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ABSTRACT The problem of characterizing the passengers’ movement in a public transport system has
been considered in the literature for analysis, simulation and optimization purposes. In particular, origin-
destination matrices are commonly used to describe the total number of passengers that travel between two
points during a given time interval. In this paper, we propose to model the instantaneous rate of arrival
of passengers for the origin-destination pairs of a metro system using point processes. More specifically,
we apply the Expectation-Maximization algorithm to estimate the parameters of a Gaussianmixture intensity
function for the daily flow of passengers using data from multiple days provided by EFE Valparaíso. The
uncertainty in the parameter estimates is quantified computing standard errors and confidence intervals.
Secondly, we quantitatively analyze the similarity of the obtained intensity functions among the different
origin-destination pairs. In particular, we propose a dissimilarity index based on the Kullback-Leibler
divergence and we apply this index in hierarchical agglomerative and partitioning methods to cluster origin-
destination pairs with similar daily flow of passengers. The obtained numerical results confirm expert
knowledge about the passengers’ behavior in EFE Valparaíso metro system and, more interestingly, provide
additional insights on the passengers’ behaviour for specific origin-destination pairs.

INDEX TERMS Expectation-maximization, cluster analysis, Kullback-Leibler divergence, public transport.

I. INTRODUCTION
Efficient and reliable transport systems have become increas-
ingly important to support the large urban and suburban daily
flow of passengers in large cities all over theworld. In particu-
lar, metro systems are one of the most commonly used means
of transport due to their cost for passengers, effectiveness and
speed. At the end of 2017, there were metros in 182 cities
in 56 countries carrying on average a total of 168 million
passengers per day [37].

The modeling of the passengers flow in a metro system
may be of interest to reduce operating costs, to improve ser-
vice quality and for long-term investment in the metro system
infrastructure [28]. The passengers flow is usually modeled
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using origin-destination (OD) matrices that gather the infor-
mation of the flow of passengers between different pairs of
stations of the line. Transit agencies in the past used to rely
on survey to estimate these matrices, however, nowadays
database management and geographic information systems
provide large amounts of data that can be exploited [42].
In fact, payment systems are the main source of information
for passengers movement, where some transport lines only
validate payment cards at the passenger entry, and in others,
payment cards are validated at both ends of the trip. Boarding
and alighting data have been used with, for example, the
iterative proportional fitting method, which could be consid-
ered the state-of-the-art practical OD estimation method [14].
However, this kind of methods generally describe the total
number of passengers traveling in a given period (hours, days,
weeks or years) for a given OD pair, and not the variation
within that time interval.
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Poisson processes have also been used to model transport
systems. For example, in [22] short-term demand for bus
arrival was predicted by describing an intensity using neural
networks, and in [23], the demand for taxis was modeled
using a discrete intensity. Moreover, Poisson processes have
been used to model patient arrival to emergency departments
using a piecewise constant approximation of intensity [9].
The modeling of the intensity of the passengers flow is not
always possible and, in such cases, researchers have pro-
posed methods such as the short-term forecasting of real-time
OD matrices [5], [43]. For public transport, Munizaga and
Palma [24] estimated an ODmatrix combining bus and metro
system data.

In this paper, we propose a point process model for the
instantaneous rate of arrival of passengers for every OD sta-
tion pairs of ametro network during one day of operation. The
modeling of passengers arrival was previously considered in
Allende et al. [1], where three different point process mod-
els were considered: Hawkes-Phan process, Poisson process
with Gaussian mixtures, and a novel Hawkes-Gauss process
(that combined the previous two). In that work, the intensity
function was obtained applying maximum likelihood and the
EM algorithm, however, using only single-day real data pro-
vided by EFEValparaíso. Additionally, Bayesian information
criterion was used in [1] to determine the (best) model order
and, thus, the number of parameters for the different point
processes intensity functions.

In this paper, our first contribution is to continue and extend
the work in [1] by estimating the intensity function of the
passengers arrival using data from multiple days using the
superposition principle [17]. We consider the nonhomoge-
neous Poisson processes (also considered in [1]) by defining a
time-dependent intensity function λ(t) as a Gaussian mixture
model. To estimate the parameters of the intensity Gaussian
mixture function for each OD pair, we use the EM algo-
rithm [8], [21]. This algorithm has been applied to truncated
Hawkes point process modeling in [11].

For estimation from real data, the accuracy analysis is
an important issue to detect high uncertainty in the param-
eter estimates. In this work, the accuracy of the parameter
estimates is analyzed via confidence intervals and standard
errors. The Oakes method [25] is applied to obtain the deriva-
tives of the conditional expected function of the EM algo-
rithm to obtain the observed information matrix that leads
to estimating confidence intervals. In addition, parametric
bootstrap [10] based on a Monte Carlo simulation is used
to approximate standard errors. Moreover, we analyze the
impact of combining data from multiple days to reduce the
associated uncertainty in the parameter estimates of the inten-
sity functions. It is worth noticing that the derivation of the
observed information matrix using the Oakes method is a
novel side result, which, to the best of our knowledge, has
not been reported previously for Gaussian mixture models.

