
Received February 4, 2022, accepted February 21, 2022, date of publication March 2, 2022, date of current version March 23, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3156291

Lightweight and Low-Latency AES
Accelerator Using Shared SRAM
JAE SEONG LEE 1, PILJOO CHOI 2, (Member, IEEE),
AND DONG KYUE KIM 3, (Member, IEEE)
1Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, South Korea
2Department of Computer Engineering, Pukyong National University, Busan 48513, South Korea
3Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea

Corresponding author: Dong Kyue Kim (dqkim@hanyang.ac.kr)

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by
the Korea Government (MSIT) (RISC-V-based Secure CPU Architecture Design for Embedded System Malware Detection and Response)
under Grant 2021-0-00724.

ABSTRACT In this study, we propose a lightweight and low-latency advanced encryption standard (AES)
accelerator. Instead of being connected to the bus through its own slave wrapper, the proposed AES
accelerator is located within the slave wrapper of the static random-access memory (SRAM) and is directly
attached to the SRAM. Hence, the AES accelerator can directly access data in the SRAM and share SRAM
space for storing expanded keys, resulting in no time for transferring input and output data, no resource usage
for storing keys, and no power wastage for repeated key expansion. The proposed AES accelerator has a
latency of 53 clock cycles per encryption/decryption process and has a gate count of 2912 when synthesized
using 28 nm process technology. The latency is similar to that of another AES accelerator with the same
32-bit data path; however, the size of the proposed accelerator is 46.0% smaller. Furthermore, compared
with other AES accelerators with 8-bit data path, the proposed AES accelerator has a 3.0–22.0 times smaller
latency with a slightly larger area.

INDEX TERMS Coprocessors, cryptography, digital circuit, encryption.

I. INTRODUCTION
Advanced encryption standard (AES) [1] is one of the most
widely used block ciphers for data encryption, and its appli-
cation ranges from high-performance to resource-constrained
ones. The AES can be used by running AES software on a
general-purpose processor of personal computers or micro-
controllers. However, the AES software requires hundreds
or thousands of clock cycles (CCs) to encrypt one block of
data [2].

To increase the encryption speed, hardware AES accel-
erators can be used. For example, Satoh et al. [3] pro-
posed an AES accelerator that can encrypt one block within
11–54 CCs. However, this method has the following two
limitations. First, the CCs required for data transfer are not
counted. The AES uses 128-, 192-, and 256-bit keys and
128-bit blocks. AES encryption with 128-bit key requires
transfer of at least 12 words of input and output data, includ-
ing the key, plaintext, and ciphertext, between the AES

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamad Afendee Mohamed .

accelerator and static random-access memory (SRAM) in a
32-bit bus system. If an AES accelerator is attached to the
bus system as a slave [4], data transfer from/to memory is
controlled by a master, such as a processor and a direct mem-
ory access controller (DMAC). Consequently, data cannot be
directly transferred between the AES accelerator and SRAM;
the data can be only transferred via a master. Therefore,
transferring 12 words requires at least 12 CCs, which are
not negligible. Second, AES accelerators should repeat the
same key expansion. When a 128-bit key is used, the AES
expands the 128-bit input key into eleven 128-bit round keys
for Round0–Round10. As the same key is often used for
multiple blocks, the input key can be expanded once, and the
expanded keys stored in the SRAM can be used repeatedly.
This method is commonly used in software implementations,
whereas most AES accelerators use on-the-fly key expansion,
which expands the input key in every encryption/decryption
process. This is because an AES accelerator requires its
own SRAM or a large register to store the expanded key,
thereby substantially increasing the cost of hardware imple-
mentation. However, repeating the same key extension wastes

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 30457

https://orcid.org/0000-0003-1490-3975
https://orcid.org/0000-0002-3354-8975
https://orcid.org/0000-0001-5614-0449
https://orcid.org/0000-0001-5985-3970


J. S. Lee et al.: Lightweight and Low-Latency AES Accelerator Using Shared SRAM

power, which is undesirable, especially in power-constrained
applications.

