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ABSTRACT Digital Twin (DT) is bringing revolution to our lives by a digital representation of the physical
system. DT is the creation of the joint usage of various technologies like Cyber-Physical System (CPS),
Internet of Things (IoT), Big Data, Edge Computing (EC), Artificial Intelligence (AI), andMachine Learning
(ML), etc. DTs are established to optimize a wide range of applications of industry, healthcare, smart cities,
smart homes, etc. It is still in its early development stages. This paper fills the gaps by combining the
extensive information on technologies utilized in the creation of DT in industry and healthcare. The paper
focuses on studying the characteristics of DT, communication technologies and tools utilized in the creation
of DT models, reference models, standards, and the researcher’s recent work in smart manufacturing and
healthcare. Challenges and open issues that need attention are also discussed.

INDEX TERMS Artificial intelligence, big data analytics, communication technologies, digital twin, edge
computing, fog, cloud, health care 4.0, industry 4.0, RAMI 4.0.

I. INTRODUCTION
The fourth industrial revolution has changed the world com-
pletely as it directed the world into an age of automation
and digitization. It was an era of digital transformation that
took the industries, healthcare, communication, homes, and
offices by storm. Various technologies help in achieving our
daily tasks. The industrial revolution took decades as the
First Industrial Revolution was started in 1850 and the Fourth
Industrial Revolution term was coined by Klaus Schwab in
2015. First utilized the power of water and steam to mecha-
nize production. The Second look toward electrical power for
mass production. Third, made use of electronics and infor-
mation technologies for automated production. The fourth
revolution is the fusion of different technologies that are
blurring the lines between the physical, digital, and biological
spheres.

Industry 4.0 (I4.0), is also known as Fourth Industrial Rev-
olution, is a hit rather than hype. At heart, Industry 4.0 is the
trend towards automation and data exchange. It is the combi-
nation of the IoT [1], [2], big data [3], [4], CPS [5], and Arti-
ficial Intelligence (AI) [6]. These technologies have changed
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our life’s and with advancement in technology, they will keep
on changing it. Multiple authors have discussed the origin,
impact, examples, and future trends of Industry 4.0 in dif-
ferent publications [7]–[10]. The term, Industry 4.0, emerged
in Germany and proposed a complete digital transformation
of the product and its manufacturing [11]. It was labeled
as smart manufacturing in the United States [12]–[16]. The
smart factories represent the future of fully automated and
connected systems,mainly operatingwithout the human pres-
ence by data acquisition, processing, and performing neces-
sary actions on it [8]. In [17], a smart factory research model
is presented with various technologies and attributes. It is an
illustration created from the work of authors [18]–[24]. Here,
Fig. 1. represents a more compact and simpler version of the
smart factory research model. It is a combination of various
technologies like IoT, CPS, DT, big data, edge, fog, and cloud
computation to create a smart factory environment.

Smart machines communicate with one another through
the interconnectivity provided by information and commu-
nication technology called of Internet of Things (IoT). IoT
has a key role in the scope of Industry 4.0. However, it is not
only the IoT but also other technologies that have a consid-
erable share to create Fourth Industrial Revolution. Industry
4.0 is an amalgamation of different technologies that provide
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FIGURE 1. Smart Factory Research Model.

automation, operation efficiency, product quality, productiv-
ity, inventory management, security, better communication,
asset utilization, agility, time to market, workplace safety and
environmental sustainability, etc. These are only a few of
the advantages of Industry 4.0 [17], [25]. The author of [26]
provides an insight into different aspects that impact industry
4.0 strategic goals. Following are some of the aspects that
need to be considered to create Industry 4.0:

1. Bandwidth has a direct impact on the numbers of users
supported, and the ability to exchange a large amount
of data (i.e. for predictive maintenance) [27].

2. Scalability provides smoothmovement of devices/users
in and out of a network without negative effects on the
Quality of Service (QoS) [28] and functionality. The
focus will be to provide a flexible network [29].

3. Cyber security is compulsory for industry 4.0 scenar-
ios. It is important to protect people, industries, data,
and assets from attackers [30].

4. Reliability will allow the systems in an IoT scenario to
work properly in any condition [31]. It will help a long
way in increasing productivity.

In the 21st century, Information Technology (IT) technolo-
gies such as IoT, cloud computing, big data, and AI, make
it realistic to covert physical and virtual worlds. The cyber-
physical integration [32] toward the digitalization of indus-
tries. Digital Twin (DT) is the crown jewel of Industry 4.0.
This technology represents the physical system in the digital
world with all its features and properties. The DT of any
system is possible when multiple technologies like IoT, AI,
ML, CPS, and big data work together. With the help of these
technologies and real-time sensor data from the system, the
DT of the system can perform numerous simulations, predic-
tions, analyses in a safe environment. Despite the increasing
research on Industry 4.0, the research remains scattered. The
authors in [13], [33] gave importance to the structure and
condense the vast knowledge of multiple fields of Industry
4.0. There is a difference between this work and previous
literature reviews. The authors of [34], inspected the current
state of the literature on Industry 4.0 whereas, [35] looked
into the managerial literature only. The industry 4.0 technolo-
gies and their effects are discussed in [36]–[39]. Character
or design principles were focused on by [40], [41]; human

resource management and organization implication was dis-
cussed in [42], [43]. Industry 4.0 in terms of operation and
supply chain management was investigated by [44]. Litera-
ture on implementation of Industry 4.0 by [45]–[47] included
the mixture of old technologies with new like Enterprise
Resource Planning (ERP), Computer-Aided Design (CAD),
Computer-AidedManufacturing (CAM), and Electronic Data
Interchange (EDI). Industry 4.0 is a combination of dif-
ferent technologies, so it is not possible to focus research
on a single stream. Many of the researchers work on dif-
ferent aspects of Industry 4.0 such as technologies, current
state, future trends, application scenarios, and open research
areas [37], [48], [49]. Research surveys like [50] provide a
detailed insight into DT literature, lifecycle, tools of various
aspects of simulating digital models along with comparison.
The authors of [51] provide a detailed overview of DT defi-
nition, characteristics, open challenges, and application cases
of smart manufacturing and healthcare. In [52], a systematic
overview of multiple industry 4.0 technologies and tools, and
their utilization in numerous applications is elaborated but
with no comparisons on numerous communication technolo-
gies and standards. The mentioned papers are in no aspect
weak in terms of a literature review or knowledge, but they
are missing insight into standards such as Reference Archi-
tecture Model Industrie 4.0 (RAMI 4.0), and edge-fog-cloud
computing. There is a need to have literature in terms of
IoT technologies comparison, DT simulation and modeling
tools, big data analytics, edge-fog-cloud computing, open
challenges, and standards for the creation of DT models
along with an overview of research performed in applications
of manufacturing and healthcare. This is the motivation for
writing this literature review.

The paper is organized as follows, Section II explains the
referencemodel of Industry 4.0, Section III discusses suitable
communication technologies and their comparison based on
various characteristics like range, data rates, power consump-
tion, and the number of users supported. Section IV presents
data analysis, management, and AI-ML. Section V details
edge-fog-cloud computation in industry 4.0 while Section
VI explores the latest concept of DT in terms of benefits,
application areas, tools for the creation of digital models,
data acquisition, and open research issues. Section VII shares
the existing research performed in smart manufacturing and
healthcare. Section VIII delineates some of the open research
issues in Industry 4.0.