In the literature, different works have considered the char-
acterization of passengers flow pattern in transport systems,
focusing on the study on clustering dayswith similar behavior

of user arrivals. For example, Weijermars and Berkum [36]
classified daily traffic profiles using hierarchicalWard’s clus-
tering for a Dutch highway. Yang et al. [40] applied dimen-
sionality reduction to OD matrices to classify a set of days
of a metro system using affinity propagation. For daily
traffic data, Yu and Hellendoorn [41] proposed a cluster-
ing algorithm for mixture models. Caceres et al. [3] applied
hierarchical clustering to Euclidean distances of road section
features to estimate traffic flow.

In this paper, our second contribution is a methodology to
characterize OD pairs with similar passengers flow patterns
using a quantitative index to compare the associated intensity
functions. In particular, we propose a dissimilarity index
between OD pairs using a symmetrized Kullback-Leibler
divergence [6]. In this way, a dissimilarity matrix between
all OD pairs of Metro Valparaíso is obtained. To character-
ize similar passengers flow patterns, we use two clustering
algorithms: agglomerative hierarchical methods using single,
complete and average linkage [15] and partitional methods
using the k-medoids algorithm [16]. A key problem of clus-
tering algorithms in practice is the validation of the obtained
set of clusters [27], that is dependent on the context of the
application. For themetro system, the choice of the number of
clusters may be considered as a design parameter depending
on the number of groups required for analysis, simulation or
optimization purposes.

The remainder of the paper is structured as follows: in
Section II, the parameter estimation of the intensity function
is presented, and the associated confidence intervals and
standard errors are obtained. Section III provides background
on the Kullback-Leibler divergence and how it can be used to
define a symmetric distance between OD intensity functions.
Then, in Section IV, clustering methods and algorithms are
presented. In Section V we present the numerical results
obtained by the proposed analysis using real data provided
by EFE Valparaíso. Finally, in Section VI, we discuss the
obtained results and draw conclusions.

II. ESTIMATION OF INTENSITY FUNCTIONS
Origin-destination (OD) matrices are used to model the
movement of passengers in a public transport system. They
usually summarize the total number of passengers that travel
between given origin and destination points (or stations) dur-
ing a given period of time. For instance, for a set of t stations,
the matrix 

0 N12 · · · N1t
N21 0 · · · N2t
...

...
. . .

...

Nt1 Nt2 · · · 0

 ,
is anODmatrixwhereNij represents the number of tripsmade
from station i to station j over a given period of time. Note that
it is assumed that no trips are allowed having the same origin
and destination station.

In this section, we introduce point processes intensity func-
tions to model the instantaneous rate of arrival of passengers
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for each OD pair of a metro system during one day of oper-
ation. We assume that the intensity associated with an OD
pair is denoted by λ(t) and corresponds to the intensity of a
Poisson point process as described in [1], [31].
Definition 1: A mixture of one-dimensional Gaussian

densities is a finite linear combination of gGaussian densities
of the form

f (y; θ) =
g∑
i=1

πi · φ(y;µi, σ 2
i ), (1)

where

φ(y;µi, σ 2
i ) = (2πσ 2

i )
−1/2 exp{− 1

2 (y− µi)
2/σ 2

i }, (2)

denotes the Gaussian density function with meanµi and vari-
ance σ 2

i , and πi is the weight associated with each Gaussian
component. If a random variable Y has a density function (2),
we shall denote Y ∼ N(µi, σ 2

i ).
In (1), the parameter vector associated to the Gaus-

sian mixture model is θ = (π>,µ>, σ>)> with
π = (π1, . . . , πg−1)>, µ = (µ1, . . . , µg)> and σ =

(σ 2
1 , . . . , σ

2
g )
>. Accordingly, the parameter space is defined

as

2g =

{
(π>,µ>, σ>)> ∈ Rp

:

πg = 1−
g−1∑
j=1

πj, πi > 0, µi ∈ R, σ 2
i > 0,

∀ i = 1, . . . , g
}
, (3)

where p = 3g− 1 is the dimension of 2g.
Following [1], for a fixed day d , we consider (1) to model

the intensity of a point process for an OD pair such that the
Gaussian mixture of densities is weighted by the number of
arrivals nd to the destination. In this framework, we define
the intensity through

λd (t; θ) = nd

g∑
i=1

πi φ(t;µi, σ 2
i ). (4)

The above model is an extension of the problem addressed
in [1] in which the parameter vector θ was estimated using
data from one day only. Here, we consider data from a set
of days where, for each day, we assume that the intensity
function of the Poisson point process depends on the same
fixed parameter vector θ . Furthermore, if we assume that the
Poisson processes for different days are independent of each
other, then from the superposition principle [17],

λ(t; θ ) =
1
Nd

∑
d

λd (t; θ ) = n̄d

g∑
i=1

πi φ(t;µi, σ 2
i ) (5)

is the intensity of the realizations of the Poisson point pro-
cesses of the selected Nd days and n̄d is the average number
of daily arrivals.