In this paper, we propose a method to directly attach an
AES accelerator to the SRAM. Instead of transferring input
and output data, the processor only passes the start address
of the plaintext to the AES accelerator. Then, the AES accel-
erator reads and writes the data of the given address while
performing key expansion, encryption, and decryption. The
proposed AES accelerator provides two main advantages:

1) Fewer resources are required by storing the expanded
keys in the SRAM instead of registers.

2) Less time and fewer resources are required for data
transfer by directly accessing the SRAM.

First, a typical hardware AES accelerator has at least two
128-bit registers for the text and key. In contrast, the proposed
accelerator exploits the SRAM to store both the input key
and expanded keys. This SRAM sharing approach allows
to remove the 128-bit register for storing the key. Second,
data can be transferred directly between the SRAM and AES
accelerator without using any bus. This approach can reduce
the resources and time required for data transfer and allows
the masters and bus to be used for other tasks.

The remainder of this paper is organized as follows. Back-
ground information is provided in Section II. The proposed
methods are detailed in Section III. Implementation results
are presented in Section IV. Finally, conclusions are drawn in
Section V.

II. PRELIMINARY
This section describes the AES algorithm and shows the
structure of the microcontroller, the target device where the
proposed AES accelerator can be used.

A. AES ALGORITHM
The AES algorithm processes 16-byte intermediate val-
ues as a (4× 4)-byte array, called state. On the bytes,
rows, columns, and the complete state, AES transformations
including SubBytes (SBs), ShiftRows (SRs), MixColumns
(MCs), and AddRoundKeys (ARKs) are performed, respec-
tively.

Let si and rk i denote state and the round key at round i,
respectively. si (0 ≤ i ≤ 10) is defined as

s0← pt ⊕ rk0, (1)

si← MCs
(
SRs

(
SBs

(
si−1

)))
⊕ rk i (1 ≤ i≤ 9), (2)

s10← SRs
(
SBs

(
s9

))
⊕ rk10, (3)

where pt denotes the plaintext, and s10 is the resulting cipher-
text. SB, which is also called S-box, performs nonlinear sub-
stitutions on each byte. This nonlinear operation is typically
described as a multiplicative inversion followed by an affine
transformation using matrix multiplication and exclusive OR
(XOR,⊕) with a predefined vector. SR rotates each row rj by
j bytes to the left. MC mixes a column. Let bi and b′i be the

i-th bytes in the input and output columns of MC, respec-
tively. b′i(0 ≤ i < 4) is defined over GF(28) as

b′i← (bi ∗ {02})⊕(bi+1mod4 ∗ {03})⊕bi+2mod4⊕bi+3mod4,

(4)

where {h1h0} represents a hexadecimal number and is equal
to h1×16+h0, and ∗ represents a convolution using reduction
polynomial x8+ x4+ x3+ x+1. ARK, that is,⊕rk i (0 ≤i ≤
10) in (1)–(3) adds a 128-bit round key to state. Since this
addition is performed over GF(28), it is equivalent to bitwise
XOR.

For decryption, inverse transformations are performed, and
the order of some transformations and round keys are changed
as follows:

s0 ← ct ⊕ rk10, (5)

si ← MCs−1
(
SRs−1

(
SBs−1

(
si−1

))
⊕ rk10−i

)
(1 ≤ i ≤ 9), (6)

s10 ← SRs−1
(
SBs−1

(
s9

))
⊕ rk0, (7)

where ct denotes the ciphertext, and s10 is the resulting plain-
text. Inverse SB performs an inverse affine transformation
followed by a multiplicative inversion. Inverse SR rotates
each row rj by j bytes to the right. The output bytes of inverse
MC are computed as

b′i← (bi ∗ {0e})⊕ (bi+1mod4 ∗ {0b})⊕ (bi+2mod4 ∗ {0d})

⊕(bi+3mod4 ∗ {09}). (8)

Compared with (2), ARK in (6), that is, ⊕rk10−i (1 ≤ i ≤ 9)
is performed before inverse MCs rather than after MCs.

