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ABSTRACT This work presents a method to automatically generate a high performance controller for the
permanent magnet synchronous motor (PMSM). The method consists of two components, a nominal system
identification and a harmonic component identification. Both identification methods are based on dynamic
mode decomposition (DMD). The nominal system identification is used to assign the feedback gaines
by matching the desired closed-loop eigenvalues and eigenvectors. The harmonic system identification
is used to generate vectors that are multiplied by a delay embedding of the current to predict harmonic
components at the next time-step. The method is applied to two experimental test setups, one interior
permanent magnet (IPM) and one surface mount permanent magnet (SPM) motor. It is shown that the
automatically generated feedback controller is able to achieve a more precise transient response than the
traditional rule-based PI controller. It is also shown the harmonic compensation method is able to reduce
total demand distortion (TDD) on phase currents better than a traditional adaptive filter approach without the
need for gain tuning. This work shows a novel approach to using DMD for the complete system identification
of the PMSM, and lays the foundation for using DMD with delay embeddings to analyze and manipulate
harmonic signals in a predictive way.

INDEX TERMS System identification, eigenstructure assignment, adaptive filter, automated controller
design, dynamic mode decomposition, PMSM, predictive harmonic compensation.

I. INTRODUCTION
This work provides a generalizable methodology to automate
the design of a current controller for the PMSM. The con-
troller consists of two components, one nominal feedback
controller, containing proportional and integral feedback, and
the other, predictive current harmonic compensation. The
system is first identified using techniques from DMD with
some necessary modifications. Many theoretical papers have
beenwritten on the DMD algorithm for identifying linear rep-
resentations from high dimensional and perhaps non-linear
systems. However, this work addresses some of the practical
concerns that must be dealt with when applying DMD to
motor controls. This includes, removing the bias due to noisy
measurements, handling the time-varying frequency of the
system and actuation commands. The algorithmic implemen-
tation is provided on Github for the interested reader [1].

Traditional motor drives with parameter identification
capabilities typically identify individual motor parameters
such as stator resistance, d and q axis inductances and mag-
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netic flux [2]. These parameters are used to determine pro-
portional integral (PI) gains based on rules obtained from
transfer function analysis. The problem with this approach is
that there are many non-idealities that are not included in the
individual parameter identification. This may include sensor
measurement errors, delay caused by the inverter, dead-band
time, difference between voltage command and actual phase
voltage. With these non-idealities the drive manufacturers
assume that the user will further tune the PI gains from the
recommended values to get the desired performance.

The purpose of this work is to eliminate the need
for fine-tuning controller gains and get predictable,
high-level performance. The method is designed for field
oriented control (FOC) of PMSM currents and could poten-
tially be extended to speed control with some modifica-
tions. The methodology presented here identifies the system
between the voltage commands provided by the controller
and the current measurements fed back into the proces-
sor. In this way, the non-idealities are better accounted
for in the lumped system identification than individual
parameter identification. The nominal feedback controller
design first identifies a discrete state-space model that is
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free from bias due to measurement noise [3]. The changing
speed of the motor creates a time-varying system that cannot
be identified by the standard DMD algorithm. To handle
the changing speed during system identification, augmented
states are created so that the time-varying component is
extracted from the identified state-transition matrix. The
identified system model is then used to set the closed-loop
feedback gains by assigning the desired closed-loop
eigenvalues and eigenvectors. In addition to the nominal feed-
back controller a predictive current harmonic compensation
voltage is added to the final voltage command to reduce the
overall TDD on the phase currents.

In PMSM machines, current harmonics lead to additional
losses, non-sinusoidal back-emf and torque ripple [4], [5].
Current harmonics can be caused by non-uniform flux link-
age distribution, current and position measurement errors,
and insufficient inverter frequency for a given motor fun-
damental frequency. It is often desirable to eliminate the
harmonics during the design of the motor, however this
comes with increased manufacturing complexity and cost [6].
Also, eliminating harmonics through machine design does
not account for harmonics caused by controller artifacts or
measurement errors. This work develops a new method-
ology for harmonic identification and compensation based
on DMD [7]. The proposed method has the advantages of
not requiring any hand-tuning and it compensates harmon-
ics in a predictive way. The proposed method is compared
with a traditional harmonic compensation algorithm, adaptive
selective harmonic elimination (ASHE), on two experimental
motors [8].

The fundamental frequency of an electric motor is deter-
mined by the number of pole-pairs and the rated speed of the
motor. If the fundamental frequency is too high for a given
switching frequency, the inverter will not be able to produce
a smooth sinusoid current. It is often desirable to have a high
number of pole-pairs in the design of a PMSM machine,
which increases the fundamental frequency. Increasing the
number of pole-pairs increases torque density, reduces torque
ripple and requires less magnetic material [9], [10]. In this
work, it is shown that adding the proposed harmonic com-
pensation method to a nominal feedback controller reduces
the TDD at a given switching frequency.

DMDwith delay embeddings is perfectly suited to identify
PMSM current harmonics because it is able to decompose
a signal into its most dominant modes, and determine their
amplitudes and the frequencies at which they occur. The
DMD algorithm is constrained in that it only works on sys-
tems with constant frequencies. This is fine for harmonic
identification but the harmonic compensation must work at
all operating speeds of the motor. In order to use DMD for
harmonic compensation on the PMSM, an algorithm was
developed to automatically generate a look-up table of the
DMD compensation vectors for each operating frequency
of the motor. The algorithm is based on the fact that the
DMD eigenvectors produce a Fourier basis on sinusoidal
signals.