II. REFERENCE ARCHITECTURE MODEL OF INDUSTRY 4.0
The reference model for Industry 4.0 was the result of
joint efforts of multiple German associations and institu-
tions in 2015. Fig. 2 represents the RAMI 4.0. Industry 4.0
applications are implemented with assistance from such a
model [53]. RAMI 4.0 was created to have a model that
speaks the language of all levels of an enterprise and to
connect them through a structured framework [54], [55]. This
model allows researchers to implement existing and new tech-
nologies, techniques, and standards to identify gaps, overlaps,

VOLUME 10, 2022 25733



S. Khan et al.: Digital Twin Perspective of Fourth Industrial and Healthcare Revolution

FIGURE 2. Reference Model RAMI 4.0 [62].

and loopholes in an Industry 4.0 environment. The crucial
technological elements of I4.0 are compiled into RAMI
4.0. In Germany, it is registered as DIN SPEC 91345 stan-
dard [56]. The unique property of this model is to encapsulate
assets in an IT ‘‘administrative shell’’ [57]. The administra-
tive shell is a collection of interconnecting standards, for data
security, data collection, data safety, and structuring. OPC
Unified Architecture (OPC-UA) and Automation Markup
Language (AutomationML) engineering plant information
representation is an example of interconnecting ‘collabora-
tive’ standards [58]. Another example is OPC-UA and IEC
61131-3 PLC data modeling for global control and moni-
toring [59]. Additionally, industrial providers are addressing
smart industries communication requirements by providing
unique data and connectivity services in form of PLCs/PACs.
Examples are WAGO Cloud-enabled MQTT communication
with ‘‘sparkplug’’ specifications [60], SIEMENS integrated
OPC-UA servers [61].

According to the model, IEC 62890 standard, product
lifecycle, and facilities with corresponding stream values are
labeled on the horizontal left axis [63]. The model provides
a difference between the type and instance. When a system
design and prototype is completed, it converts from type to
instance and is ready for production [56]. IEC 62264 is on
the right axis of the model. It represents all hierarchical levels
of any enterprise from the ‘‘Product’’ (for example, a work-
piece) to the ‘‘Connected World’’. The ‘‘Connected World’’
makes use of IoT and Internet of Service (IoS) to connect
enterprises, customers, and suppliers [53, 56]. It is important
to discuss the vertical layers of the model. The model is a
systematic migration to future industrial environments. The
layers provide a guideline to digitize and integrate all aspects
of an enterprise.

The communication layer in RAMI 4.0 handles the con-
nectivity or intercommunication between devices in indus-
try 4.0. Numerous communication technologies can provide
communication between large numbers of entities or systems
in industry 4.0. The question that needs to be answered is
which communication technology or protocol to choose for
any specific scenario tomeet its requirements. Section III will

provide details on IoT, multiple communication technologies,
protocols, features, and comparisons.

III. INTERNET OF THINGS (IoT)
Advancements in technology have allowed researchers to
create new and better communication technologies with long
coverage rates, multiple operating frequency ranges, and
exceptional data rates. However, the implementation of any
communication technology depends on the needs of the appli-
cation or scenario. It is critical to understandmultiple existing
wireless and wired technologies for communication in smart
industries, smart homes, and healthcare.

The term IoT is mentioned in literature by many
researchers. The purpose of IoT is to provide a connection
between the internet and things. ‘‘Things’’ refers to anything
like an object or a person [64]. The ‘‘Internet’’ refers to the
network of the networks. Standard Internet Protocol (TCP/IP)
is utilized worldwide to provide users with interconnected
computer networks. But TCP/IP is not sufficient for most dis-
tributed applications due to the constraints of limited number
of available addresses, overhead, and energy consumption.
IoT has a wide range of applications within the areas such
as transportation, healthcare, or utilities [65]. IoT networks
can be in various forms such as Thing-to-Human, Human-
to-Human, and Thing-to-Thing connected to the internet.
Individually identified objects also exchange information
inside this network [66], [67]. IoT is described by Sezer et
al. [65] as: ‘‘IoT allows people and things to be connected
anytime, anyplace, with anything and anyone, ideally using
any path/network and any service’’. In the words of Bortolini
et al. [68], IoT is a global presence to provide connectivity
between various objects and things networking and cooperat-
ing. IoT enables digitization of any physical system. Digital
information is useful in various ways. In terms of indus-
try, entire production lines such as machinery and related
resources can be the ‘‘things’’ managed and virtualized by
Industry 4.0 [69], [70]. In general, digital data can be utilized
to modify system design, optimize production lines, increase
efficiency, and be cost-effective. Through the use of sensor
data and a virtual replica of the physical world [69]. IoT
can work both in heterogeneous and decentralized environ-
ments [71]. In other words, we can make use of IoT in indus-
tries, smart homes, construction, education, and healthcare
sectors. Research in mobile devices has increased the scope
of implementation of IoT. IoT is realized with connected
Wireless Sensor Networks (WSN), RFID, Cloud Computing
(CC), Wi-Fi, middleware, and Software-Defined Networking
(SDN) [67], etc. These are some of the enabling technologies.
Fig. 3 presents the multiple technologies used in IoT.

IoT provides a connection between different entities over
the network. It is an important technology in terms of inte-
grating heterogeneous devices or systems. Service-Oriented
Architecture (SOA) is utilized to support IoT. It is success-
fully utilized in research areas of WSNs, vehicular networks,
and cloud computing [72]–[78]. Authors of [79] provided
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FIGURE 3. Various technologies in IoT.

a four-layer architecture for IoT i.e., sensing, networking,
service, and interface.

Communication technologies depend strongly on commu-
nication mediums i.e., wired, and wireless. In this fast-track
world of technological advancements, the focus of organiza-
tion or society lies on how quickly a communication tech-
nology can send and receive any information. Both wired
and wireless communication technologies have been used in
IoT scenarios depending upon their constraints. A detailed
list of differences between wired and wireless technologies is
provided in [80]. In contrast to IoT users, industries require
real-time data with high reliability [81]. With regards to
industrial applications, literature provides the term ‘‘Indus-
trial Internet of Things (IIoT)’’. IIoT provides a connection
of industrial products such as systems/machines or compo-
nents to the internet. IIoT systems design generally display
capabilities such as:

1- Scalability: The ability of the system to connect
to more devices without facing any degradation in
QoS 82].

2- Interoperability: The ability of the system to communi-
cate with various devices to achieve the same goal [83].

3- Extensibility: The ability to easily add something to the
system. To enable a software to handle more function-
alities or interface without increasing the size of the
system.

4- Modularity: The components of a system that can be
separated and replaced or recombined to provide flex-
ibility and variety in use.

For example, IoT application in manufacturing industrial
automation application [84]. Another example can be con-
necting the collected sensor data in a factory with IoT plat-
forms to increase the efficiency of production with big data
analysis [66]. An overview of the wireless technologies for
IoT is provided in Fig. 4. Various wireless technologies can

FIGURE 4. Wireless communication technologies for IoT.

fulfill IoT requirements in an environment, few of which are
labeled in this figure.

Table 1 provides a comparison of multiple communication
technologies based on frequency, data rate, coverage range,
power consumption, and the number of devices supported.
Some of the wireless communication technologies or proto-
cols are not included in this table, such as IEEE 802.11af. The
reason why 802.11af cannot be utilized in a dense urban envi-
ronment is due to the unavailability of ‘‘white space’’. White
spaces are the unused television spectrum frequencies in
UHF and VHF which can be utilized to transmit information.
Frequency ranges from 470–790 MHz in Europe and non-
continuous 54–698 MHz in the United States. IEEE 802.11af
would work best in rural settings with other Wi-Fi protocols
being better suited to utilized in urban environments.

A detailed comparison, on Open Systems Interconnec-
tion (OSI) model layers, of multiple wired and wireless
communication technologies utilized in or possibly used in
industries is given in Table 2. The OSI layer 1 and OSI layer
2 i.e., Physical and Medium Access Control (MAC) layers,
define the wireless technology.