The AES can be used in various block modes such as
electronic code block (ECB), cipher block chaining (CBC),
and counter (CTR) modes. For example, AES encryption and
decryption are performed in the CBC mode as follows:

ct i = Enck
(
pt i

)
⊕ ct i−1, (9)

pt i = Deck(ct i ⊕ ct i−1) , (10)

where pt i, ct i(i > 0) are the i-th blocks of plaintext and
ciphertext, respectively, and ct0 is an initial vector (IV). Enck
and Deck represent AES encryption and decryption with the
input key k , respectively. In the CTR mode, encryption and
decryption are performed as follows:

ct i = Enck([IV ,CTRi])⊕ pt i, (11)

pt i = Enck([IV ,CTRi])⊕ ct i, (12)

where [a, b] is concatenation of a and b, and CTRk is a num-
ber that increases for each block. In this mode, AES decryp-
tion DecK is not required, which can reduce the required
resources.

B. STRUCTURE OF MICROCONTROLLER
Fig. 1 shows the structure of a microcontroller [4]. The mas-
ters, such as an ARM Cortext-M3 processor and a DMAC;
slaves, such as SRAM, read-only memory (ROM), and

30458 VOLUME 10, 2022



J. S. Lee et al.: Lightweight and Low-Latency AES Accelerator Using Shared SRAM

FIGURE 1. Structure of microcontroller [4].

electrically erasable programmable ROM (EEPROM); and
input/output (I/O) are connected to a multilayer bus matrix.
Some slaves including the AES accelerator are connected
to the DMACs. In other microcontrollers [5]–[8], the AES
accelerators have their own DMAC. As the time for data
transfer is important, commercial chips [4]–[8] have DMACs
to reduce the data transfer time.

III. PROPOSED METHODS
In this section, we detail the proposed bus architecture, the
proposed AES accelerator architecture, and its operation.

A. PROPOSED BUS ARCHITECTURE
Slave wrappers are required to connect slave modules includ-
ing the SRAM to the bus, as shown in Fig. 2(a). In the pro-
posed bus architecture, the AES accelerator is not connected
to the bus using its dedicated wrapper, but is located within
the slave wrapper of the SRAM, as shown in Fig. 2(b). As the
AES accelerator is directly connected to the SRAM, it can
access the space shared with the processor in the SRAM
without using a bus. The processor only needs to pass the
start address of the plaintext instead of moving the entire
data, such as round keys, plaintext, and ciphertext, to the AES
accelerator.

B. PROPOSED AES ACCELERATOR ARCHITECTURE
The architecture of the proposed AES accelerator is shown
in Fig. 3. The AES accelerator has sixteen 8-bit registers,
B0,B1, . . . ,B15, which store each byte of state, arranged in
four columns, C0, . . . ,C3. As shown in Fig. 3, the value in
each column is shifted to the right, and the AES transforma-
tions on the rightmost column, C0 are computed using g(C0)
and f (C0, in), which are defined in Table 1. i and j denote the
round number and word number, respectively, and in denotes
one word of plaintext, ciphertext, and round keys that is read
from the SRAM. Using i and j, the AES accelerator accesses
a word in the SRAM as follows:

in← Mem [startAddr + 16i+ 4j] ,

FIGURE 2. (a) Conventional and (b) proposed bus architectures.

FIGURE 3. Architecture of the proposed AES accelerator.

Mem [startAddr + 16i+ 4j]← C0,

where startAddr is the start address of the plaintext.
Function g(C0) computes the expanded key values. Dur-

ing key expansion, g(C0) produces a nonzero output, such
as h(C0) or C0, as shown in Table 1, where h(C0) =
RotWord(SC(C0)) ⊕ Rcon. SubColumn (SC) performs SBs
on four bytes within one column, RotWord performs one-byte
left rotation, and Rcon is a predefined vector for each round.