In the framework of discrete mixtures of Gaussian dis-
tributions, the EM algorithm [8] is often used to obtain

the maximum likelihood (ML) estimates of the parameters
of interest. The simplicity and stability of this estimation
approach has allowed it to become a popular algorithm (see,
for instance, [39]).

The power of the EM algorithm lies in considering a data
augmentation scheme Yaug by including latent variables or
missing data to the observed data Yobs =M(Yaug) for some
many-to-one mappingM.
Then, we proceed to maximize the observed log-likelihood

function `(θ ) iteratively based on a surrogate function known
as the log-likelihood function of augmented data Yaug =

(Y>obs,Y
>

mis)
> denoted by `c(θ ).

The EM procedure iteratively computes the ML estimator
by alternating between the following steps:
• E-step: For a current estimation θ (k), compute the con-
ditional expectation

Q(θ; θ (k)) = E{`c(θ )|yobs, θ
(k)
}.

• M-step: Update θ (k+1) by maximizing Q(θ; θ (k)) as a
function of θ .

Under mild general conditions [38], the EM algorithm
increases the observed data log-likelihood function after each
iteration, and the sequence {θ (k)}k≥1 converges to a stationary
point of `(θ ).
To obtain the maximum likelihood estimates in the context

of discrete mixtures of normal, we augment the observed data
Yobs = (Y1, . . . ,Yn)> by incorporating latent variables to
obtain Yaug = (Y1, . . . ,Yn,Z>1 , . . . ,Z

>
n )
>, where Zij = (Zj)i

is an indicator variable that identifies if the observation Yj
belongs to the ith component of the mixture. This leads to the
following hierarchical model:

Yj|zij = 1 ∼ N(µi, σ 2
i ), Zj ∼ Multg(1,π ), (6)

where Multg(1,π ) denotes the multinomial distribution with
parameters 1 and probabilities π = (π1, . . . , πg)>. Thus, the
augmented-data log-likelihood function is given by

`c(θ ) =
n∑
j=1

g∑
i=1

zij log
(
πiφ(yj;µi, σ 2

i )
)

=

n∑
j=1

g∑
i=1

zij logπi

+

n∑
j=1

g∑
i=1

zij
{
−

1
2
log 2πσ 2

i −
1

2σ 2
i

(yj − µi)2
}
.

It is straightforward to show that the conditional expecta-
tion required to evaluate the E-step of the EM algorithm is
given by

z(k)ij = E(Zij|Y ; θ (k)) =
π
(k)
i φ(yj;µ

(k)
i , σ

2(k)
i )∑g

r=1 π
(k)
r φ(yj;µ

(k)
r , σ

2(k)
r )

, (7)

for j = 1, . . . , n; i = 1, . . . , g. This allows us to obtain
the conditional expectation of the log-likelihood of the aug-
mented data. Moreover, Q(θ; θ (k)) is given by

Q(θ; θ (k)) = Q1(π; θ (k))+ Q2(µ, σ ; θ (k)),
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where

Q1(π; θ (k)) =
n∑
j=1

g∑
i=1

z(k)ij logπi,

Q2(µ, σ ; θ (k))

=

n∑
j=1

g∑
i=1

z(k)ij
{
−

1
2
log 2πσ 2

i −
1

2σ 2
i

(yj − µi)2
}
.

Thus, the M-step related to π , µ and σ are given by

π
(k+1)
i =

1
n

n∑
j=1

z(k)ij , (8)

µ
(k+1)
i =

1∑n
j=1 z

(k)
ij

n∑
j=1

z(k)ij yj, (9)

σ
2(k+1)
i =

1∑n
j=1 z

(k)
ij

n∑
i=1

z(k)ij (yj − µ
(k)
i )2, (10)

for i = 1, . . . , g.
In the algorithm, the E- and M-steps in (7) and (8)-(10),

respectively, are iterated until a convergence threshold is
achieved.

Note that the updates of µ(k+1)
i and σ 2(k+1)

i correspond
to weighted averages whose weights are given by z(k)ij . This
is computationally inexpensive and guarantees non-negative
variance estimates.

Under mild regularity conditions, the ML estimator θ̂ of θ

is asymptotically normally distributed, that is,

√
n(̂θ − θ )

D
−→ N(0,I−1(θ )),

where I(θ ) = E{−∂2`(θ )/∂θ∂θ>} corresponds to the Fisher
informationmatrix. Note that the Fisher informationmatrix is
necessary not only to obtain the standard error of ML estima-
tors but also to evaluate confidence intervals and hypothesis
test statistics such as Wald and score statistics [2].

The following alternatives for estimating the Fisher infor-
mation matrix have been frequently suggested:

Io(θ ) = −
1
n
∂2`(θ )

∂θ∂θ>
, Io(θ ) =

1
n

n∑
i=1

U i(θ )U>i (θ ),

which correspond to observed and empirical versions of the
information matrix, respectively. Here U i(θ ) represents the
score function for a single observation, which is common
when the likelihood function is additive.

Another alternative to derive the observed information
matrix uses the missing information principle [19].