This paper is organized as follows. The first section covers
works related to this one, including parameter identification
methods for the PMSM and other applications of DMD
to electrical systems. The DMD algorithm is described in
section III. The nominal system identification is described
in section IV and includes the necessary modifications to
use FBDMD on a system with actuation commands and aug-
mented states. SectionV describes how to use themodel iden-
tified in section IV to automatically generate the feedback
gains. The experimental results for the nominal feedback
controller are then shown in sectionV-B. SectionVI describes
the relationship between DMD and the discrete Fourier trans-
form (DFT). The harmonic identification is described in
section VII-A with experimental results comparing DMD
to the DFT. The harmonic compensation is described in
section VII-B. This section describes the algorithm that was
developed to use the DMD for harmonic compensation at all
operating speeds of the motor and is based on the similarities
between DMD and the DFT as described in section VI.

II. RELEVANT WORKS
In [2] a comprehensive review of parameter identification
techniques for the PMSM is given. Some involve online
parameter identification to deal with changing parameter
values for control and condition monitoring. Other methods
attempt to identify the parameters without spinning themotor.
The proposed method differs in that the complete system is
identified as opposed to individual motor parameters. This
allows for measurement errors and other non-idealities to be
captured in the model of the system that is ultimately used for
controller design.

The works most similar to this one are the recursive least-
squares (RLS) based finite-control-set model predictive con-
trol (FCS-MPC) of [11] and [12]. In [12], the authors extend
the FCS-MPC method of [11] by including interlocking time
of the inverter, and propose a DMD method for harmonic
compensation. These approaches use data to identify seven
models for each of the switching states of a two-stage inverter
at a set operating point. The identified model is accurate at
only that operating point so a learning rate is used to adapt
the model to changing speed and other parameter variations.
These approaches are limited in their practicality for the fol-
lowing reasons. First, the initialization of the models must be
done with data from the motor operating at a constant speed.
This is not possible in applications where the motor speed
cannot be controlled by an external source. Another limitation
of the approach is that the FCS scheme used does not allow for
space-vector pulse-width modulation (SV-PWM). Only one
of the seven voltages of the inverter can be applied at a given
time-step making the current regulation performance quite
poor. The data collection is also quite complex, requiring data
to be collected for each of the seven switching states in order
to create the seven models for prediction. The method pro-
posed in this article requires only one model to be identified
and allows for data collected at varying motor speeds. It also
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allows for traditional SV-PWM techniques to be used, greatly
improving the regulation performance.

The proposed harmonic compensation technique in [12]
uses a lifted dictionary of cosine and sine terms to identify and
compensate harmonics in a predictive way. The lifted feature
space of cosine and sine terms is intended to compensate the
6th, 12th and 18th order harmonics of the electrical speed.
Of the three models compared in the paper, the model with
harmonic compensation performed the worst. Lifted features
of cosine and sine terms are not robust to disturbances,
which is why adaptive filters have traditionally been used
for harmonic compensation [13]. Another limitation of this
approach is that the harmonic amplitude estimate must be
adapted as speed and current change. This is because the
amplitude of current harmonics in PMSMs are determined by
a combination of speed and current [14]. The delay embed-
ding approach proposed here has several advantages over the
method used in [12]. The harmonic amplitude information is
contained within the delay embeddings of current measure-
ments; thus the amplitude prediction does not need to adapt to
changing speed or current. Also, with a sufficient embedding
length, our approach can handle signals with a low signal-to-
noise ratio.

For harmonic compensation in the PMSM, there are sev-
eral works which use a Fourier decomposition to deter-
mine compensating current components to reduce torque
ripple [15]–[17]. In [16] Espinosa et al. adaptively tune
Fourier coefficients for periodic torque ripple minimization.
In [18] a method to reduce torque ripple by updating the
current reference is presented. This has the drawback in that
the current controller is unable to compensate harmonics at
high motor speed due to the bandwidth of the controller.
In [19] the authors focus on eliminating the zero-axis current
of a six-leg three-phase PMSM. In this way the harmonic
suppression of the current is able to reduce torque ripple and
peak currents.

Several works have used DMD to identify harmonics in
power grids. In [20] the authors use Total DMD (TDMD)
to identify harmonics on a power system in a way that is
debiased towards noisy data. They show the method is able
to more accurately identify harmonics than DFT based meth-
ods on simulated signals with noise and real-time measure-
ments. In [21] the authors use DMD to estimate frequency
and amplitudes of harmonics and compare with the DFT
on simulated signals. The method presented here improves
on previous harmonic compensation methods in that it is
completely automated, requiring no human in the loop for
gain tuning, and it compensates harmonics in a predictive
way without needing to adapt to changing speed or current.
To our knowledge, this is the first work to extend the use of
DMDwith delay embeddings beyond harmonic identification
to harmonic compensation.

III. DYNAMIC MODE DECOMPOSITION
DMD was developed by the fluid dynamics community
as a way to identify spatio-temporal structures from high

dimensional data [7]. While motor drive systems are not
high dimensional, in order to represent the harmonics of the
PMSM in a linear way and reduce the effect of noise,
the dimensionality is increased using delay embeddings of the
current, as will be described later. DMD is an algorithm that
identifies the best-fit linear dynamical system that advances
measurements forward in time. DMD is able to identify the
characteristic frequencies of dynamic systems as well as their
growth and decay rates. Additionally, DMD is able to provide
linear representations of some non-linear systems.

Many variants of DMD have been developed to handle
different use cases. For instance, in [3] Dawson et al. show
analytically that DMD is biased to noisy data and present
methods for eliminating the bias, and in [22] DMD was
extended to handle nonlinear systems by allowing for aug-
mented states. Both of these techniques are applied in this
work to get a reliable model of the PMSM system including
harmonic components. For more information on different use
cases of DMD with practical code implementations see the
references by Kutz and Brunton [23], [24].

A. THE DMD ALGORITHM
The FBDMD method used by Dawson et al. in [3] was
used in this work to eliminate the effect of noisy data. The
FBDMD approach solves for the state-transition matrix in
both the forward and backward direction and then averages
the two matrices to get the unbiased estimate.