IV. BIG DATA AND AI-ML
Increasing growth in data from IoT sources and information
services is driving the industries, hospitals, smart homes, and
smart cities to create more tools and models to handle big
data. Big data is characterized by volume, variety, value,
veracity, and velocity. These characteristics are named ‘‘The
5Vs’’ [89], [90]. This data needs to be analyzed, stored,
and secured to improve system efficiency, scalability, and
security. Implementing big data platforms requires signifi-
cant knowledge and expertise in data science and IT domain
due to its complex infrastructure and programming models.
Numerous tools are available in the market for organizations,
but they are less popular due to their complexities. A trend
in this domain is to create a level of abstraction to utilize
popular data processing platforms. Apache Beam allows its
data flow programming model to be utilized for multiple run-
ners like Apache Spark and Apache Flink, Machine learning
algorithms are applied on data streams in Apache SAMOA,
whereas applications created on SAMOA can be executed

VOLUME 10, 2022 25735



S. Khan et al.: Digital Twin Perspective of Fourth Industrial and Healthcare Revolution

TABLE 1. Comparison of multiple wireless technologies: adapted from [85], [86].

TABLE 2. Communication technologies mapped to the OSI model: adapted from [87], [88].

on Apache Samza, Apache Strom, and Apache S4. The 5Vs
of big data have provided a doorway to a new realm of
solutions.Multiple frameworks [91]–[94] have been designed

to utilize big data for effective analytics in various fields
and applications. To overcome the challenges of big data in
industry 4.0 or any other application, AI-ML can be utilized in
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FIGURE 5. DT relationship with IoT, Big Data, and AI-ML.

combination with big data. The AI tries to digitally replicate
three human cognitive skills: learning, self-correction, and
reasoning. Digital learning is a process of converting pre-
vious data into actionable information. Digital reasoning is
to select the best option to reach the desired goal, whereas
self-correction is a repetitive process of reasoning and learn-
ing. All models follow such a build for a smart system, which
performs a task that will normally require human intelligence.
Various AI methods are utilized such as machine learning,
data mining, deep learning, rule-based algorithms, logic-
based algorithms, and knowledge-based algorithms. There is
a general focus on ML and deep learning in AI approaches.
This conjunction of technologies like IoT, AI-ML, and big
data helps visualize the concept of DT. A representation of
the overall relationship between multiple technologies with
DT is shown in Fig. 5.

The amalgamation of technologies leads to very interesting
applications, especially in industries, such as indoor asset
tracking [95], real-time monitoring of physical systems [96],
manufacturing [97], and outdoor asset tracking [98]. The IoT
devices allow for real-time data acquisition, which is critical
for the creation of DT models of the physical assets [99],
achieve maintenance [100] and optimization [101] by linking
the physical system with the digital replica. There is a deep
connection between data and IoT devices, thus big data ana-
lytics has a major role in developing a successful DT model.

However, managing such an enormous amount of data in
the industrial and DT domain requires advanced architec-
ture, techniques, tools, frameworks, and algorithms. Authors
of [102], [103] have presented a big data processing frame-
work for industries and maintenance in a DT situation. Cloud
computation is one of the platforms that can be used to
process and analyze big data [104], [105]. It is important
to implement applicable AI-ML techniques or algorithms to
make the DT models more intelligent. In the end, DT will be
able to perform tasks such as:

1- Prediction (e.g. maintenance in industry systems and
health care status) [100].

2- Optimization by process control, planning, assembly
line, and scheduler [106], [107].

3- Detecting best resource allocation, safety detection,
best process strategy, and fault detection [108].

4- Dynamic decision-making based on digital twin
data/physical sensor data.

Big data, AI, ML, and IoT have significant importance in
industry 4.0. Industries utilize the concept in the same way as
in other fields, by processing a large amount of data collected
from smart sensors through the cloud or IIoT platforms to
improve the overall efficiency of the operations. Finding
correlations is one of the major tasks but it is not the only
job. More than discovering patterns and correlations, the use
of computational intelligence tools (AI, ML, and Big Data)
will bring real results when it helps to find the causal nexus
throughout analyzed processes. Smart healthcare applications
use these concepts in applications of healthcare monitoring,
drug discovery, intensive care, diagnosis of diseases, and
training of healthcare professionals [109].

V. EDGE COMPUTING
With fast-growing IoT devices and increased data size, it is
necessary to reduce the load of computation at the operating
station or on the cloud. Edge Computing (EC) allows the
network to perform computation or data processing at the
edge. The integration of IoT, mobile services, and appli-
cations in complex scenarios like smart cities and indus-
try 4.0 has created new challenges for Cloud Computation
(CC) [110], [111]. A typical CC performs storage and compu-
tation of data in a centralized system. EC, however, performs
data processing at the extreme (edges) rather than centralized
or distributed nodes (core). The term EC can be defined as
computation performed at the ends of the network. EC can
meet the requirements of battery life, latency, response time,
data protection, and privacy [112], [113]. With the various
network operations that EC can perform, the edge must be
designed efficiently to ensure reliability, privacy, and security.
EC can provide significant support not only in industries
but also in other areas such as smart homes [114], smart
cities [115], smart logistics, and environment monitoring.
In healthcare domain, EC can improve the efficiency by
reducing data circulation and providing faster data process-
ing [116]. Sensors and wearable devices are a way to actively
monitor patients, at home or in care homes, who are suffering
diseases or have a high risk of heart attack [117].

More efficient methods are required to process data at the
edge of the network due to a large amount of data being pro-
duced. Previous methods of cloudlet [118], data center [119],
and fog computing [120] can reduce the load of computing
on the cloud but data processing at the cloud is not efficient
when data can be produced at the edge of the network. The
authors of [112] stated some of the reasons for utilizing
edge computing. The authors mention that more services are
diverted from cloud to edge of the network because data
processing at the edge can guarantee shorter response time
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and better reliability. Edge computing will save bandwidth if
a large amount of data is processed at the edge rather than at
the cloud. The burgeoning growth of IoT and mobile devices
has changed the purpose of edge devices from data consumer
to data producer. Fig. 6. represents the infrastructure of edge,
fog, and cloud.

IoT has an important role in EC [110]. The authors of [121]
provide details on Mobile Edge Computing (MEC), commu-
nication technologies, and comparison with Mobile Cloud
Computation (MCC). Communication is necessary to pro-
vide interconnectivity between edge devices and transfer
data from the edge to the cloud if extensive computation
is required. The IoT technologies, discussed in Section III,
can be implemented based on the application requirement.
At the present, several research directions are aimed at estab-
lishing standards for the development of architectures, con-
cepts, or processes implemented in EC solutions. Various
independent organizations and entities have proposed dif-
ferent specifications, i.e., security, communication protocols,
data protection, and reference architectures specifically for
industrial environments. The authors of [122] presented a
tiered architecture with a modular approach that helps to
manage the complex solution for industries as well as smart
cities, healthcare, and smart energy. The major contribution
of the architecture exists in security and privacy provided by
blockchain technologies.

AI and ML algorithms in combination with EC will play
an important role in the advancements of many applications
i.e., healthcare and industries. Edge Machine Learning (Edge
ML) is a new concept in which smart devices can process
locally with the help of a machine and deep learning algo-
rithms. Edge devices can still send data to the cloud, but
the ability to process the data locally provides screening of
the data before sending it to the cloud while also allowing
for real-time data processing and response. In-memory com-
puting and ML processors are inventions for the embedded
chips to be utilized in the future. In-memory chips provide
high performance by storing data in RAM and performing
parallel processing.ML processors are utilized for edge learn-
ing tasks. Floating-point Operations Per Seconds (FLOPS) is
considered for measuring computing performance. It is the
number of floating-point calculations a computing resource
could perform per second, the higher the FLOPS, the better
computing performance.