In this paper, we obtain the observed information matrix in
the Gaussian mixture model using the method proposed by
Oakes [25], i.e., we compute:

−
∂2`(θ )

∂θ∂θ>
= −

{∂2Q(θ; θ̂ )
∂θ∂θ>

+
∂2Q(θ; θ̂ )

∂θ∂ θ̂
>

}∣∣∣
θ=θ̂

.

where matrices Q̈θθ (θ ) = ∂2Q(θ; θ̂ )/∂θ∂θ> and Q̈θ θ̂ (θ ) =
∂2Q(θ; θ̂ )/∂θ∂θ> have the following structure:

Q̈θθ (θ ) =

Q̈µµ(θ ) Q̈µσ (θ ) 0
Q̈σµ(θ ) Q̈σσ (θ ) 0

0 0 Q̈ππ (θ )

 , (11)

Q̈θ θ̂ (θ ) =

Q̈µµ̂(θ ) Q̈µσ̂ (θ ) Q̈µπ̂ (θ )
Q̈σµ̂(θ ) Q̈σ σ̂ (θ ) Q̈σ π̂ (θ )
Q̈πµ̂(θ ) Q̈πσ̂ (θ ) Q̈ππ̂ (θ )

 . (12)

and the entries of matrices Q̈θθ (θ ) and Q̈θ θ̂ (θ ) are presented
in Appendix A.
To the best of our knowledge, the use of the Oakes method

to obtain the observed information matrix for Gaussian mix-
ture models has not been reported previously in the literature.

III. DIVERGENCE MEASURES
In this section, we introduce a dissimilarity index based on the
Kullback-Leibler divergence to quantify the similarity among
intensity functions of the different OD pairs of the metro line.

Let Z ∈ R be a randomvariable with density function fZ (z).
The Shannon entropy, or expected information, is given by [6]

H (Z ) = −E[log fZ (z)] = −
∫
R
{log fZ (z)}fZ (z)d z.

Now, assume two random variables X and Y with prob-
ability density functions f (x) and g(y), respectively, having
the same support. Based on the entropy notion, we can define
divergence measures between the distributions of X and Y .
One of the most common measures to determine the diver-
gence between two distributions is the Kullback-Leibler (KL)
divergence given by [6]

D(f ‖g) =
∫
R
log

( f (x)
g(y)

)
f (x)d x = Ef

[
log

( f (x)
g(y)

)]
,

where the notation emphasizes that the expectation is defined
with respect to the probability density function f (x).

The KL divergence measures the distance between two
densities, it is only a pseudodistance measure, since, in gen-
eral, the KL from f to g is not the same as the KL from g to
f . However, from the statistical point of view, it is relevant
that D(f ‖g) ≥ 0 and D(f ‖g) = 0 if and only if f = g
almost everywhere. A familiar symmetric variant of the KL
divergence is the J -divergence (see, for instance, [6]), which
takes the following definition:

J (f ‖g) = D(f ‖g)+ D(g‖f ). (13)

These divergence measures have several useful appli-
cations including telecommunications, image analysis and
econometrics. An excellent description of the properties and
extensions of these procedures is given in [34].

Although it is possible to obtain explicit expressions for the
KL divergence between normal, uniform or gamma variables,
closed forms for the KL divergence are not available for
the class of discrete mixture of normal distributions. This
has motivated considerable effort in proposing procedures to
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approximate the KL divergence in the context of discretemix-
tures of normals. For a review of a wider variety of methods,
see [7] and [12]. In the numerical experiments in Section V,
we use a Monte Carlo approach. In this method, assuming
that f and g are density functions following a discrete mixture
of normal densities (1), a Monte Carlo estimate of D(f ‖g) is
based on a random sample {x1, . . . , xM } from f (x), given by

DM (f ‖g) =
1
M

M∑
r=1

log
( f (xr )
g(xr )

)
.

By the Law of Large Numbers, we have that DM (f ‖g)→
D(f ‖g) as M → ∞. Moreover, this procedure allows us to
obtain a Monte Carlo estimate for the variance of DM (f ‖g),
given by

var
(
DM (f ‖g)

)
=

1
M2

M∑
r=1

f (xr )
[
log

( f (xr )
g(xr )

)
− DM (f ‖g)

]2
.

In addition,

DM (f ‖g)− Ef [log(f (x)/g(x))]
√

var(DM (f ‖g))
D
−→ N(0, 1).

Notice that the accuracy of this method can be improved by
simply increasing the number of generated random variables.

IV. CLUSTER ANALYSIS
In this section, we briefly describe themost commonmethods
used in clustering analysis in order to apply them to group
similar OD pairs. We seek to determine whether cluster-
ing techniques with a symmetrized KL distance, i.e., the
J -divergence in (13), is a suitable technique to characterize
different types of passenger flow between different pairs of
stations in the OD matrix. In particular, we expect a high
value of the divergence between an OD pair with a higher
morning passengers flow and an OD pair with a peak of
passengers flow in the afternoon. Thus, obtaining clearly
separated clusters. Other profiles of daily passengers flow are
also expected to appear in the analysis.