In order to identify sinusoidal components in a signal
using DMD, delay embeddings must be used [25]. The lower
the signal to noise ratio, the more delay embeddings are
needed to extract the signal. To form the delay embeddings,
the data is stacked in the so called Hankel matrix with the
most recent time-step being at the top.

Z =


x(t0) x(t1) · · · x(tm)
x(t−1) x(t0) · · · x(tm−1)
...

... · · ·
...

x(t−n) x(t1−n) · · · x(tm−n)

 (1)

The data matrix Z is passed into Algorithm 1 as X .
Given the initial conditions in a column vector z0, the future

state at time-step k is determined using theDMDeigenvectors
and eigenvalues as:

zk = Akz0 = 83k8†z0 (2)

where the columns of 8 contain the eigenvectors, individ-
ually denoted as φφφj, for each mode j. The diagonal matrix
3 contains the eigenvalues, individually denoted as λj. The
inverse of the eigenvectors is denoted 0, and the rows
of 0 are denoted γγγ j. The signal can be represented as sum
of the individual modes as:

zk = φφφ1λk1γγγ 1z0 + φφφ2λk2γγγ 2z0 + . . .+ φφφrλkrγγγ rz0 (3)

where r denote number of modes used in the SVD truncation
in step 2. of Algorithm 1.
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Algorithm 1 FBDMD by Dawson Et Al in [3]
1) Take the singular value decomposition (SVD) of data

matrix X , letting X = S6V∗

2) Truncate SVD by only considering the first r modes.
The matrices containing the first r columns of S and
V∗, and the first r rows and columns of 6 are denoted
as Sr , V r and 6r , respectively.

3) Project data X onto first r modes, i.e. X r = S′rX
4) Shift projected data X r to get one time-step advanced

projected data
G1 = X r (t0 : tm−1)
G2 = X r (t1 : tm)

5) Using the FBDMD approach to remove bias solve for
forward and backward state-transition matrix in pro-
jected space
Af = G2G

†
1

Ab = G1G
†
2

6) Combine Af and Ab to get unbiased estimate
A = (Af /Ab)

0.5

7) Calculate eigenvalues λi and eigenvectors νi of A
8) Project eigenvectors νi back to original dimension

space to obtain DMD modes by
φφφi := Srνi

It is this ability to separate modes in the data that allows us
to identify and compensate harmonics of a given frequency.
As an example, given a multi-modal signal with a DC offset
as:

x(t) = 0.1 sin(300t)+ sin(50t)+ 1.5 (4)

The DMD algorithm is able to use four delay embeddings
plus the current time-step to identify and separate the five
modes of the system as shown in Fig. (1). In this work, only
harmonics of a specific harmonic order and magnitude are
extracted. The modal magnitudes are calculated as:

M = |88†x0| (5)

only the first row of M is of interest since this row corre-
sponds to stepping forward one time-step and the other rows
are required only for the delayed embeddings. The actual
magnitude of the sinusoid is two times the individual value
inM due to the fact eachmagnitude is repeated because of the
complex conjugate eigenvalues. Once the harmonic modes
with significant amplitude are identified, a compensation
vector is created for each operating speed which is then used
in real-time to extract and predict harmonic components from
the delay embedding of the signal.

IV. NOMINAL PMSM SYSTEM IDENTIFICATION
The proposed controller design requires that a complete
state-space model first be identified from data. This model is
then used to set the closed-loop feedback gains by assigning
the closed-loop eigenvalues and eigenvectors. One of the
difficulties with this approach is that DMD does not work on

FIGURE 1. DMD mode separation of multi-modal sinusoid with DC offset.

systems with changing frequencies since the system eigen-
values must remain constant. To deal with this, augmented
states are created, for the system identification that include
the currents multiplied by the motor speed. This eliminates
the changing frequency in the model identified. The other
difficulty is that noisy measurements will cause a bias on the
identified model that cannot be eliminated by collecting more
data [3]. To deal with this, the FBDMD algorithm, which
eliminates the bias due to noisy measurements, is modified
to handle a system with actuation commands and augmented
states.

A. PMSM MODEL
The continuous time state-variable model of the PMSM in the
dq coordinate frame can be represented in state-space form
as:

[
i̇q
i̇d

]
=


−Rs
Lq

−Ld · ωe
Lq

Lq · ωe
Ld

−Rs
Ld

[ iqid
]

+


1
Lq

0

0
1
Ld

[ vqvd
]
+

 −λfLq
0

ωe (6)

where Rs is the stator resistance, ωe is the electrical speed
in rad/s, λf is the permanent magnet flux, and Lq and Ld are
the q and d axis inductances, respectively.

The system identified from data is actually the
discrete-time representation of (6). The discrete-time state-
space matrices will be denoted as Ad , Bd and Dd . The
back-emf term caused by the flux is represented as a distur-
bance Dd . The flux term Dd is identified during the DMD
system identification and compensated directly. That is to say,
it does not play a role in determining the closed-loop feedback
gains.

26104 VOLUME 10, 2022



A. Stevens, I. Husain: Automated Controller Design for PMSM Using DMD

B. ARRANGING ACTUATION INPUTS FOR FBDMD
As discussed earlier, DMD has a bias towards noisy
data that shifts the eigenvalues of the identified system.
In order to get an unbiased estimate of the system, the
model can be solved in both the forward and backwards
direction. The forward direction is the standard solution,
solving for the matrix that transitions from X to Y .
The backward solution, solves for the matrix that transitions
from Y to X . The inverse of the backwards estimate is then
averaged with the forward estimate to get the unbiased esti-
mate.Without the need for dimensionality reduction, DMD is
equivalent to a least-squares solution. The forward estimate is
calculated as:

Af = YX† (7)

The backward estimate is calculated as:

Ab = XY† (8)

Combining the forward and backward estimations the unbi-
ased estimate is:

A =
√
Af Ab† (9)

Typically, Y is equivalent to X but shifted one time-step
into the future. However, the PMSM system identification
includes augmented states, actuation commands and mea-
sured speed, which do not transition from one time-step to the
next linearly. This causes a misidentification of the parame-
ters if the data is stacked in the traditional way. To handle the
non-linear transition of actuation commands and augmented
states, only the d and q axis currents, are advanced forward
in time in the Y data matrix. The augmented states, actuation
commands and measured speed are kept at the same time step
as in the X data matrix.