Authors of [123] have provided a comparison of multi-
ple ML processors such as Field Programmable Gate Array
(FPGA), Graphical Processing Unit (GPU), Microcontroller
Unit (MCU), and microcomputer, etc. A detailed literature
review of EC in Smart Grid (SG) has also been provided.
Merging deep learning and EC is predicted to bring new
possibilities to both interdisciplinary research and industrial
applications. Deep learning can provide greater data pro-
cessing capability and innovation in novel applications such
as autonomous driving and video surveillance [124] etc.
EC alone and in combination with various technologies is
quite effective in industries as well. Merging blockchain and

FIGURE 6. Edge-fog cloud infrastructure.

EC paradigms can be effective in overcoming security and
scalability issues. In [125], authors implemented blockchain
and EC paradigms in IIoT/IoT critical infrastructure to over-
come security and scalability issues. They also provided a
survey and discussed open research areas for security and
scalability. The authors of [126] had given a very informative
insight into the industrial internet revolution, where indus-
trial edge computing is implemented to facilitate fast con-
nectivity, data optimization, and real-time control. This also
has the benefits of empowering smart applications, ensuring
better security and protecting user privacy. Edge Computing
Nodes (ECNs) are utilized by industrial edge computing.
It allows for bridging the gap between the physical and
digital worlds by substituting as smart gateways for assets,
systems, and services. IEEE P2805 standards, are also dis-
cussed, which aim to solve problems of self-management,
data acquisition, and ML through cloud-edge collaboration
on ECNs.

The relationship between EC and industry 4.0 is considered
in the form of on-site data centers. We can summarize the
relationship by the benefits EC provides in industry 4.0 e.g.,
faster data processing, quicker decision making, increase
productivity at all levels of management, and reliable big
data infrastructure to name a few. EC can itself be a pillar
in industry or a replacement for cloud computing in Industry
4.0 if the two function in tandem with each other.

VI. DIGITAL TWIN
Digital Twin, which incorporates Big Data, AI, Machine
Learning (ML), and IoT, is a key technology in Industry 4.0.
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FIGURE 7. DT model of manufacturing application.

Authors of [127] and [128] have reviewed different defini-
tions of DT. At present, Grieves and NASA gave the two
definitions that are globally accepted. NASA define DT for
a space vehicle as: ‘‘A Digital Twin is an integrated multi-
physics, multiscale, probabilistic simulation of an as-built
vehicle or system that uses the best available physical models,
sensor updates, fleet history, etc., to mirror the life of its
corresponding flying twin’’ [129].Multiple companies utilize
the concept of DT. A company like Chevron saves millions of
dollars in maintenance costs by implementing DT for its oil
refineries and fields [130]. Siemens utilizes the concept of DT
to minimize failures, reduce time to market and create new
business directions [131]–[133]. Fig. 7. represents the rela-
tionship between physical and digital twins in manufacturing
applications.

DT was looked to as the next generation of simulation
tool [134] but Tao and Zhang, worked towards creating a
way to achieve a point of convergence of digital and phys-
ical systems [135]. The DT is a way to provide a better
human-machine connection. It is bi-directional communi-
cation between the digital model and the physical world.
The simulation model utilizes real-time sensor data of the
selected parameters to replicate the performance and work-
ing of the system under consideration [136]. Any digital
representation of physical systems helps in predictive anal-
ysis, monitoring health, business models, avoiding down-
time/delays, and improving product design with lower cost.
In [137], the importance and challenges of DT in personal
healthcare are discussed. Bagaria et al. [138] summarized
the technologies and application requirements to implement
DT for personal healthcare. The author of [139] mentioned
that DT provides a novel direction to represent a physical
system in the digital model concerning its position, shape,
status, gesture, and motion. By utilizing real-time sensor data
along with AI, machine learning, and big data analytics,
DT can be used for diagnostics, monitoring, prognostics, and
optimization [140], [141]. This way, DT can make a wide
range of operations in decision-making possible. Once theDT

FIGURE 8. Configuration and application of digital twin.

model of the facilities, environment, and people is prepared,
it can be used to train users, operators, maintenance workers,
and service providers. DT is a fruitful method to improve
industries or companies productivity, and efficiency [142].

The applications of DT, according to the product lifecycle,
can be linked to the design, production, and use phases as
shown in Fig. 8. DT, at the product design stage, enables
designers to visualize, digitize, and materialize the elusive
concepts of systems (ship, aircraft, and factory) that have
multiple components and implicit coupling [143], [144]. The
quality of the designs can be compared, evaluated, and vali-
dated with DT rather than building expensive physical proto-
types [144].

The digital representation of the production and the usage
scenarios can help explore all the possibilities and varia-
tions of the manufacturability and functionality of the enti-
ties to create an optimal design. This way the department
of design and production can work together to identify the
faults, quality defects, and provide better solutions [145].
Authors of [143] and [146] demonstrated that DT could
simulate the whole factory design process ranging from the
layout and, material handling to equipment configuration.
Zhang et al. [147] worked on a simulation-based method
for plant design and production planning. This approach can
be implemented to create DT models of the plant. At the
production stage, a DT can help optimize production man-
agement through the simulation, verification, and confir-
mation of the process planning and production scheduling.
DT can help with optimal placement of workers, equipment,
on-site resources, and work-in-process [148]. In terms of
control and execution, DT keeps track of all the activities
occurring in the physical world to forecast, and enhance the
control approach [149], [150], and align the process with
planning [151]. A DT model of a construction site can help
detect and predict potential issues before they occur in the
real world. The DT can also help to optimize planning,
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processing, and resource allocation. [135], [152]. Further, the
authors of [153] proposed architecture for utilizing cloud-
based ubiquitous robotic systems for smart manufacturing of
the customized product. They also provided implementation
procedures for the creation of cloud-based ubiquitous robotic
systems. Wang et al. utilized Holon, which consists of a
logical part and a physical part, to mimic the cyber and
physical entities of CPS [154].

In the end, at the service stage, the physical systems behave
differently in various usage scenarios for different purposes,
DT is utilized to simulate the usage scenarios. In these cir-
cumstances, DT can provide new methods of diagnosis and
prognosis of damage location [155], remaining life [156],
and wear [157], reducing costs and downtime [158]. Iterative
experimentation can be carried out with the help of the DT
model to generate the best maintenance solution [136]. For
example, the performance of aircraft engines in terms of
pressure tolerance [140] and wear coefficient, DT driven
Prognostics and Health Management (PHM) for wind tur-
bines [159]. With the help of simulation tools and virtual
reality tools, DT can allow operators to understand complex
physical systems and processes. The creation of DT is a long-
term process to orientate, operate and optimize and for the
multiple software tools can be used in synchronization. Some
of the research issues in the simulation community are (1) the
need for big data analytics along with better sensor technol-
ogy for data collection, data processing, and data analytics,
(2) real-time synchronization between the physical system
and the digital model to reflect the current status, (3) suitable
methods for model generations, verification, validation, and
uncertainty quantification.

The author of [50] provided practitioners and researchers
with a detailed overview of key technologies and tools for
the implementation of DT. The extensive details provided
in this paper are very beneficial for all the researchers who
are looking to understand different tools and platforms for
modeling, connectivity, data management, diagnosis, opti-
mization, cognizing and control of the physical world. Tools
for DT services applications, modeling, and connectivity are
represented in Table 3 to Table 5. A single tool can be utilized
for multiple tasks based on its capabilities, functionality, and
performance.

In Table 3, different tools for various DT service appli-
cations, such as optimization service tools, platform service
tools, simulation tools, and diagnostics and prognosis service
tools are shown. The diagnostic and prognosis service tools
are very useful for predictive maintenance tactics for the sys-
tem and reduce system downtime. This is achieved through
analyzing the historic and real-time data of the twin. ANSYS
simulation platform allows customers to design their systems
to analyze their performance. This provides them with the
opportunity for design changes and troubleshooting. MAT-
LAB can be used to implement data-driven techniques (such
as deep learning, neural networks, machine learning, and
system identification) for predictive analysis, comparisons,
and determining remaining useful life to inform operators to

TABLE 3. Tools for digital twin services applications.

replace or service equipment. Similar tools for diagnostic and
prognosis are presented in Table 3.