Function f (C0, in) computes combinations of transforma-
tions on C0 during encryption and decryption. We imple-
mented SC based on S-box optimization [9], [10]. In Fig. 3,
SC±1 computes SC(C0) in encryption and inverse SC with
ARK, that is, in ⊕ SC−1(C0) in decryption. MCa and MCb

VOLUME 10, 2022 30459



J. S. Lee et al.: Lightweight and Low-Latency AES Accelerator Using Shared SRAM

TABLE 1. Definitions of g(C0) and f (C0,in).

are used for MC and inverse MC. By modifying (4) and
(8), the required resources for MC and inverse MC can be
reduced [11]. The output byte of MC, b′i(0 ≤i< 4) can be
rewritten as

b′i← bi⊕ b0123 ⊕ ((bi⊕ bi+1mod4) ∗ {02}), (13)

where b0123 = b0 ⊕ b1 ⊕ b2 ⊕ b3. Similarly, the output byte
of inverse MC, b′i(0 ≤ i < 4) can be rewritten as

b′i← bi ⊕ b0123 ⊕ ((bi ⊕ bi+1mod4) ∗ {02})

⊕((bi ⊕ bi+2mod4) ∗ {04})⊕ (b0123 ∗ {08}) . (14)

Excluding the XOR with bi, MCa and MCb calculates the
common part of (13)–(14) (highlighted in red) and the
remainer of (14) (highlighted in blue) for the four bytes within
the input column, respectively. Let C be the output of SC±1.
Using MCa and MCb, we can define MC and inverse MC
on C , that is,MC(C) andMC−1(C), respectively, as follows:

MC(C) = C ⊕MCa(C) , (15)

MC−1(C) = C ⊕MCa(C)⊕MCb(C). (16)

By controlling the multiplexers and AND gates, f (C0, in)
produces various values, as detailed in Table 1.

In Fig. 3, the data path from f (C0, in) to the registers is
complex owing to SR, which is the only row-wise transforma-
tion. In the proposed architecture, SRs for the i-th round are
performed in the preceding round. That is, during encryption,
instead of (1)–(3), state is computed as

s0← SRs(pt⊕rk0), (17)

si← SRs
(
MCs

(
SBs

(
si−1

))
⊕ rk i

)
(1 ≤ i ≤ 9) (18)

s10← SBs(s9)⊕rk10. (19)

Similarly, (5)–(7) are respectively replaced by

s0← SRs(ct⊕rk10), (20)

si← SRs
(
MCs−1

(
SBs−1

(
si−1

)
⊕ rk10−i

))
(1 ≤ i ≤ 9), (21)

s10← SBs−1(s9)⊕rk0. (22)

Compared with (5)–(7), the expressions in (20)–(22) use SRs
instead of inverse SRs. Although the rotation directions of SR
and its inverse are the opposite, words of ciphertext and round
keys are read from the SRAM in the reversed order when
decryption is performed in the proposed AES accelerator.
This is shown in Table 1, where i and j increase during key
expansion and encryption, but decrease during decryption.
As a result, inverse SR for decryption is not required, and SR
is used for both encryption and decryption.

C. PROPOSED AES ACCELERATOR OPERATION
The proposed AES accelerator uses 208 bytes of the SRAM,
which can be declared as a single array as follows:
unsigned char text[208];

After the address of text[0] is registered in the AES accelera-
tor, the accelerator uses the array space as follows:

– text[0]–text[15] for plaintext,
– text[16]–text[191] for round keys,
– text[192]–text[207] for ciphertext.