Y =



iq(tk+1)
id (tk+1)

iq(tk )ωe(tk )
id (tk )ωe(tk )
vq(tk )
vd (tk )
ωe(tk )


X =



iq(tk )
id (tk )

iq(tk )ωe(tk )
id (tk )ωe(tk )
vq(tk )
vd (tk )
ωe(tk )


(10)

The DMD matrix should then solve as:

A =



a11 0 0 a12 b11 0 d11
0 a22 a21 0 0 b22 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(11)

The parameters of interest are only in the first to rows
of A. The augmented states, actuation commands and mea-
sured speed, solve to the identity matrix. The relevant

parameters are extracted from A to form the discrete-time
state-space model.

Ad =
[

a11 a12ωe
a22ωe a21

]
Bd =

[
b11 0 b13
0 b22 0

]
, Dd =

[
d11
0

]
(12)

C. INITIALIZATION DATA
It is important that the system be excited in such a way
that the resistance, inductance and flux parameters can be
seen in the measured currents. To do this, the motor vq and
vd voltage commands are actuated in such a way that the
motor ramps up to close to the rated speed. This ensures that
the back-emf produced by the magnetic flux is sufficiently
high. A sinusoid signal with an amplitude of 10% the rated
voltage is added to the ramping vq voltage to excite the
q axis inductance. Similarly, vd is excited with a sinusoid
with an amplitude of 20% the rated voltage to excite the d
axis inductance. Both sinusoid signals were set to a frequency
of 500 Hz. This frequency is large enough to generate some
impedance in the inductance but not too large that the current
measurements become too low. Once the desired speed is
reached, vq is held constant and vd is held at negative 10%
the rated voltage. The same procedure is repeated with vq
going in the opposite direction. The initialization voltage
wave-forms for the IPM are shown in Fig. 2a. The measured
response of id , iq and ωe parameters for the IPM can be seen
in Fig. 2b.

The above initialization routine takes approximately
one minute and uses about 80 MB of memory with a
sampling-time of 50 µs. The memory requirement for DMD
and FBDMD is the same; however, the computation time for
FBDMD is double that of the DMD algorithm. Using an Intel
i7-7700 with clock at 2.80 GHZ the DMD solution computed
offline takes 89 ms while the FBDMD solution takes 194 ms.
The FBDMD approach could potentially be solved in an
online fashion to adapt to changing motor parameters; how-
ever, a weighting parameter would need to be tuned. More
research is needed to understand how to automate the selec-
tion of this weighting parameter for the online application of
FBDMD to motor identification.

V. FEEDBACK CONTROLLER DESIGN
The state-space model identified in Sec. IV-B is used to
design the feedback gains by assigning the closed-loop eigen-
values and eigenvectors. In this work, the eigenvectors and
eigenvalues are assigned in a least-squares since. The inter-
ested reader may refer to the following references for addi-
tional eigenstructure assignment techniques [26], [27] [28].

A. METHODOLOGY
Once the Ad , Bd and Dd system matrices of (12) have been
identified, the system is converted to a form that includes
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FIGURE 2. Data collection for IPM motor system identification.

integral error.[
x(tk+1)
xi(tk+1)

]
=

[
Ad 0

−C ·1T I

] [
x(tk )
xi(tk )

]
+

[
Bd
0

] [
u(tk )
0

]
+

[
0
I

]
ir +

[
Dd
0

]
ωe (13)

where 1T is the inverter sampling time, u(tk ) contains the q
and d axis voltages,
ir contains the q and d axis current references and xi

indicates the integral error terms. The integral error terms are
calculated as:

xi(tk ) = xi(tk−1)+ (ir (tk )− x(tk )) (14)

The modified system matrices with integral error are defined
as:

Am =
[

Ad 0
−C ·1T I

]
Bm =

[
Bd
0

]
, Dm =

[
Dd
0

]
(15)

The closed-closed loop system is then calculated as:

Acl = Am − BmKd (16)

where Kd is the feedback gain matrix.
A desired transient response is determined in simula-

tion and the simulated closed-loop system matrix is stored
as Acl_s. The stability of the controller is guaranteed if the
closed-loop eigenvalues of the nominal feedback controller
are sufficiently less than one. Some margin should be given
in case there are minor errors in the identified model.

The goal is to assign the feedback gain matrix, Kd , so the
actual and desired closed-loop systems match.

Acl = Acl_s (17)

The feedback gain Kd is then set such that the actual
and desired closed-loop systems are equivalent in the least-
squares since. Plugging in (16) for Acl and solving for Kd ,
the feedback gain is set as:

Kd = −B†
m(Acl_s − Am) (18)

This approach is similar to pole-placement, except the eigen-
vectors are set in addition to the poles.

B. EXPERIMENTAL RESULTS FOR TRANSIENT RESPONSE
The method used to determine controller gains outlined in
section V-A was performed on both an SPM and an IPM in
hardware. The motor parameters can be seen in Table 1. The
experimental setup used a dSPACEMicroLabBox for control
and data collection along with an APS two-stage inverter. The
hardware used for testing can be seen in Fig. (3).

TABLE 1. Parameters for motors under test.