Optimization service tools provide extensive what-if simu-
lations to evaluate the performance and need for adjustments
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to the current system set-points. This allows the operators
to optimize the system or control it during operations to
lessen the risk, reduce energy consumption and cost, and
increase system efficiency. Siemens provides Plant Simula-
tion software to optimize the factory layout and production
line scheduling [147]. Simulink is an add-on product toMAT-
LAB. Simulink ismore interactive and graphical to the user as
compared to the code-based approach of MATLAB. Similar
tools of optimization service are presented in Table 3.

Simulation tools not only provide diagnostics, predictive
analysis, and determine the best approach of maintenance,
but also provide next-generation system design based on
historic and sensor data. Designing a CNC machine tool can
be taken as an example. Without accurate Finite Element
Analysis (FEA) simulation analysis of the design, the CNC
machine tool will fail in vibration. Extra material can be
added to strengthen the machine to reduce vibrations. How-
ever, this will increase the cost due to over-designing of the
tool. FEA in ANSYS software provides the best solutions
taking into account the performance requirements and, cost
limitations, and can fulfil the lean design requirements of the
CNC machine tool [160]. Siemens NX software is a com-
manding and flexible tool that can enable companies to under-
stand and implement DT to its fullest. NS software provides
futuristic design, implementation, and solutions along with
handling all aspects of the system from design engineering
to manufacturing. Similar simulation tools are presented in
Table 3.

Service platform tools provide the ability to integrate tech-
nologies such as IoT, big data, and AI. The PTC ThingWorx
platform allows the operator to connect the DT model with
the system in operation, to represent and analyze sensor data.
PTC ThingWorx platform allows multiple actions of data
acquisition, industrial protocol conversion, big data analysis,
device management, and other services. PTC ThingWorx
allowed HIROTEC, a premier automation manufacturing
equipment, and part supplier, to recognize the connection
between CNC machine operation data and ERP data. Other
service platform tools are presented in Table 3.

Digital models replicate the physical systems based on
their physical geometries, behavior, properties, and rules. The
tools for DT modeling include geometry modeling, physical
modeling, behavior modeling, and rule modeling. These are
presented in Table 4.

The geometric modeling tools provide details of the shape,
size, position, and assembly association of systems. Based
on this, geometric modeling tools perform structural analysis
and production planning. An example of such a tool is 3D
Max. It allows animation, 3D modeling, visualization, and
rendering. It is used to describe a detailed environment and
is widely used in games, multimedia production and archi-
tectural design. More examples of such tools are presented in
Table 4.

Rule modeling improves the service performance by mod-
eling the rules, logic, and laws of physical behavior. HPE
EL20 edge computing system, with ML ability by PTC’s

TABLE 4. Tools for Digital Twin Modeling.

ThingWorx, can monitor the normal state of a pump when
it is running. With the help of learning rules, DT can detect
abnormal operations, predict future trends, and detect abnor-
mal patterns. Similar tools are presented in Table 4.

The behavior modeling tools are utilized to develop a
model which responds to external drivers and disturbance fac-
tors, to improve its simulation service performance. An exam-
ple of the motion control system of CNCmachine tool design
is the soft PLC platformCoDeSys. Themotion control system
utilizes socket communication to transfer information with
the multi-domain model of the 3-axis CNC machine tool
developed in MWorks. In this manner, the motion control of
the 1-axis and 3-axis interpolation of the CNC machine tool
can be realized. The multi-domain model can respond to the
external drive. More examples of such tools are presented in
Table 4.

The physical modeling tools are used to build a physical
model to analyze the physical states of physical entities.
The physical model is developed by endowing the phys-
ical characteristics of the physical entities into geometric
models. An example of such a tool is the FEA software by
ANSYS. It utilizes the sensor data to represent the real-time
boundary conditions for the integrated wear coefficient and
geometric models or performance degradation in the digital
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TABLE 5. Tools for Connections in Digital Twin.

model [161]. Also, Simulink has been used as physics-based
modeling. Simulink contains a range of models of electrical
components and mechanical. Similar tools are mentioned in
Table 4.

The concept of DT is to connect the physical and digi-
tal world and break the shackles between physical and vir-
tual realities. Table 5 presents various tools for connection
between the physical and digital worlds as well as with digital
models.

Awide variety of tools is required for connectivity between
the physical and virtual worlds, as well as to connect different
parts within a DT model. The connection within the DT
model is the interaction, communication, and exchange of
information between the system, service, data center, and
digital model. PTC ThingWorx can act as a gateway between
sensors and their respect digital model part to connect mul-
tiple smart devices to the IoT network. MindSphere is an
example of a cloud-based tool from Siemens. It allows con-
nection between products, plants, systems, and machines.
MindSphere has the capability of advanced data analytics to
allow the wealth of data use. Another example is of Jasper
Control Center from Cisco Jasper, which can manage con-
nected devices much better using NB-IoT technology. Jasper
control center can continuously monitor the network condi-
tions, IoT service status, and device behavior to ensure high
service reliability through real-time diagnostics and proactive
monitoring of the connection. Azure IoT Hub by Microsoft
allowed Rolls Royce to create a DT of the engine and perform
data analysis based on machine learning to detect multiple
anomalies of the engine and prescribe timely solutions [162].
The connection is necessary for transfer of information
to help develop problem diagnostics and troubleshooting,
thereby, optimizing the performance of physical entities.
It can also assist in developing optimized maintenance strate-
gies based on every system’s unique characteristics. Numer-
ous tools are utilized in various ways in DT applications, e.g.,
PTC’s ThingWorx can be utilized for platform services as

well as diagnosis and prognosis services but cannot be used
for simulation and optimization. Tools, such as PTC’s Thing-
Worx, Foxconn’s Beacon, ANSYS, Siemens’ MindSphere,
and Dassault’s 3D Experience, etc. are presented in Table 6.
The addition of a single tool, MATLAB/Simulink, is made in
Table 6 based on the information provided by authors of [50].

VII. APPLICATION AREAS
This section discusses the applications of multiple industry
4.0 technologies such as IoT, CPS, Big data, AI-ML, and
robotics. They are grouped into two domains: smart manu-
facturing and healthcare.

A. DT IN SMART MANUFACTURING
CPS acquires data from the environment, processes it, and
makes an accurate decision. These systems are referred to
as ‘smart machines’. The physical and cyber layers combine
to form CPS. These CPS are characterized by availability,
performance, and reliability. They have a remarkable impact
not only on industrial systems but also in our day to day lives.

Smart factories, which are centered on Cyber-Physical
Production Systems (CPPSs), rely on these smart machines.
At present, these smart machines are not far from the final
solution to modern factories conditioned such that they
can perform bidirectional communication, data management,
storage, and analysis alongwith fault tolerance [163]. Numer-
ous technologies are already present in factories to remove
problems and provide a fully automated self-sufficient pro-
duction line. The concepts of CPS and DT provide a new
direction for smart manufacturing and healthcare by creating
a closed loop between the physical world and digital model
based on data acquisition, real-time data analysis, decision-
making, and accurate execution. However, the DT model
provides an effective and intuitive way of improvement in
engineering. With the real-time data integration, DT model’s
ability to provide solutions can be improved. Fig. 9. depicts
how digital models can be utilized to enhance the composition
and functionality of CPS by providing capabilities of CC,
predictive analysis, decision making, and big data analytics.
The DT technology can be fundamental toward building CPS.
With the combination of CPS and DT, manufacturers can
achieve better efficiency, management, and precision. The
concept of DT in smart manufacturing is very promising but
some of the open research problems are [87]:

1- Incomplete knowledge of challenges and research
questions regarding DT modeling, simulation, data
management, and interconnection.

