has a supply voltage of
0.8V on 45nm CMOS, we estimate a hypothetical charge
consumption at 0.0131C/day, considerably lower than the
other modules. Therefore, a 618mAh battery would be
required for up to 5 years of battery life, considering a daily
12-byte message. Even though this is an idealized estimate
and real-life performance may be poorer, this battery life is

well within the life expectancy of a livestock cow of around
3-4 years [88]. As said, these numbers remain absolutely
tentative as this stage, even though they are derived from
experimental lab measurements. In the field, consideration
of multiple non-idealities becomes essential, for example
in relation to static currents and power conversion effi-
ciency. Nevertheless, the obtained values are such that even
after substantial degradation, practical viability would not be
compromised. Other than a future ASIC, this model could
be implemented on a suitable FPGA, one example of which
is the UL640 FPGA [A], costing only 1.82$. For exam-
ple, hypothetically combining that with the KX126-1063
accelerometer at 2.02$, a 1300mAh battery at 2.20$ and
AX-sigfox module at 5.40$, the total module costs would
be 11.44$. While this does not include all auxiliary compo-
nents, board fabrication, enclosure and battery, it proves that
in principle TinyCowNet allows for future low-cost devices
with long battery lifetimes and high accuracy. These mone-
tary indications are purely offered as a budgetary order-of-
magnitude example, as they are susceptible to market fluctu-
ations and the authors refrain from endorsing any particular
implementation device.

Table 13 presents an overview of farm applications for
different transmission frequencies of 12-byte messages with
a 1300mAh battery. At an interval of 10 minutes, the time
that a cow ruminates and eats from Eq. (6) can be directly
used to determine grass intake during short intervals. The
regressed prevalence also serve as the base information to
detect abnormalities such as diseases and oestrus in the future.
For disease detection, a daily update could be enough, but
transmission in hourly intervals is necessary to detect oestrus
that lasts around 12 hours. Even though these numbers repre-
sent idealized estimates, they confirm the impact of frequency
on device lifetime without recharging.

Future implementation of TinyCowNet on embedded
devices could help towards improving farm efficiency by
reducing diseases, enhancing feed control, and automating
fertility management. These three areas have a potentially
significant impact on gas emission reduction of cattle
farms [6], [8], [9]. This work identified the issues of current
Edge AI animal behavior estimation literature and proposed
to solve these with cow behavior distribution regressing
RNNs titled TinyCowNet. Random Search and integer quan-
tization were introduced to create minimal but accurate
edge-implementable TinyCowNets tentatively estimated by
45nmCMOS experimental literature on SRAMand operation
cost. Although ASIC development and implementation on
FPGA remains to be done, this work points to the in-principle
possibility of future low-power but highly accurate cow
behavior estimating devices.
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