For testing purposes, three different transient responses
with slow, medium and fast rise times were determined in
simulation. The closed-loop system matrices for the three
transient responses were stored in Acl_s. The proposed
method was compared to the traditional rule based PI con-
troller without further gain tuning. With the motor spinning
freely a step in iq was given with id commanded to remain at
zero. The response to the step commands were recorded and
can be seen in Fig. (4) for the IPM and Fig. (5) for the SPM.

As seen in the top rows of Figs. (4) and (5), the transient
responses of the proposed approach match almost exactly
to the desired transient response without any hand-tuning.
The rule-based PI controller on the other hand, has signifi-
cant overshoot. This discrepancy between desired transient
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FIGURE 3. Hardware components used in tests.

response as determined by the closed-loop transfer func-
tion and the actual transient response in hardware is likely
due to a combination of the following not accounted for in
the closed-loop transfer function: system delays, interlock-
ing time and differences between the commanded voltage
and actual voltage caused by space-vector modulation and
inverter voltage drop. While there are methods available
to identify these non-idealities such as described in [29]
and [30], the complexity of the identification and controller

design is greatly increased compared to the proposed method.
These results show clearly the proposed method provides
better results in automatic controller generation than the tra-
ditional rule-based PI controller.

VI. RELATIONSHIP OF DMD TO DISCRETE FOURIER
TRANSFORM
The key differences between the Fourier transform and DMD
can be summarized as follows. While the DMD algorithm
identifies a linear model of a system from data, the Fourier
transform identifies the frequencies containedwithin a signal.
The DMD algorithm, since it operates on system data with
multiple inputs, is able to distinguish the contribution of
each signal onto other signals. The DMD algorithm can also
identify the growth or decay rates of particular modes while
the Fourier transform only considers constant or sinusoidal
signals. Also, the modes identified by the DMD algorithm
can be used to filter signals and the eigenvalues are used to
predict the signal at future time-steps. With these differences
in mind, it is important to understand the similarities when
applied to sinusoidal signals.

The discrete Fourier transform (DFT) is defined as:

Fk =
N−1∑
n=0

xn · e−i2πkn/N (19)

The k th frequency is a relative frequency based on the number
of time-steps N and the sampling period. The k th frequency
is converted to rad/s as:

ωk =
2π
1T

k
N
rad/s (20)

where ωk is the kth frequency in rad/s, N are the number of
time-steps in the signal and1T is the sampling period. To go
back to the time-domain the inverse DFT (IDFT) is used:

xn =
1
N

N−1∑
n=0

Fk · ei2πkn/N (21)

If the IDFT is written in matrix format the connection
between DMD on a sinusoidal signal can be clearly seen. The
IDFT can be calculated using a matrix dot product as:

x = MF · F (22)

where F is the vector of frequency components. The k th

column of theMF matrix is written as:

φφφkF =



1

e
1
N k·2π i

e
2
N k·2π i

e
3
N k·2π i

...

e
N−1
N k·2π i


=



1
e1·1Tωk i

e2·1Tωk i

e3·1Tωk i
...

e(N−1)·1Tωk i


(23)

In the right vector of (23) the relative frequency k is replaced
with the actual frequency ωk in rad/s by solving (20) for k .

k =
N1T
2π

ωk (24)
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FIGURE 4. IPM hardware tests: (a), (b), and (c) show slow, medium and fast responses of the proposed method. (d), (e), and (f) show the slow, medium
and fast response of the traditional PI rule based method.

Similarly, the vector produced by DMD for a purely sinusoid
signal with N − 1 delay embeddings is:

φφφ
ωh
D =

√
1
N



1
e1·1Tωhi

e2·1Tωhi

e3·1Tωhi
...

e(N−1)·1Tωhi


(25)

where ωh is the frequency of the sinusoid in rad/s. The sim-
ilarity between the IDFT and DMD with delay embeddings
is made clear by comparing (23) with (25). The frequency of
the DMD eigenvector ωh is determined precisely by the SVD
truncation, while the frequency of the IDFT ωk is discretized
based on the sampling time and the number of samples. The
DMD algorithm is able to determine an exact Fourier basis of
the most dominant frequencies in the signal, while the Fourier
transform determines a generalized Fourier basis based on
the number of samples in the signal. The Fourier transform
suffers from what is known as the picket fence effect, where,
because of the discretized frequencies the energy of the
signal must be spread to nearby frequencies. DMD, on the
other hand, places the energy on the dimensions that contain
the most variance in the data as determined by the SVD.
The accuracy of DMD in determining the most dominant

frequencies and their amplitudes makes it better suited for
automating harmonic identification.

VII. IDENTIFYING AND COMPENSATING MOTOR
HARMONICS
The harmonic analysis is divided into two parts, identification
and compensation vector generation. The first part, requires
the motor be run at constant speed so that the most dom-
inant harmonic components can be identified. The second
part, uses the previously identified harmonics to automat-
ically generate vectors that are used in a look-up table to
compensate harmonics at all operating speeds of the motor.
An algorithm was developed to generate these compensation
vectors at all operating speeds of the motor, and is based on
the concept of a Fourier basis. These vectors are what the
DMD algorithm would have produced on sinusoidal signals
generated at each operating frequency of the motor, but with-
out the need for more data.

The harmonic analysis was performed on both the SPMand
IPM test beds. DMD is compared with the DFT for harmonic
identification on both motors. For harmonic compensation
the DMD based approach is compared with a traditional
adaptive filtering approach called ASHE.While fairly robust,
the ASHE method takes time to converge after transients and
requires parameter tuning.
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FIGURE 5. SPM hardware tests: (a), (b) and (c) show slow, medium and fast responses of the proposed method. (d), (e) and (f) show the slow, medium
and fast response of the traditional PI rule based method.