2- Limited reference models for DT.
3- Lack of adequate understanding of the architectures of

implementing DT-driven smart manufacturing.

From a technical point of view, there are three components
that must work together for the construction of DT. Visual
representation of a DT reference model is given in Fig. 10.
The components are as follows:
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TABLE 6. Comparison of tools and their roles in various aspects of DT (
√

denotes it can be used in this part): adopted from [50].

1- An information model to extract the physical charac-
teristics of a system.

2- A communication mechanism to transfer data bidirec-
tionally between digital and physical systems.

3- A data processing algorithm or module to extract infor-
mation from multi-source diverse data sets to create a
real-time digital representation of the physical system.

Information models are necessary to extract meaning from
the large amount of data a system has received. The presence
of data synchronization mechanisms is necessary between
a digital model and a physical system. Otherwise, the con-
nection between them will not be established. The Digital
model will be a one-off snapshot of the physical counterpart.
Standardization is key to reducing the heterogeneity of the
data stream being sent to the DT information model. Fig. 11.
enlists multiple standards that give details on information

models for describing physical objects in the manufacturing
domain. International Standard Organization (ISO) is playing
an active role in the development of a dedicated standard
for DT manufacturing [164]. According to [87], information
models for product DT and information models for produc-
tion DT are two subtypes of information models.

For the information models for product DT, ISO
14649 [165] and ISO 10303 [166] are two outstanding
standards. ISO 10303 provides a neutral data structure
for exchanging product data between CAD systems. The
AP242 [167] was created by combining AP203 and AP204
forManagedModel-Based 3D Engineering.With these infor-
mation models, PMI information and geometric tolerance
can be inserted into the system directly from product design
files in the STEP AP242 model without the requirement of
interpreting 3D drawings. These changes provide the com-
munication necessary at various stages of product lifecycle
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FIGURE 9. DT model of CPS.

FIGURE 10. DT reference model.

along with autonomous process planning, manufacturing,
inspection, and so forth. In the future, ISO 14649 [168] and
ISO 10303-238 [169] (also known as STEP-NC) are planned
to replace the ISO 6983 (RS274D) M and G code with an
up-to-date associated language that can connect directly the
CAD design data.

For the information models for production DT, ISO
13399 [170] is utilized for computer-interpretable represen-
tation and exchange of industrial product data regarding tool
holders and cutting tools. It provides an explanation of prod-
uct data regarding cutting tools. The model has been used
for CAM/CAD/CNC integration, product data management,
tool management, and manufacturing resource planning. ISO
14649-201 [171] is a similar model utilized for specifying
machine tool data required for cutting processes. MTCon-
nect standard offers a semantic vocabulary for manufactur-
ing hardware to provide contextualized, structured data with
no proprietary format. OPC-UA provides communication
within machines, from machines to systems, and between
machines in the industry. The combination of MTConnect
and OPC-UA helps ensure consistency and interoperability
between MTConnect specifications and the OPC-UA speci-
fications.

A single informationmodel cannot meet the heterogeneous
requirements and wide range of DT applications. Previous
studies suggest that a systematic information model devel-
opment process guarantees maximum standard usability and
conformance [172]. A bottom-up approach is suggested by
OPC-UA and MTConnect community to allow the informa-
tion models to be implemented in various new applications.

The authors of [173] introduced a tri-model-based
approach (i.e. digital representation, computational model,
and graph-based model) for the development of product-level
DT. The three models work alongside each other to simulate
the characteristics and behavior of the physical system (i.e.,
ANET A8 3D printer). The digital representation of the 3D
printer was made on Neo 4 J. Raspberry Pi 3B was utilized
for data extraction and consolidation module.

DT was utilized for dynamic scheduling in the job-shop,
where the application of milling machine is making hydraulic
values [106]. Dynamic scheduling is day-to-day decision-
making. The incorporation of DT allows the physical and
digital world data to perform more predictive analysis toward
machine availability and to detect any abnormality for timely
rescheduling.

In [174], implementation of DT in Computer Numerical
Control Machine Tool (CNCMT) is theoretically very fruitful
but there are numerous difficulties in its implementation. The
example of a rolling guide rail was taken to validate the effec-
tiveness and operability of the proposed consistency retention
method by the authors for the CNCMTDTmodel. The rolling
guide rail is a part of CNCMT and hence the future direction
is the DT model of all components and parameters. The
authors utilized a 5 axis laser drilling machine as a case study
for the DT model [175]. Linear actuators and direct drive
rotary improve the performance of multi-axis machine tools
but without the mechanical gearing, it increases the nonlinear
dynamic coupling between axes.Making it difficult for digital
models to identify accurately. A new approach of estimat-
ing nonlinear multivariable dynamic models non-intrusively
using in-process CNC information was proposed. Features
like actuator force/torque ripples, nonlinear friction, multi-
rigid body motion, and vibration etc. were recorded.

High Precision Products (HPPs), with multidisciplinary
coupling, are utilized in the application of marine, aerospace,
and chemical. HPPs have compact and complex internal
structures and the assembly process is dependent on manual
experience. It can lead to poor consistency and low efficiency.
A DT-driven assembly approach for HPPs is proposed in this
paper by the authors [176]. A comparison between traditional
and DT-driven assembly is also presented.

The authors in [177] created a DT model of a small-scale
knuckle boom crane for condition monitoring. Nonlinear
Finite Element (FE) analysis was performed with input as
payload weight. Characteristics such as strains, stresses, and
the load were determined in real-time. Condition monitoring
increases safety and reliability. The authors state that this
approach can be applied to various robotic manipulators used
in the industry.
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Faults in CNCMT may lead to less precision and affect
production. Reliability is of paramount importance. Predic-
tive maintenance is an effective way to avoid such failures.
A hybrid DT-driven approach (i.e. DT model-based and DT
data-driven) is studied by authors [178] on cutting tool life
expectancy. Results indicated that the hybrid approach is
more accurate and feasible than a single approach.

Authors of [179] studied centrifugal pumps in ventilation,
heating, and air-cooling (HVAC) system. DT models were
created for continuous anomaly detection of pumps. The dig-
ital model helped in automated and efficient asset monitoring
in Operation & Management (O&M).

Augmented Reality (AR) is utilized to realize the DT
model of an EMCO milling machine in [180]. AR gives
the operator control and ability to monitor the machine tool,
while providing access to DT data at the same time. It allows
for a consistent and intuitive human-machine interface to
improve the efficiency of the manufacturing process.

DT model of a 3-axis CNC engraving machine controlled
via Arduino is created with real-time data of the position of
the axis in [181]. A CAD model represents the digital model
of the testbed.

A data-driven DT model, in the combination of hybrid
model prediction method based on deep learning technique
Deep Stacked GRU (DSGRU), is created for predictive main-
tenance of the manufacturing machines. Testing is performed
on vibration data of milling machine tool to show the perfor-
mance of the DT model toward tool wear prediction [182].

Predictive maintenance of automotive brake system with
ThingWorx IoT platform allowed braking pressure to be mea-
sured at various speeds. CAD model implemented in CREO
simulation was used for prediction of brake wear [183].

Qualification is an important process that every product
must pass. 3D tool printing has important applications in
healthcare, automotive, and aerospace industries. The utiliza-
tion of DT, with machine learning and big data, can reduce
the number of trials and errors in order to create the desired
product [184].

The utilization of cloud-based platforms to create DT
is performed in [185]. The authors utilized a single edge
micro-cutting machine tool in a collective cloud-based PLM
platform (3D Experience from Dassault Systems). The DT
model helped in estimating and simulating the behavior of
the system under various cutting conditions.