A. CLUSTERING METHODS
LetX = {x1, . . . , xn} be the finite set of all possible elements
to be grouped. In this case, X ⊂ F2g is the set of all
mixed Gaussian densities associated with an OD pair. Now,
the network concept can be introduced [4].
Definition 2: A network N is a pair (X ,D) where X =
{x1, . . . , xn} is a finite set of points to be grouped, andD(·‖·) :
X × X → [0, +∞) is a divergence measure. The set of all
networks is denoted as N .

A partitionP ofX is a collection of setsP = {G1, . . . ,Gk}
such that Gi ⊂ X for all i = 1, . . . , k ,

⋃k
i=1 Gi = X , and

Gi ∩ Gj = ∅ for all i 6= j. We will call the partition P a
grouping or clustering of X . A partition P depends on the
network we used; thus, two different divergences measures
will not necessarily be associated with the same partition.

Among all possible clustering techniques, we consider two
methods: partitional and hierarchical clustering. Within the

first approach, there are twowell-known techniques: k-means
and k-medoids. These methods require to choose the number
of groups k and the use of a symmetric divergence measure
J (·‖·) between pairs of elements in X . Because the k-means
method is well known in the literature (see, for instance, [15]),
in the Appendix we briefly describe the k-medoids technique.
On the other hand, hierarchical clustering techniques pro-

ceed by either successive mergers or successive divisions.
The way in which these techniques use the nearest neighbor
between items is known as linkage methods. Hierarchical
clustering generates a series of nested partitions [32], the
description of which has been relegated to the Appendix.

B. SELECTION OF NUMBER OF CLUSTERS
One of the issues in clustering is choosing the number of
groups for an available data set. Depending on the method
used or the type of data, there are several techniques for the
validation of the groups, of which heuristic-based indexes are
usually used for the selection of the number of groups. The
main difficulty is to find the right number of clusters so that
there are not too few clusters with very dissimilar data but
not too many clusters with very dissimilar data. Among all
existing coefficients, analysts prefer to use techniques that
satisfy an optimal condition.Wemention three coefficients of
this type: the elbow method, the Silhouette method, and the
Gap statistic [30], [33]. Thesemethods are widely known, and
implementations in R are available on several websites. See,
for instance, https://uc-r.github.io/kmeans_clustering#gap.

For the numerical experiments in Section V, the silhouette
method is used to select the number of clusters. However,
for the case of a metro system, the choice of the number of
clusters may be considered as a design parameter depending
on the number of groups required for analysis, simulation or
optimization purposes.

V. CASE STUDY: EFE VALPARAISO
In this section, we show numerical results to gain insights
into passenger behavior in the EFE Valparaíso metro line,
analyzing a real data set consisting of passenger trips of
August 2019. EFE is the chilean state railway company and
EFE Valparaíso is the largest metro line outside Santiago,
capital city of Chile, having 20 stations over a 43 kilometers
line and moving around 20 million passengers per year.

A. PARAMETER ESTIMATES
Our first goal is to estimate the parameters of a Gaussian
mixture model (1) for one of the OD pairs. In particular,
we estimate the intensity function for the pair (17,1) using
the data of all Tuesdays during August 2019. We also provide
confidence intervals for all parameters of model (1).

Later, in Section V-B, we numerically analyze the flow
passenger patterns of the metro system considering all OD
pairs of EFEValparaíso. Based on the experience of line oper-
ators, we expect clear patterns in different OD pairs. Trips
from the last to the first stations correspond mainly to the
work population, so a greater flow of passengers is expected
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FIGURE 1. The blue bars represent the histogram of passengers arrivals
for Tuesdays during August 2019 associated with pair (17,1). The yellow
line show the intensity function with the initial parameters, whereas the
orange line show the estimated intensity obtained with the EM algorithm.

in the morning. For the opposite direction, when mainly
workers return to their homes, a higher flow is expected in
the afternoon.

In [1], Bayesian Information Criterion (BIC) was used to
determine the (best) model order and, thus, the number of
parameters for the different point processes intensity func-
tions. That analysis showed that the choice of g = 3 Gaussian
components for the different OD pairs of the EFE Valparaíso
metro line was the optimal trade-off between fitting of the
real data and model complexity. Thus, g = 3 is used for all
the experiments carried out in this section.

To define the initial parameters for model (1) that are
required for the EM estimation algorithm, the time instants
were defined based on the available operation schedule as
Ti = 6 and Tf = 23. The initial parameter vector was θ (0) =

(0.33, 0.33, 10.25, 14.5, 18.75, 1, 1, 1)>. The bootstrap con-
fidence intervals for the components of θ were generated
using B = 1000 bootstrap samples [10].

For OD pair (17,1), the total number of passenger arrivals
for every Tuesday of August 2019 were 275, 309, 302, 305
and 287, i.e., giving a daily average n̄d = 295.6. Figure 1
shows the initial intensity and the intensity obtained with the
parameter estimates given by the proposed EM algorithm.