A. MOTOR HARMONIC IDENTIFICATION
In order to understand the effect of the number of delay
embeddings in estimating current harmonics, DMD, with
49 and 299 delay embeddings, was compared in predicting
harmonic components at future time-steps. Fig. (6) shows
the comparison of DMD with 49 delay embeddings and
299 delay embeddings on the IPM. The top plot in Fig. (6)
shows the uncompensated current prediction using DMD
with 49 delay embeddings. The bottom plot of Fig. (6) shows
the prediction using 299 delay embeddings. Both prediction
methods used eight modes in the SVD truncation. Clearly, the
299 delay embedding is able to predict more accurately than
the 49 delay embedding. The MAE for predicting harmonics
using 49 and 299 delay embeddings was 6.6 mA and 2.7 mA,
respectively. With 299 delays used in the embedding the cur-
rent harmonic prediction takes 18µs. This is well within the
half switching period limit of 25µs. Thememory requirement
for the harmonic identification for the q and d-axis currents
is about 640 kB for two seconds of data.

While the dSPACE MicroLabBox used for testing has a
more powerful CPU than a typical digital signal proces-
sor (DSP), the DMD with delay embedding approach is
computed most efficiently with parallel processing devices
such as field programmable gate arrays (FPGAs), graphical
processing units (GPUs) or other chips designed for matrix
multiplication. FPGAs have been used in motor control for
many years, and GPUs continue to decrease in price for a

given throughput. Thus, the computation time for DMD with
delay embeddings is not seen as prohibitive for real-world
applications. It should also be noted that the computation
time is determined by the number of delay embeddings and
not the number of harmonics compensated, unlike traditional
approaches. Given a sufficient number of harmonics, the
delay-embedding approach would be faster than traditional
methods, even on a serial processor.

The harmonic identification was done by running the
motors at close to the rated speed and recording the iq and
id currents. The currents were stacked into a Hankel matrix
as in (1) with 299 delay embeddings and passed through
the DMD algorithm. The most dominant modes identified
by DMD will not necessarily be harmonic multiples of the
electrical speed. Only frequencies that are harmonics of the
electrical speed, and whose magnitudes are greater than a
threshold value, are considered for compensation. To check if
an identified harmonic is a harmonic multiple of the electrical
speed the DMD eigenvalues must be converted to continuous
time.

λi_c = log(λi)/1T (26)

where 1T is the sampling period of the inverter. The imag-
inary component of the continuous time eigenvalue, λi_c,
indicates the harmonic frequency in rad/s. The modulus of
λi_c is taken with the electrical speed to identify those modes
for which frequencies are within 5% of a speed harmonic.
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FIGURE 6. Comparing delay embedding size for predicting future
harmonics of d axis current.

The magnitudes of these modes are calculated using (5)
and only those over a set threshold are considered for
compensation.

A comparison was done between DMDwith delay embed-
dings and the FFT for harmonic identification on both the
SPM and IPM motors. The harmonic identification for the
SPM is shown in Fig. (7). The FFT frequency spectrum is
shown in blue and the most dominant DMDmodes are shown
in red. For the SPM, current harmonics with amplitudes
greater than 5e−3were identified for compensation.With this
threshold amplitude, the 6th order harmonic was identified to
be compensated on both the d and q-axis currents.
Fig. (8b) shows the comparison of the FFTwith DMDwith

delay embeddings for current harmonic identification on the
IPM. For the q-axis current, no harmonics were identified for
compensation, as the lowest harmonic frequency was of the
70th order, with very small magnitudes as shown in Fig (8a).
The IPM current harmonics on the d-axis were found to be
the 6th, 12th, 18th and 48th order as shown in Fig. (8b). The
48th order harmonic was not considered for compensation as
it had a magnitude below 1e− 3.

The experimental results show DMD with delay embed-
dings produces a more distinctive representation of the most
dominant harmonics than the FFT. Harmonic identification
with the FFT, suffers from the picket fence effect, which
causes the energy of the signal to be spread out across fre-
quencies close to the most dominant ones. This makes it
difficult to automate the process of identifying harmonics for
compensation. DMD with delay embedding does not suffer
from this effect since the most dominant frequencies are
determined by the SVD.

B. HARMONIC COMPENSATION
The current harmonic compensation is done by predicting the
harmonics at the next time-step using the DMD eigenvectors
and eigenvalues and applying a corresponding compensation

FIGURE 7. Comparing harmonic identification using FFT and DMD on
the SPM.

voltage to cancel the predicted harmonic. Only harmonic
modes identified to be harmonic multiples of the electrical
speed and of sufficient magnitude are included in the com-
pensation vector. To predict the harmonic component at the
next time step, the dot product is taken between the delay
embedding of the current measurements and the compensa-
tion vector.

ip(tk+1) = Ah(1, :)Id (tk ) (27)

where Id contains the delay embeddings of current measure-
ments. In this work the most recent current measurement is
stored in the first element of the delay embedding vector and
the nth previous measurement is stored in the last element.
The compensation vector is taken from the first row of Ah as
this predicts the harmonic at the next time-step.

Ah = 8c3
k
c0c (28)

Ah is formed by the dot product of 8c, 3c and 0c which are
the DMD eigenvectors, eigenvalues and inverse eigenvectors
that have been identified for compensation, respectively.
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FIGURE 8. Comparing harmonic identification using FFT and DMD on
the IPM.

This compensation vector is only accurate at the speed
at which the harmonics were originally identified. The next
section shows the algorithm that was developed to automat-
ically generate these vectors at all operating speeds of the
motor without the need to collect more data.