MQTT broker is utilized for connectivity through a broker-
client architecture between the physical system (a bending
beam test bench) and its DT model [186]. FEA simulations
are conducted to analyze the performance of the bending
beam. The results are represented numerically and graphi-
cally in CAD.

DT also has applications in helicopter industry. In [187],
authors have worked to create DT of helicopter dynamic
systems (i.e. swashplate rotor assembly). Manufacturers are
interested in developing DT models to have the ability to
predict the lifetime of mechanical parts. Data recorded during
flights is utilized to simulate the loads the mechanical parts

undergo. The simulation models will help in developing the
new model of bearing and its validation based on bench tests.

The authors of [188] simulated the cutting process of a
CNC machine through the DT model. The simulation can
help in reducing costs, decreasing material waste, reduce
collision by tools, increase system life, and help simulate the
cutting process to ensure accuracy and precision.

There are numerous situations where an operator will work
in collaboration with a robot or is present in the space of a
robot. In [189], the authors worked towards creating a DT
model to support the design, build, and control of human-
machine cooperation. A case study of an industrial assembly
is considered for a human-robot collaborative.

Any digital environment is prone to cyber-attack, and it is
an open research direction. The authors of [190] analyzed
cyber-attack modes in a collaborative robotic CPS. Details
of severity and categorization of cyber-attacks and safety
of the human worker during human-robot collaboration are
provided. A two-pronged security strategy is devised and
tested on teleoperation benchmark (NeCS-Car).

Controlling a group of robots working together without
any conflicts is necessary for smooth operation of factories
but it is problematic. A DT model for a multi-robot mon-
itoring system is simulated to avoid collisions and detect
robot movements in the real environment [191]. A six-
degree-of-freedom robot armmanipulator with OPC-UA pro-
viding connectivity is the case study. The design system
can simulate a real-world scenario and help in monitoring
industrial robots to enhance the production efficiency of the
factories.

The complexity of any system, product, or manufactur-
ing process increases the chances of human-generated error.
An overhead assembly operation from a vehicle assembly
plant is considered by [192]. The DT of the human operator
is created in the Siemens Technomatix suite. The DT helps
in analyzing human anthropomorphic models to discover
the boundaries in performing the assembly tasks based on
weight, height, and gender. The DT of mobile robot design to
assist the human operator in the assembly process will help
evaluate process time, human-robot collaboration, and joint
ergonomic impact to reveal limitations of DT in human-robot
collaboration.

B. HEALTHCARE
The rapid population growth has placed a massive strain
on existing healthcare resources. New technologies are
necessary to help in fast, accurate, and economical solu-
tions to medical emergencies, diagnoses, and procedures.
Smart healthcare educates people about their health con-
ditions and enables them to manage some of their condi-
tions by themselves. IoT plays its role in healthcare through
Healthcare-Internet of Things (H-IoT). It is a complex sys-
tem of medicine, microelectronics, health systems, AI, and
more [193]. This allows for remote monitoring of patients
in hospitals and homes with a focus on enhancing health-
care quality, preventing and managing emergencies and
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FIGURE 11. Timeline-based depiction of standards for Digital Twin in the manufacturing domain: copyright acquired from [87].

reducing healthcare costs [194], [195]. The vast implementa-
tion opportunities of DT in the area of healthcare and studies
that will guide future research are emphasized in [196].

IoT also has a strong foothold in DT technology. DT in
healthcare has numerous applications and open research
problems. It can ideally replicate the human body, which
employs a large data set and AI-powered models to replicate
human physiology and provide possible answers to a range
of clinical questions [197]. DT models can also be utilized
to predict the outcome of various clinical procedures. Digital
models will help young practitioners, doctors, and surgeons to
work in a safe environment, conduct training procedures and
perform testing on the digital human body. But many tech-
nical, privacy, and ethical issues need to be resolved before
this can be practically happen. The implementation of ML
and datamining algorithmswill provide accurate outcomes of
various medical procedures with real-time data and process-
ing capability [198]. Another example of DT is optimizing
hospital lifecycle. Edge, Fog, and Cloud computation are
used in the creation of a network. Cloud-based IoT [199]
can overcome problems caused by processing capabilities and
storage limitations. A large amount of data is transmitted
in this cloud based IoT paradigm. The transmission of a
large amount of data can cause latency and requires high-
bandwidth internet connection to name a few constraints.
The application that operates in real-time cannot be utilized.
Edge and fog computation are the solutions to the problem of
latency. IoT networks developed in this aspect will have three
parts of device, edge, and cloud. It will have several benefits
but also give rise to various problems in design and devel-

opment [200]–[203]. A cloud-based DT system for geriatric
healthcare was proposed by [204]. The authors introduced a
reference framework of Cloud-DTH, which is the combina-
tion of cloud architecture and DT healthcare (DTH). The aim
was to provide computational andmanagement capabilities in
healthcare systems. The author worked on two case studies,
but they lacked performance and results in the evaluation.
It is not clear in the prediction process whether AI or ML
algorithms were used. A successful DT healthcare system
relies on efficient and accurate machine learning algorithms
to manage multiple processes. The healthcare requirements
can be divided into functional and non-functional. Functional
needs are completely distinctive and work according to pre-
defined responsibilities. There are open areas in nonfunc-
tional needs, attributes that can define system quality, in the
healthcare system i.e. lower power connectivity, quality of
service, system reliability, interoperability, higher efficiency,
and real-time operations [205]. The authors of [206] provide
an extensive literature review of IoT and associated technolo-
gies in healthcare. The correct cyber resilience technology
and policy are important tomaintain and preserve a healthcare
digital twin. Authors of [207] pointed toward vulnerabil-
ity detection as an essential technology for cyber resilience
in healthcare DT. Deep Learning (DL) is implemented to
overcome the limitation of machine learning in vulnerability
detection. They implemented a novel deep neural model to
capture bi-directional context relationships among the risky
code keywords. It showed improved results as compared
to the latest DL-based methods for vulnerability detection.
Another example is the implementation of Artificial Neural
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Network (ANN) on patient data for decision making and
monitoring health as discussed by [208].

GE healthcare has been using DT for hospital management
optimization. They have focused on predictive analytics plat-
forms and AI capabilities to transfer huge patient data into
actionable intelligence. GE healthcare designed the ‘‘Capac-
ity Command Center’’ that is implemented in Johns Hopkins
Hospital in Baltimore for simulations and better decision-
making capabilities. Mater Private Hospital (MPH) in Dublin
is optimized by DT technology with help of Siemens Health-
ineers. One of the tasks performed by Siemens Healthineers
and MPH was to implement DT in the radiology department
with the help of AI computer model for the department and
its operations. MPH was able to overcome the challenges of
increasing clinical complexity, aging infrastructure, delays,
increased patient demands, and the large bulk of data with
the help of DT.