In addition, Table 1 shows the obtained parameter esti-
mates, its standard errors, and the corresponding Oakes and
bootstrap 95% confidence intervals for all parameters in
model (1). Notice that, from (3) the weight of the third
Gaussian density is given by π3 = 1− π1 − π2.
The Oakes method obtained the lower standard errors in 7

of the 8 parameters of the model, and the bootstrap method
gives the best results for π1, the Gaussian component with the
highest passenger arrivals (see Table 1). The Oakes method
also achieves the shortest confidence intervals for the second
and third Gaussian components, which have lower passenger
flows. The confidence intervals for π1, µ1 and σ 2

1 exhibit
similar behavior for all methods.

FIGURE 2. QQ plots of daily passenger arrival vs. estimated intensity
quantiles generated by Monte Carlo simulation of 106 samples.

The estimated intensity in Figure 2 shows a good fit,
in particular, for every day included in the study. The pas-
senger arrival quantiles vs. the Gaussian mixture quantiles
show small deviations from the straight line, supporting the
goodness of fit in each case.

Figure 3 shows the 95% confidence intervals of the param-
eter estimates obtained by the Oakes methods, when the num-
ber of days used as data for estimation is increased. It can be
noticed that the uncertainty around the point estimate of the
parameter is clearly reduced as the number of days increases.
In fact, all the parameter estimates (except σ1) show a 50%
reduction in the associated confidence intervals. In the figure,
it can also be noticed that the intervals obtained for 3 or more
days of data are similar for each parameter.

In the next subsection we are interested in quantifying the
similarity between the intensity functions for different OD
pairs. In order to estimate these densities, the same procedure
in this subsection was followed: a mixture of g = 3 Gaussian
densities in (1), and we use the data for all Tuesdays of
August 2019.

B. CLUSTERING STATIONS PAIRS
In this subsection, we use the OD pair densities of the line
model to estimate a dissimilarity matrix by the Monte Carlo
method using 106 random samples. Later, the dissimilarity
matrix is used as input to hierarchical and partitional cluster-
ing algorithms.

We compute the symmetrized KL divergence (13) for all
380 × 380 OD pairs in the metro line. The values of the
dissimilarity index are approximately in the range from 0 to 8,
where low values of divergence are mostly observed. Figure 4
shows the KL based dissimilarity index where the maximum
of the color scale has been set to 2.25, which includes 90% of
distances between OD pairs. In the figure, it can be noticed
that the pairs containing 11 as an entry station divide the
matrix into quadrants. The most significant contrast of the
matrix appears in the lower left quadrant that compares OD
pairs with entry stations between station 1 and 11, with
respect to pairs with entry stations between 12 and 20.
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TABLE 1. Point estimates and confidence intervals for parameters of model (1) using (17,1) pair. Standard errors of estimates obtained using Oakes and
bootstrap methods. Lower and upper limits are shown for 95% asymptotic confidence intervals.

FIGURE 3. Confidence intervals (95%) obtained by the Oakes method as
the number of the days of data used for the intensity function estimation
is increased.

Regarding the choice of the numbers of clusters, the sil-
houette coefficient suggests that best fit for all algorithms is
a partition into 2 clusters (Figure 5).

Although complete linkage has the second worst silhouette
coefficient, Figure 6 shows that this method produces more
balanced hierarchies with respect to a single linkage (that
tends to link OD pairs one by one). For instance, when
using complete linkage, a partition into 2 clusters produces
clusters with 155 and 225 elements, and a partition into 7
clusters still does not produce a singleton. Average linkage
is an intermediate case between single and complete linkage
because outliers are detected for higher values of dissimilar-
ity. However, average linkage is also capable of recognizing
clusters with many densities but for lower dissimilarity values
(see Figure 7).

The choice of the number of clusters for the OD pairs may
be considered as a design parameter depending on the number
of groups required for analysis, simulation or optimization
purposes. Although the silhouette coefficient suggests a par-
tition into 2 clusters, we analyze the partition of 5 medoids
to recognize more traffic profiles in the metro system. The
number of grouped densities for each cluster from 1 to 5
are 131, 74, 42, 63 and 70. Figure 8 shows that most OD
pairs above the main diagonal of the OD matrix (cluster 1 in
blue) exhibit an afternoon peak traffic, when a large number

FIGURE 4. Symmetric Kullback-Leibler divergence for all OD pairs (color
scale adjusted to the interval [0,2.25] that includes 90% of the pairs).

FIGURE 5. Silhouette coefficient for different clustering methods of all
OD pairs with partitions between 2 to 7 clusters.

of passengers return home after work. As a way of contrast,
OD pairs corresponding to clusters 3 and 5 show a higher
flow in the morning, when passengers most probably travel to
their workplaces. Notice that these two clusters are different
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FIGURE 6. Dendrogram using complete linkage with partition of 2 clusters for all OD pairs.

FIGURE 7. Dendrogram using average linkage with partition of 2 clusters for all OD pairs.

because 3 shows a more pronounced peak. On the other hand,
cluster 2 shows both a morning and afternoon hour peak.

Finally, a key characteristic appears in cluster 4 where a
higher passenger flow at midday can be noticed.
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FIGURE 8. Clustering using 5-medoids method for all OD pairs. (a) Clustered densities. (b) Distribution of clusters in OD matrix.