1) AUTOMATICALLY GENERATING COMPENSATION
VECTORS FOR ALL OPERATING SPEEDS
The only inputs needed to generate the compensation vector
are the number of delay embeddings and the harmonic fre-
quencies to be compensated. A compensation vector is gen-
erated for each speed in one rad/s increments and stored in a
lookup table. The first step in creating the compensation vec-
tor is to determine the continuous-time eigenvalue for each
order harmonic to be compensated. Each continuous-time
eigenvalue is determined by

λc = o · ωei (29)

where o is the harmonic order and ωe is the motor electrical
speed. The harmonic orders to be compensated were iden-
tified in Sec. VII. Each eigenvalue has a respective complex
conjugate. The eigenvalues are stacked into a diagonalmatrix.

3c = diag([λ1_c, λ̄1_c, . . . , λj_c, λ̄j_c] (30)

where j is the number of harmonics to compensate. They are
then converted to discrete-time.

3 = e3c1T (31)

The DMD eigenvectors are constructed as in (25), where for
each operating electrical speed the DMD vector is created
with ωh = λc. Each eigenvector has a respective complex
conjugate vector. The complete set of eigenvectors is then

8 =
[
φφφωh_1 ,φφφωh_1 , . . . ,φφφωh_j ,φφφωh_j

]
(32)

where there is a complex-conjugate pair of eigenvectors for
each of the j harmonics identified for compensation.

The current measurements have a DC component that must
be extracted from the harmonic prediction at the next time-
step. To do this, an eigenvector representing the DC mode
is concatenated to 8 before obtaining the inverse of the
eigenvectors. The DC eigenvector is a vector of constants
with magnitude equal to one and length N + 1. The inverse
of the eigenvectors is then calculated as:

0 = [φφφDC ,8]† (33)

Finally the compensation matrix can be calculated as

Ah = 830 (34)

Only the top row of Ah is important as it corresponds to pre-
dicting the harmonics at the next time-step. Ah is calculated
for all operating speeds of the motor and the top row of each
Ah is stored in a lookup table as the compensation vector for
a given speed.

The potential uses of the proposed method extend well
beyond motor controls. The DMD eigenvectors are able
extract all relevant information about sinusoidal signals.
Some potential use cases are listed here:
• The vectors can be used as filters to remove the DC or
harmonic components of a signal in real-time.

• Harmonic components can be predicted multiple
time-steps in the future.

• The amplitude of a sinusoid can be determined from only
a few measurements of a signal.

• The phase angle of a signal can be determined in a
predictive way.

For example, phase-locked loops generate an output sig-
nal whose phase is related to the phase of an input signal.
They are used in radio and telecommunications as well as
power systems andmicro-grids. The DMD vectors with delay
embeddings of the signal can output the phase information in
a predictive way, potentially having an advantage over phase-
locked-loops which take time to converge. The approach is
also highly robust to noise when using DMD vectors with a
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FIGURE 9. Phase angle prediction of DMD with 299 delay embeddings on
noisy signal.

large number of delay embeddings. A simulation was done
using DMD vectors with 299 delay embeddings to predict
the phase angle of a sinusoid. Gaussian noise was added to
a sinusoid signal with amplitude of one. The Gaussian noise
had an average magnitude three times that of the sinusoid.
The predicted phase angle is shown in purple in Fig. 9 and the
actual phase angle is shown in yellow. The original sinusoid
is shown in red and the noisy signal used for predicting the
phase is shown in blue. As can be seen in the figure, even with
a high level of noise, DMD is able to accurately predict the
phase angle. This makes a strong case for considering DMD
with delay embeddings as a new method to replace PLLs for
sinusoid signals with low signal to noise ratios.

2) COMPENSATING HARMONICS
The harmonic prediction at the next time-step is calculated as

ih(tk+1) = Ah(1, :)


i(tk )+ ih(tk )

i(tk−1)+ ih(tk−1)
...

i(tk−n)+ ih(tk−n)

 (35)

where ih(tk+1) is the predicted harmonic current for the next
time-step, i(tk ) is the current measurement at the current
time-step and ih(tk ) is the predicted harmonic component
for this time-step. It is important to add the predicted har-
monic component to the current measurements for the delay
embedding because once the harmonic is compensated, the
harmonic information would otherwise be lost in the embed-
ding. In order to avoid instabilities during large disturbances,
no compensation is done if the actual current is not within two
percent of the reference current and if the predicted harmonic
magnitude is greater than four times the originally identified
harmonic magnitude.

The proposed method uses a feed-forward gain to go
from harmonic current prediction to compensation voltage.

FIGURE 10. Block diagram of controller with DMD harmonic
compensation.

This differs from other harmonic compensation methods
which subtract the estimated harmonic from the current ref-
erence and allow the feedback controller to eliminate the
harmonic. The feedback controller is however, limited by its
bandwidth and cannot compensate higher order harmonics.

The feed-forward gain is calculated using the systemmatri-
ces determined from data in (12).The feed-forward gain is
calculated as:

H = (−Ad−1Bd )−1 (36)

Only the diagonal components of H are used to compute the
compensation voltage. The harmonic compensation voltages
for the d and q-axis are calculated[

vh_q
vh_d

]
= H(diag)

[
ih_q(tk+1)
ih_d (tk+1)

]
(37)

The compensation voltages vhq and vhd are added to the
voltage commands generated by the nominal feedback con-
troller. The block diagram of complete controller is shown
in Fig. (10).

3) TRADITIONAL HARMONIC COMPENSATION
The ASHE approach used for benchmark comparison is
based on traditional signal processing has been used in a vari-
ety of power electronic applications to eliminate harmonics.
The drawbacks of the method are that it requires parameter
tuning and takes time to converge after transients. The DMD
approach developed in this work, on the other hand, does not
require parameter tuning and does not need time to adapt after
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FIGURE 11. Simulation of ASHE algorithm.