In [209], the authors supported the implementation of
DT technologies in medicine i.e. in medical cyber-physical
systems [210], [211]. Kocabas et al. [212] worked in the
direction of medical cyber-physical systems having multiple
layers of data acquisition, data analysis, cloud systems, and
actuators. CombiningWireless Body Area Network (WBAN)
with IoT networks and cloud computation has been consid-
ered as an open research area in healthcare applications [213].
Wearable devices and AI were implemented for human data
acquisition and analysis to simulate human processes such as
user behavioral motivation understanding, emotion recogni-
tion, and recognition of user intent [214]–[216]. Furthermore,
it has helped to create interactive games to help artists utilize
their creativity. Lastly, it can be used to carry out health
monitoring and provide instructions to help users improve
their health. Psychologist have started to utilize physical
activity levels using actigraphs in order to predict the onset
of various episodes of bipolar disorder [217]. The authors
of [218] have put forward the idea of creating collabora-
tion of computational simulations with tissue engineering for
higher reliability, predictable and accurate clinical outcomes.
A framework of DT in remote surgery is provided in [219].
The authors of [220] presented a context-aware healthcare
system using the DT framework. A rhythms classifier model,
of ECG, was built utilizing ML to detect heart problems and
diagnose heart disease. Cardio twin architecture is utilized
for Ischemic Heart Disease detection on the edge [221]. With
the help of a convolutional neural network, non-myocardial
and myocardial conditions can be classified. By utilizing the
database of 200 different people called the ‘‘PTB diagnos-
tic ECG database’’ from Physio Bank. The author’s imple-
mented model had an accuracy of 85.77% with 4.8 seconds
taken on classification of each sample. DT of the human
airway system was created by researchers at Oklahoma State
University’s Computational Biofluidics and Biomechanics
Laboratory (CBBL) [222]–[225]. Healthcare 4.0 is one of the
research directions that can benefit deeply from the imple-
mentation of DT technology.

VIII. FUTURE RESEARCH
Multiple research areas need considerable work with respect
to DT implementation in various fields.

The latency requirements, between a physical system and
its DT, depend on the application at hand. The cost and
complexity of the system increase significantly as the latency
requirements become strict. A wide range of communication
technologies, 4G, 5G, 6G, Wi-Fi, and ZigBee, are available
that can be utilized to provide minimum latency, higher data
rates, and increased coverage range. To replicate the physical
system into the DT model, the latency needs to be minimum
to receive the data in real-time. IEEE 802.11ah, created in
2016, is labeled asWi-Fi brand IoT technology by researchers
and companies. It has the capability of higher data rates,
considerable range, and can connect around 8000 devices
compared to worldwide used 802.11n. Research needs to be
carried out on a large range of DT applications to specify
the best suitable communication technology for that specific
application. A practical example is a DT model of shop
floor monitoring that can manage higher latency compared
to cloud-based industrial control. BMWi, Germany [226]
specified the nominal latency requirements for various man-
ufacturing applications, which can be used as a standard for
designing the system architecture of a DT application. Not
only the IoT requirements, but appropriate data capturing
techniques are also important. If a robot arm manipulator
is performing a milling process, wired sensors or wireless
sensors can be utilized to record the changes occurring during
the process. Similarly, we can utilize a High Definition (HD)
camera to take snapshots for monitoring the process. A com-
parison is necessary for all three data capturing method-
ologies to validate the optimal approach for various DT
applications.

Furthermore, big data analysis is necessary before utilizing
the data for monitoring, diagnosis, and prediction. Data anal-
ysis and management is an open research issue. Instead of
relying on cloud computation, integration of edge, fog, and
cloud infrastructure is necessary to distribute the responsi-
bility of data processing. The challenge related to enormous
data acquisition, analysis, limited awareness of methodology
and modeling is still unresolved [227]. In terms of healthcare,
edge, fog, cloud, AI-ML algorithms, and big data analytics
holds importance in processing data for monitoring, diag-
nosis, selection of best surgical method, comparison with
hundreds of previous patients, and predictive analysis. In this
field, problems like scalability, energy, co-design approach,
data privacy, data storage, and services available to heteroge-
neous sources are open to research [228].

There are two architectures available for the creation of DT
models i.e., server-based, and edge-based. In server-based,
the centralized server receives the complete data to perform
data analysis and creates a DT model. This method is much
more economical and easier to maintain. In edge-based mod-
els, the data is routed back to the centralized server, but some
data analysis is carried out at the ‘edge’ of the system. It is the
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pre-processing performed not the raw data at the edge. It has
its benefits, if designed correctly, but it is more complex to
maintain.

Existing DT applications utilize the concept for monitoring
and prediction. But future research can be to provide DT
models for decision-making support for human operators.
The ultimate purpose of the industrial revolution is to provide
autonomy to the systems. For example, human presence is
essential in smart manufacturing but autonomous feedback
control with minimum latency between the DTmodel and the
physical system can provide the support for decision-making.
Humans still have a role to play in DT-driven environments.
Some of the autonomous operations do not require human
operators but decision-making still requires the human intel-
lect. A DT model, which is a completely synchronized real-
time replica of the physical system, along with strong AI
algorithms, can assist in decision-makingwithout the need for
human intervention. It can be further investigated by incor-
porating new technology such as Augmented Reality (AR)
to improve human-machine interactions. Future research can
focus on the topic of DT for people in smart manufacturing,
smart surgeries, healthcare, and robot-assisted tasks. To have
the level of autonomy and human presence, a digital twin
model should be flexible to the changes in the physical world.
Limited or rigid DT models will waste time and money if the
complete model is to be recreated from scratch every time
there are changes in the physical system. Therefore, different
DT models should be made, stored, and synchronized with
the real system over time. Different data capturing methods
can be utilized to acquire accurate data with multiple data
management and simulation tools for a different version of
the DT model. Although anyone can create a DT of the phys-
ical system; standards will provide the permanency of a DT
solution. DT models that are standard-compatible can inherit
interoperability, flexibility, and scalability of the existing and
future standards for communication, data management, and
implementation. It is important for an open network of Digital
Twins. Not only in the manufacturing industry but also in the
field of healthcare, robotics, and oil & gas. Another impor-
tant future research direction can be toward cyber security.
A physical system controlled by a DT may have catastrophic
consequences if it succumbs to a cyber-attack. DT has the
potential to strengthen the integrity of the physical system
by providing improved observation, testing, and verification
process. But a corrupted DT can be used to mislead operators.
Cyber-attacks can create inaccuracies in DT. Any analysis or
prediction, performed by a cyber-attack affected DT, is likely
to be unreliable. Not only that, data modification and damage
by cyber-attacks, in transmission or storage, must also be
avoided. DT can create new failure points, for cyber-attacks
to take control of the system, damage the system, mislead
operators, or listen to data being communicated between the
DT and the physical system. In healthcare, around 7.7 million
patient data from LabCorp Clinical Laboratory was compro-
mised by cyber-attack in July 2019 [229]. In May 2019, data
of 11.9 million patients from Quest Diagnostics was affected

by cyber-attack [230]. Manufacturers of various industries
have concerns regarding high cost and data security on the
applications of DT [231]. Research needs to be carried out to
ensure data protection.

IX. CONCLUSION
This paper presents an overview of the integration of numer-
ous enabling technologies for the creation of DT along with
core concepts, standards, reference models, and research
work on DT in smart manufacturing and healthcare.

Research has been conducted throughout the world on DT
but there is a gap towards the implementation of flexible
and real-time synchronized DT models, IoT limitations, and
control of the physical system through the digital model.
Communication technologies like 5G, 6G, or IEEE 802.11ah,
etc. allow for various DT applications to be tested. However,
selecting and implementing an appropriate technology to ful-
fill the application IoT requirements and successfully provide
bi-directional data/information transfer for the creation of DT
models is a challenge.

Cost limitations, complexity of implementation, integra-
tion between DTmodels and within DTmodel are other chal-
lenges researchers are facing. The common data collection
and processing methods do not fulfill the needs of DT. Sole
reliance on CCwill not fulfill the requirement of processing a
large amount of data quickly and providing useful data for DT
models. Edge-fog-cloud computation andAI-ML can provide
the necessary support for pre-processing data, diagnosis, and
prognosis on data along with reducing the load on communi-
cation channels for data transfer and lessening the burden on
CC.

These considerations are not only to be implemented in the
domain of industries, but healthcare, robotics, smart city, oil
& gas, and education sectors too. The potential of DT must
be explored in various applications. We have also shed light
on some of the future challenges and open research avenues
of Industry 4.0, especially DT.
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