During key expansion, only text[16]–text[191] are used, and
key expansion proceeds as follows:
1) KeyEx1: processor stores input key in text[16]–text[31]
2) KeyEx2: processor commands AES accelerator to start

key expansion
3) KeyEx3: AES accelerator reads the input key, rk i−1j (i =

1, j = 3, 0, 1, 2) from text[28]-text[31] and text[16]-
text[27]

4) KeyEx4: AES accelerator calculates round keys, rk i−1j
(2 ≤ i ≤ 11, 0 ≤ j ≤ 3) and stores them in
text [32]–text[191]

5) KeyEx5: AES accelerator sets DONE flag and clears the
registers

The details of KeyEx3–KeyEx5 are shown in Fig. 4.
As detailed in Table 1, f (C0, in) and g(C0) return different
values depending on i and j. When i = 1 (KeyEx3), words of
the input key read from the SRAM are filled in the registers
using f (C0, in) = in and g(C0) = 0. For 2 ≤ i ≤ 11
(KeyEx4), the values in registers C3,C2,C1, and C0 are
rotated using f (C0, in) = C0, and a word of expanded key is
generated using C1⊕ g(C0), where g(C0) is either h(C0) or
C0. When i = 12 (KeyEx5), the registers are cleared using
f (C0, in) = 0.
Using the input and expanded keys for ARKs, encryption

proceeds as follows:
1) Enc1: processor stores plaintext in text[0]–text[15]
2) Enc2: processor commands AES accelerator to start

encryption
3) Enc3: AES accelerator reads pt j(0 ≤ j ≤ 3) from

text[0]–text[15], where ptj is the j-th word of plaintext
4) Enc4: AES accelerator reads words of round keys, that

is, r i−1j (1 ≤ i ≤ 11, 0 ≤ j ≤ 3) in text[16]–text[191]
and performs encryption transformations

5) Enc5: AES accelerator stores the results, ct j(0 ≤ j ≤ 3)
in text[192]–text[207] and clears the registers, where ct j
is the j-th word of ciphertext

6) Enc6: AES accelerator sets DONE flag

30460 VOLUME 10, 2022



J. S. Lee et al.: Lightweight and Low-Latency AES Accelerator Using Shared SRAM

FIGURE 4. Key expansion in proposed AES accelerator.

The details of Enc3–Enc5 are shown in Fig. 5, where g(C0)
always returns zero. When i = 0 (Enc3), words of the
plaintext read from the SRAM are filled in the registers using
f (C0, in) = in, which is similar to KeyEx3. Enc4 is divided
into Round0 (i = 1) performing ARK and SR; Round1–
Round9 (2 ≤ i ≤ 10) performing SC, MC, ARK, and SR;
andRound10 (i = 11) performing SC andARKwith different
return values of f (C0, in). In Enc5, the values in the registers
(i.e., words of ciphertext) are stored in the SRAM, and the
registers are cleared using f (C0, in) = 0.

Decryption proceeds analogously as follows:

1) Dec1: processor stores ciphertext in text[192]–text[207]
2) Dec2: processor commands AES accelerator to start

decryption
3) Dec3: AES accelerator reads ct j(3 ≥ j ≥ 0)
4) Dec4: AES accelerator reads words of round keys, that

is, rk i−1j (11 ≥ i ≥ 1, 3 ≥ j ≥ 0) in text[188]–text[191],

text[184]–text[187], . . . , text[16]–text[19], and it per-
forms decryption transformations

5) Dec5: AES accelerator stores the results, pt j(3 ≥
j ≥ 0) in text[12]–text[15], text[8]–text[11], . . . ,
text[0]–text[3], and it clears the registers

6) Dec6: AES accelerator sets DONE flag

Compared with encryption, the order in which words are
read and written is reversed during decryption, and inverse
transformations, except for SR, are performed.

IV. EXPERIMENTATION AND IMPLEMENTATION RESULTS
This section presents the execution time and implementation
area of the proposed AES accelerator and a comparison with
the results of other studies.