FIGURE 12. FFT of uncompensated currents and currents compensated
with DMD on the SPM.

transients. Fig. (11) shows ASHE on a simulated signal. The
signal being tracked is shown in red. The weighted cosine

FIGURE 13. (a) FFT of uncompensated Id currents and Id currents
compensated with DMD on the IPM. (b) SVD singular values of
compensated and uncompensated Id currents.

and sine signals that are summed to give the prediction are
shown in blue and green, respectively. Their sum, which is
the prediction, is shown in cyan. It is seen that by summing
the weighted sinusoidals we get a new sinusoid of a different
phase and amplitude but the same frequency. Over-time this
sinusoid converges to the sinusoid in the input signal.

4) HARMONIC COMPENSATION EXPERIMENTAL RESULTS
The harmonic compensation uses a vector dot product which
can be computed efficiently on an FPGA or GPU device.
In these experiments, a dSPACE MicroLabBox was used
with only the CPU activated. The run-time of the control
loop without harmonic compensation was 10.8 µs. With a
delay embedding of 299 the compensation had a run-time
of 18 µs. This is within acceptable limits for a 20 kHz
switching frequency.

The approach presented here was successfully able to
compensate the desired harmonics on both the SPM and the
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FIGURE 14. Comparing proposed DMD method to the traditional ASHE
method for harmonic compensation after step in iq current.

IPM. For the SPM, it can be seen in Fig. (12) that the 6th

order harmonic has been eliminated. For the IPM, only the
d axis current harmonics were compensated. As can be seen
in Fig. (13) most of the harmonic component of the 12th and
18th order harmonics has been removed, while it appears there
still remains a 6th order component. While this harmonic is
so low to have almost no practical significance, such a low
signal-to-noise ratio shows the beginnings of the limitations
of the DMD approach with 299 delay embeddings. However,
as can be seen by the plot of the singular values of the SVD
shown in Fig. (13b), much of the harmonic energy of the
signal has been eliminated, including the 6th order harmonic.
The TDD reduction with a nominal current of one amp can
be seen in Table 2.

Ideally, the delay embeddings would contain multiple
cycles of the sinusoid signal; however, if the fundamental
frequency of the motor is too low this may not be the case.
In this case the harmonic prediction will not be as robust
to noise. However, for low fundamental frequencies, the

FIGURE 15. Comparing ASHE and DMD compensation with speed
ramping from 720 to 830 rad/s on SPM.

TABLE 2. TDD on Phase A current (1 A nominal).

feedback controller is likely to have enough bandwidth to
eliminate harmonics without the need for additional compen-
sation. In the experiments it can be seen that the uncompen-
sated harmonic amplitude of the IPM was about ten times
less than that of the SPM. This is because the fundamental
frequency for the IPM was 200 rad/s compared to 1200 rad/s
for the SPM. The PI controller at 20 kHz has a high enough
bandwidth to eliminate most of the harmonics at such a low
fundamental frequency.

The predictive approach presented here was compared to
ASHE during transient conditions. While the ASHE algo-
rithm performs well in the steady state, it takes time to
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adapt to transients in current and speed. Fig. (14) shows the
comparison of ASHE with our DMD based approach after
a step in the iq current. It can be seen in the plot of the
iq current error that our predictive approach compensates
harmonics just after the transient (red), while the ASHE algo-
rithm takes time to adapt (yellow). A comparison was also
done with the proposed method and the ASHE method with
a varying speed. The current was held constant at 1A while
the speed was allowed to ramp up freely. The DMD method
was able to compensate better during the speed change as
shown in Fig. (15). From the figure it can be seen that
the iq current error from the DMD compensation (green)
has a lower harmonic amplitude than the ASHE method.
Both the ASHE and DMD compensation methods reduced
the mean absolute error (MAE) between the current refer-
ence and the actual current compared to the uncompensated
PI controller. The proposed DMD method had the greatest
reduction in MAE. The MAE for the uncompensated, ASHE
compensated and DMD compensated were 0.0337, 0.028 and
0.0172 respectively.

VIII. CONCLUSION
This work presents a novel method to automate the controller
design of the PMSM, providing high-level performance with-
out the need for human intervention. The controller design,
based on the DMD algorithm, automatically generates
nominal feedback gains and provides predictive harmonic
compensation.

A PMSM system model is first identified using DMD and
then used to set the feedback gains by matching a prede-
termined closed-loop set of eigenvalues and eigenvectors.
The method is able to identify a complete model for the
PMSM from control inputs to measured current values. This
is an improvement to traditional approaches in that many
of the non-idealities of the system such as, inverter delay,
inverter voltage drop, wiring and measurement errors are
included in the model during identification. The approach
is able to identify the PMSM model even with changing
speed. In addition, the bias from noisy data is removed by
extending the FBDMD algorithm to a system with actuation
commands and augmented states. The feedback gains were
set by assigning the closed-loop eigenstructure of the system
bymatching a desired set of eigenvalues and eigenvectors in a
least-square manor. On low dimensional systems such as this
one, the results are similar to pole-placement. However, the
authors feel it is important to make the connection between
DMD and eigenstrucure assignment since DMD identifies
the most dominant eigenvalues and eigenvectors of a system.
The approach was shown to give a more predictable transient
response than a rule-based PI controller on two experimental
motors.

In addition to the nominal feedback controller, DMD was
also used to identify and compensate PMSM current har-
monics in a linear predictive way. Having smooth sinusoid
currents is critical for efficient energy conversion, smooth
mechanical operation and long-life of the equipment. It was

shown through experiments that the proposed method is able
to identify dominant harmonic frequencies and amplitudes
with more clarity than FFT based methods. The harmonic
compensation method developed in this work has been shown
to reduce the phase TDD for a given switching frequency.
To our knowledge, this is the first extension of DMD with
delay embeddings beyond harmonic identification to har-
monic compensation. A method based on the concept of a
Fourier basis was developed to generate the DMD compen-
sation vectors at all operating frequencies of the motor. The
experiments show that the proposed method performs better
than the traditional ASHE harmonic compensation method
under transient conditions.
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