Figure 8 also shows the singular behavior of station 11.
When considered as an origin station (row 11 of the matrix),
we notice an afternoon peak (cluster 1 in blue). On the other
hand, when considered a destination station (column 11),
peak traffic appears in the morning. This behaviour might be
expected since this station corresponds to El Salto industrial
area, where people travel to in the morning to work (i.e., is a
destination station), and leave in the afternoon to go home
(i.e., is an origin station).

An interesting insight that arises from the clusters and
matrix shown in Figure 8 is related to the OD pairs close to
the diagonal. Most of these pairs are in clusters 2 and 4, which
correspond to a more even flow of passengers during the
day. In fact, this kind of passengers’ behaviour has not been
previously recognized by EFE Valparaíso operators, showing
an advantage of the proposed methodology.

VI. CONCLUSION
In this paper, we have proposed a methodology to model pas-
sengers movement in a metro line and to characterize the flow
patterns that appear among the different origin-destination
pairs. The paper makes two contributions. First, the instanta-
neous rate of arrival of passengers for each origin-destination
pair is modeled using a Gaussian mixture intensity function,
exploiting the EM algorithm to obtain parameter estimates
and the associated confidence intervals. In fact, the use of data
frommultiple days leads to an improvement in the uncertainty
in the parameter estimates showing, for example, a 50%
reduction of the confidence intervals obtained by the Oakes
method when going from 1 day to 3 or more days of data.

The case study presented in the paper confirms that the
Gaussian mixture model provides good approximations of
the (observed) intensity functions throughout the day. More-
over, the confidence intervals of the estimates obtained by dif-
ferent approaches are similar and allow us to detect estimates

with poor accuracy, for example, for stations with fewer
passengers.

The second contribution presented in the paper is to
quantitatively compare the intensity functions of different
origin-destination station pairs of the line. The proposed dis-
similarity index to measure the distance between the intensity
functions was derived from the KL divergence. This approach
provides asymptotic properties that enhance its use in practice
since approximate confidence intervals and hypothesis tests
could be derived as a direct consequence.

In addition, the hierarchical and medoid clustering meth-
ods proposed in the paper to characterize similar patterns
among the origin-destination intensity functions, provide
both visual and quantitative information about different pas-
senger behavior in the line. The results obtained show
patterns that are consistent with knowledge about passen-
ger behavior in morning and evening peak hours and, more
significantly, provide additional insights for specific origin-
destination pairs.

We believe that the general methodology proposed in the
paper can be applied to other similar transport networks,
providing useful information for analysis, simulation and
optimization.

APPENDIX A
OBSERVED INFORMATION MATRIX
The blocks of the Hessian matrix (11) are given by

Q̈µµ(θ ) = − diag
(̂
z1·/σ 2

1 , . . . , ẑg·/σ
2
g
)
,

Q̈µσ (θ ) = − diag
(

1

σ 4
1

n∑
j=1

ẑ1j(yj − µ1), . . .

. . . ,
1
σ 4
g

n∑
j=1

ẑgj(yj − µg)
)
,
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Q̈σσ (θ ) = 1
2 diag

(̂
z1·/σ 4

1 , . . . , ẑg·/σ
4
g
)

− diag
(

1

σ 4
1

n∑
j=1

ẑ1j
(yj − µ1

σ1

)2
, . . .

. . . ,
1
σ 4
g

n∑
j=1

ẑgj
(yj − µg

σg

)2)
,

Q̈ππ (θ ) = − diag
(̂
z1·/π2

1 , . . . , ẑg−1,·/σ
2
g−1

)
,

where ẑi· =
∑n

j=1 ẑij, for i = 1, . . . , g, while the entries of
the matrix Q̈θ θ̂ (θ ) = (Q̈θr θ̂s ) defined in (12) are

Q̈θr θ̂s =
∂2Q(θ; θ̂ )

∂θr∂θ̂s
,

Q̈µr µ̂s=


−π̂r π̂s

n∑
j=1

prs(yj; θ̂ )
(yj − µr

σ 2
r

)(yj − µ̂s
σ̂ 2
s

)
, r 6= s,

π̂r

n∑
j=1

qr (yj; θ̂ )
(yj − µr

σ 2
r

)(yj − µ̂r
σ̂ 2
r

)
, r = s,

Q̈µr σ̂s =



πr π̂s

2σ̂ 2
s

n∑
j=1

prs(yj; θ̂ )
(yj − µr

σ 2
r

)
×

(
1−

(
yj−µ̂s
σ̂s

)2)
, r 6= s,

−
πr

2σ̂ 2
r

n∑
j=1

qr (yj; θ̂ )
(yj − µr

σ 2
r

)
×

(
1−

(
yj−µ̂r
σ̂r

)2)
, r = s,

Q̈µr π̂s =


−
π̂r π̂s

πr

n∑
j=1

prs × (yj; θ̂ )
(yj − µr

σ 2
r

)
, r 6= s,

π̂r

πr

n∑
j=1

qr (yj; θ̂ )
(yj − µr

σ 2
r

)
, r = s,

Q̈σr σ̂s =



−
π̂r π̂s

4σ 2
r σ̂

2
s

n∑
j=1

prs(yj; θ̂ )