A. EXECUTION TIME AND IMPLEMENTATION AREA OF
THE PROPOSED AES ACCELERATOR
In some block modes such as the CTR mode, decryption
is not required. By removing the logic circuits for decryp-
tion, a smaller and faster accelerator can be obtained. Thus,
we designed two versions of AES accelerators: AES-ED
that supports key expansion, encryption, and decryption; and
AES-E that supports only key expansion and encryption.
The measured CCs are listed in Table 2. Key expansion,

which requires 46 CCs, is much less frequently performed
than encryption and decryption because the same key is often
used over a certain period. Therefore, excluding the CCs
for key expansion, the proposed AES accelerator requires
only 53 CCs for encryption or decryption of one block.

TABLE 2. Execution time and areas of the proposed AES accelerator.

VOLUME 10, 2022 30461



J. S. Lee et al.: Lightweight and Low-Latency AES Accelerator Using Shared SRAM

FIGURE 5. Encryption in proposed AES accelerator.

FIGURE 6. Implementation area of proposed AES accelerators.

We synthesized AES-ED and AES-E using 28-nm comple-
mentary metal-oxide semiconductor (CMOS) process tech-
nology, and the results are shown in Table 2 and Fig. 6. At a
clock frequency of 333 MHz, AES-ED and AES-E require
2912 and 2442 gate equivalents (GEs), respectively. AES-ED
is synthesizable at a maximum clock frequency of 667 MHz
with 4481 GEs, and AES-E is synthesizable at a maximum
clock frequency of 769 MHz with 3399 GEs.

B. COMPARISON WITH RESULTS OF OTHER STUDIES
Small AES accelerators can be divided into two types accord-
ing to their data paths of 32 and 8 bits as listed in Table 3.
Satoh et al. [3] developed five versions of AES acceler-
ators using logic optimization. The smallest version with
four S-boxes and a 32-bit data path can encrypt a block

within 54 CCs. For decryption, 10 more CCs are required
to generate the initial decryption key. Moreover, its area
is 5398 GEs at 131.24 MHz.

For smaller areas, other accelerators have one or two
S-boxes with 8-bit data paths [12]–[17]. The AES acceler-
ator proposed by Feldhofer et al. [12] had 3400 GEs, but
the encryption required 1032 CCs. Although this number of
CCs included the input/output operations, it was substan-
tially slower than the accelerator proposed by Satoh et al. [3].
Despite its larger area, the AES accelerator proposed by
Mathew et al. [13] provided a very higher throughput.
Banik et al. [14] further reduced the number of CCs and
area. They proposed two versions of AES accelerators. The
first version had a latency of 226 CCs with 2605 GEs, and
the second version was smaller, but required more CCs.
To reduce the area, some accelerators do not support decryp-
tion [15]–[17], requiring only 1.5–2.6 kGEs.

The proposed AES accelerators have 32-bit data paths,
which is similar to that proposed by Satoh et al. [3]. However,
AES-ED is 46.0% smaller with almost the same number
of CCs. Compared with the AES accelerators with 8-bit
data paths [12]–[17], AES-ED is 11.8–30.8% larger than
the smallest accelerator that supports both encryption and
decryption [14], and AES-E is 67.6% larger than the accelera-
tor that supports only encryption [17]. However, the proposed
accelerators are much faster. Table 3 shows that the proposed
AES accelerators have the highest throughput. Although we
used a very small process technology, the required CCs
were 3.0–22.0 times fewer than those of the accelerators

30462 VOLUME 10, 2022



J. S. Lee et al.: Lightweight and Low-Latency AES Accelerator Using Shared SRAM

TABLE 3. Performance comparison of AES accelerators.

in [12]–[17]. In particular, the CCs required for data transfer
are not included in Table 3 for most acclerators. As the
proposedAES accelerators can directly access the SRAM, the
proposed accelerators are more advantageous in terms of the
encryption throughput including the data transmission time.

V. FUTURE WORK
The proposed data interface method can be applied to other
block ciphers and public-key cryptographies. In particular,
it can be used to design a lightweight version of public-key
cryptography coprocessors, which are resource-intensive for
processing large numbers and performing complex computa-
tions. For instance, the proposed method can be applied in the
following cases:

1) RSA and elliptic curve cryptography (ECC): RSA
and ECC are widely used public key cryptosystems.
Their main operation is modular multiplication of large
numbers, such as 256-, 512-, and 1024-bit values.
A lightweight coprocessor for RSA and ECC can be
implemented by software/hardware co-design with a
hardware multiplier. The hardware only multiplies large
numbers, while the software controls the hardware mul-
tiplier and combines the results to compute the RSA and
ECCoperations. Although frequent data transfer to/from
the hardware multiplier is time-consuming, most of the
time required for data transfer can be reduced by using
the proposed method.

2) Ideal lattice-based cryptography: Ideal lattice-based
cryptography is popularly used in post-quantum cryp-
tography and homomorphic encryption. The main
operation is multiplication of polynomials, requiring
a large memory capacity but simple computations.
Choi et al. [18] demonstrated the implementation of ring
Lizard, which is an ideal lattice-based cryptosystem and
a candidate in round 2 of the Post-Quantum Cryptogra-
phy Standardization project conducted by the National
Institute of Standards and Technology. The coproces-
sor requires only a few adders and small registers for

computation but a large memory capacity for storing
large polynomials. By applying the proposed method,
the coprocessor can be implemented without dedi-
cated memory, thus significantly reducing the required
resources. Similarly, the proposed method can be appli-
cable to other ideal lattice-based cryptosystems, such as
NTRU [19].

VI. CONCLUSION
We proposed an AES accelerator with a novel data interface
for accessing the SRAM. Instead of being attached to the bus
with its own slavewrapper, the proposedAES accelerator was
located within the wrapper of the SRAM and shared some
space of the SRAMwith the processor. This allowed the AES
accelerator to directly access the SRAM and to use its space
for storing the expanded key without requiring additional
registers. As a result, we reduced the required resources
for storing the key and the power consumed during key
expansion, which is unnecessarily repeated for every block
of encryption/decryption. The proposed AES accelerator can
be used in resource- and power-constrained applications such
as Internet-of-Things (IoT).

ACKNOWLEDGMENT
(Jae Seong Lee and Piljoo Choi contributed equally to this
work.) The chip fabrication and EDA tool were supported by
the IC Design Education Center (IDEC), South Korea.

REFERENCES
[1] Advanced Encryption Standard (AES), document FIPS 197, National Insti-

tute of Standards and Technology, 2001.
[2] D. A. Osvik, J. W. Bos, D. Stefan, and D. Canright, ‘‘Fast software AES

encryption,’’ in Proc. FSE, Seoul, South Korea, 2010, pp. 75–93.
[3] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, ‘‘A compact Rijndael

hardware architecture with S-box optimization,’’ in Proc. ASIACRYPT,
Gold Coast, QLD, Australia, Dec. 2001, pp. 239–254.

[4] LPC18Sxx. NXP. Accessed: Feb. 4, 2022. [Online]. Available:
https://www.nxp.com/docs/en/data-sheet/LPC18S5X_S3X.pdf

[5] Low-Power Features of SAM L Series Devices.
Accessed: Feb. 4, 2022. [Online]. Available: http://ww1.microchip.com/
downloads/en/DeviceDoc/Low-Power-Features-SAML-00002709A.pdf

VOLUME 10, 2022 30463



J. S. Lee et al.: Lightweight and Low-Latency AES Accelerator Using Shared SRAM

[6] AES-IP-39. Rambus. Accessed: Feb. 4, 2022. [Online]. Available:
https://www.rambus.com/security/crypto-accelerator-hardware-
cores/basic-crypto-blocks/aes-ip-39/

[7] STM32F4 Series. STM. Accessed: Feb. 4, 2022. [Online]. Available:
https://www.
st.com/en/microcontrollers-microprocessors/stm32f413-423.html

[8] MSP430FRxx. Texas Instrument. Accessed: Feb. 4, 2022. [Online]. Avail-
able: http://www.ti.com/lit/slau367

[9] D. Canright, ‘‘A very compact S-box for AES,’’ in Proc. CHES, Edinburgh,
U.K., Aug. 2005, pp. 441–445.