×

(
1−

(
yj−µr
σr

)2)(
1−

(
yj−µ̂s
σ̂s

)2)
, r 6= s,

π̂r

4σ 2
r σ̂

2
r

n∑
j=1

qr (yj; θ̂ )

×

(
1−

(
yj−µr
σr

)2)(
1−

(
yj−µ̂r
σ̂r

)2)
, r = s,

Q̈σr π̂s=


π̂r π̂s

2σ̂ 2
r πs

n∑
j=1

prs(yj; θ̂ )
(
1−

(yj − µ̂s
σ̂s

)2)
, r 6= s,

−
π̂r

2σ̂ 2
r πr

n∑
j=1

qr (yj; θ̂)
(
1−

(yj − µ̂r
σ̂r

)2)
, r = s,

Q̈πr π̂s =


−
π̂r

πr

n∑
j=1

prs(yj; θ̂ ), r 6= s,

1
πr

n∑
j=1

qr (yj; θ̂ ), r = s,

with

prs(y; θ̂ ) =
φ(y; µ̂r , σ̂ 2

r )φ(y; µ̂s, σ̂
2
s )

{f (y; θ̂ )}2
,

qr (y; θ̂ ) =
φ(y; µ̂r , σ̂ 2

r )

{f (y; θ̂ )}2
[
f (y; θ̂)− π̂rφ(y; µ̂r , σ̂ 2

r )
]
.

APPENDIX B
CLUSTERING ALGORITHMS
Let mi ∈ Gi be the medoid of the group Gi; then, for all i =
1, . . . , k , mi is obtained as

mi = argmin
x∈Gi

∑
x ′∈Gi

J (x‖x ′). (14)

Let S ⊂ X be the set of all selected medoids. The objective
of the method is to determine the set S = {m1, . . . ,mk} that
minimizes the sum of all dissimilarities between each medoid
and the elements of the respective group. i.e.,

argmin
S

k∑
i=1

∑
x ′∈Gi

J (mi‖x ′). (15)

Algorithm 1 summarizes the necessary steps to yield the
final clusters.

Algorithm 1 k-Medoids Method
1. Define k initial medoids m1, . . . ,mk .
2. Assigns to each x ∈ X the nearest medoids cluster:

x ∈ Gi ⇔ mi = argmin
m∈S

J (x‖x ′).

3. Update S through Equation (14).
4. Repeat steps 2 and 3 until there are no new updates in S.

One of the most commonly used methods to obtain a set
of medoids is partitioning around medoids (PAM) introduced
in [18]. This methods consists of two steps BUILT and SWAP.
More details can be found in [18, Section 2.4].

In order to describe the hierarchical agglomerative meth-
ods we state the following definition.
Definition 3: A partition P1 of k clusters is said nested

within P2 that has r < k clusters if for each G ∈ P1 there
exists G′ ∈ P2 such that G ⊆ G′. The nested partitions are
denoted as P1 @ P2.
Hierarchical clustering generates a hierarchy of nested

partitions. Let P0 be the partition of X into n groups, i.e.,
singletons, and let Pn−1 be the partition of a single group
containing all objects. Agglomerative hierarchies generate
the following nested sequence of partitions:

P0 @ P1 @ . . . @ Pn−1,

in which if two objects are joined together in a group, they
will never be separated again. On the other hand, divisive
hierarchies generate the reverse sequence

Pn−1 @ Pn−2 @ . . . @ P0.
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Merging of the clusters is carried out using one of the three
linkage criteria described as follows. Single linkage: Groups
are formed from the individual entities by merging nearest
neighbors. i.e.,

dSL(Gi,Gj) = min
x∈Gi,x ′∈Gj

J (x‖x ′). (16)

Complete linkage: At each stage, the distance between
clusters is determined by the distance between the two ele-
ments, one from each cluster, that are most distant. i.e.,

dCL(Gi,Gj) = max
x∈Gi,x ′∈Gj

J (x‖x ′). (17)

Average linkage: Computes the average between dissimi-
larities between objects from different clusters through

dAL(Gi,Gj) =
1

|Gi| · |Gj|
∑
x∈Gi

∑
x ′∈Gj

J (x‖x ′), (18)

with |Gi| being the number of objects belonging to Gi.
The hierarchical agglomerative method is summarized in

Algorithm 2.

Algorithm 2 Hierarchical Agglomerative Method
1. For the setX , compute the divergence matrixD = (dik ).
2. Choose the linkage method. Denote the distance

between clusters as d·L .
3. Search the pair Gi and Gj having the smallest dissimilar-

ity according to the method selected in step 2. Store the
value d·L(Gi,Gj).

4. Merge clustersGi andGj to form the new cluster (GiGj) =
Gi∪Gj. Update the entries in the distancematrix by elimi-
nating the rows and columns corresponding to clustersGi
and Gj and adding a row and column giving the distances
between cluster (GiGj) and the remaining clusters.

5. Repeat steps 3 and 4 a total of n − 1 times. Record
identity of clusters are merged and the levels at which
the merges take place.
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