[10] sbox.verilog. Accessed: Feb. 4, 2022. [Online]. Available: https://github.
com/coruus/canright-aes-sboxes/blob/master/verilog/sbox.verilog

[11] E. G. Ahmed, E. Shaaban, and M. Hashem, ‘‘Lightweight mix columns
implementation for AES,’’ in Proc. ICAIC, 2009, pp. 253–258.

[12] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, ‘‘AES implementation on
a grain of sand,’’ in Proc. IEE Inf. Secur., Oct. 2005, vol. 152, no. 1,
pp. 13–20.

[13] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal,
S. Hsu, G. Chen, and R. K. Krishnamurthy, ‘‘340 mv–1.1 v, 289
gbps/w, 2090-gate nanoaes hardware accelerator with area-optimized
encrypt/decrypt gf (2 4) 2 polynomials in 22 nm tri-gate CMOS,’’ IEEE
J. Solid-State Circuits, vol. 50, no. 4, pp. 1048–1058, Apr. 2015.

[14] S. Banik, A. Bogdanov, and F. Regazzoni, ‘‘Compact circuits for com-
bined AES encryption/decryption,’’ J. Cryptograph. Eng., vol. 9, no. 1,
pp. 69–83, Apr. 2019.

[15] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, ‘‘Pushing the
limits: A very compact and a threshold implementation of AES,’’ in Proc.
Eurocrypt, Tallinn, Estonia, May 2011, pp. 69–88.

[16] V. Hoang, V. Dao, and C. Pham, ‘‘Design of ultra low power AES encryp-
tion cores with silicon demonstration in SOTB CMOS process,’’ Electron.
Lett., vol. 53, no. 23, pp. 1512–1514, Nov. 2017.

[17] A. Shreedhar, K.-S. Chong, N. K. Z. Lwin, N. A. Kyaw, L. Nalangilli,
W. Shu, J. S. Chang, and B.-H. Gwee, ‘‘Low gate-count ultra-small area
nano advanced encryption standard (AES) design,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[18] P. Choi, J.-H. Kim, and D. K. Kim, ‘‘Fast and power-analysis resistant
ring lizard crypto-processor based on the sparse ternary property,’’ IEEE
Access, vol. 7, pp. 98684–98693, 2019.

[19] J. Hoffstein, J. Pipher, and J. H. Silverman, ‘‘NTRU: A ring-based pub-
lic key cryptosystem,’’ in Algorithmic Number Theory—ANTS (Lecture
Notes in Computer Science), vol. 1423. Berlin, Germany: Springer, 1998,
pp. 267–288.

JAE SEONG LEE received the B.S. and M.S.
degrees in electronic engineering from Hanyang
University, Seoul, South Korea, in 2007 and 2010,
respectively, where he is currently pursuing the
Ph.D. degree in electronics and computer engi-
neering. He has been working with the SoC Devel-
opment Team, ICTK Holdings Company Ltd. His
research interests include the areas of security
SoCs, PUF, and crypto-coprocessors.

PILJOO CHOI (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electronics
and computer engineering from Hanyang Uni-
versity, Seoul, South Korea, in 2010, 2012, and
2017, respectively. From 2017 to 2019, he was a
Software Education Professor with the Software
Education Committee, Hanyang University. Since
2020, he has been an Assistant Professor with the
Department of Computer Engineering, Pukyong
National University, South Korea.

DONG KYUE KIM (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer engi-
neering from Seoul National University, in 1992,
1994, and 1999, respectively. From 1999 to 2005,
he was an Assistant Professor with the Divi-
sion of Computer Science and Engineering, Pusan
National University. Since 2006, he has been a
Professor with the Department of Electronic Engi-
neering, Hanyang University.

30464 VOLUME 10, 2022


