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ABSTRACT The stochastic and intermittent nature of renewable energy poses grave challenges to the energy
scheduling of micro-grids. The exploitation of batteries has been considered as an effective way to cope with
such challenges. However, fluctuation in renewable process causes batteries to charge/discharge frequently,
reducing the lifetime and increasing the maintenance cost. This paper presents a hierarchical two-layer
energy management, a combination of battery and supercapacitor, to lessen daily energy costs. The upper
layer is equipped with a battery to minimize the economic cost, optimizing the energy usage by employing a
mixed-integer nonlinear programming (MINLP) model; the lower layer is equipped with a supercapacitor to
treat the uncertain nature of renewable energy. The optimization process includes load shifting and battery
degradation costs. The upper layer determines the optimal schedule of interruptible appliances and the profile
for energy storage for the next 24 hours. The schedule results are then passed to the lower layer, which deals
with the forecast uncertainties with a supercapacitor with a 15 minutes interval. The effectiveness of the
proposed algorithm is examined by a single-layer scheduling system without forecast errors and a two-layer
scheduling system with forecast errors. The obtained results show the capability and effectiveness of the
proposed scheduling system to reduce operating costs and forecast errors.

INDEX TERMS Demand response, microgrids, MINLP, scheduling, uncertainty.

NOMENCLAQTURE VARIABLES AND FUNCTIONS

1t Time interval.
Cbatt,cap Capital cost of the energy storage.
pbatt (t) Amount of power charged/disc- harged

by the battery.
Ebatt,t battery energy storage total capacity.
Ic (DODbatt (t)) Number of cycles of energy storage at

a particular DOD.
DODbatt (t) Depth of the discharge.
a, b Coefficient of cycles of the energy

storage.
SOCbatt (t) State of the battery charge.
pbatt,c h, pbatt,d ch Battery charge and discharge.
ηbatt efficiency of the energy storage.
ηch, ηdch Charging and discharging efficiency of

the battery.
CSCDC (t) Supercapacitor degradation cost.
CSC Supercapacitor replacement cost.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Zakarya .

LSC Supercapacitor lifetime.
SOCmax, S OCmin Maximum and minimum residual

quantity of the battery.
αa, βa Working time range of the electrical

appliance.
δ Electrical appliance switch state:

1 ON; 0 OFF.
δa,t Binary variable indication the opera-

tion status of a task at the given time t .
Ha Time slots required by appliance A.
pSC (t) Power of the supercapacitor.
pmin
SC (t), pmax

SC (t) Power limits of the supercapacitor.
SOCSC (t) State of the supercapacitor charge.
ηchSC , η

dch
SC Charging and discharging efficiency

of the supercapacitor.
ESC Energy of the supercapacitor.
pinte(h) Electricity consumption of an inter-

ruptible Appliance.
pgrid (h) Electricity purchased from the pow-

er grid.
ppv(t) Power of the PV.
pwt (t) Power of the wind turbine.
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tu, tl Time index in the upper and lower layers.
1tu,1tl Time interval in the upper and lower layers.

I. INTRODUCTION
The sustained growth of energy demand and gas emissions
has become a crucial issue of world concern. One of the
promising ways to solve their related problems is to exploit
renewable energy resources. Under this circumstance, the
concept of micro-grid has aroused lots of interest. A micro-
grid is composed of renewable energy resources, energy stor-
age systems, and some controllable loads. Such advanced
technology can enhance energy efficiency and security by
balancing the energy supply and energy demand.

Designing a productive energy scheduling strategy is a
critical part of the micro-grid system. The investigations
on energy scheduling methods have stimulated great inter-
est [1]; nevertheless, uncertainty such as forecasting error is
inevitable for energy scheduling, which increases the diffi-
culty of energy control. The battery storage system, which
acts as bidirectional mediators to improve energy efficiency
with the utility grid, is often integrated into scheduling to
deal with uncertainty [2]–[8]. Thus, optimization approaches
including robust optimization [2], chance-constrained opti-
mization [3], and scenario-based stochastic optimization
[4], [5] have been implemented for renewable energy opti-
mization problems considering uncertainty. However, the lit-
erature mentioned above narrowly considered the economic
effects of the real-time battery system operation under differ-
ent resources, loads, and environmental conditions. In fact,
the real-time battery system operation has a significant
impact on the battery lifetime in the long term. For instance,
the battery life would be seriously shortened by the frequent
charging and discharging. On the other hand, to eliminate
the uncertain factors, the energy management system mainly
relies on the real-time battery system operation.

In order to reduce the influence of the real-time opera-
tion on battery life, one feasible tactic is to combine some
high-power energy systems with long life and fast response
characteristics to construct a hybrid energy storage system
(HESS). Supercapacitors have very high cycle lives and safe
application properties. Therefore, one of the hot topics of
current research has been application of hybrid batteries and
supercapacitors as an effective solution to the HESS [9,10].
The battery-supercapacitor-based HESS can reduce the effect
of errors and extend battery life through a reasonably coor-
dinated control strategy. The general control strategy is that
the battery supplies the long time part of the power, while
the supercapacitor supplies its short time part. This control
strategy significantly lessens the charge and discharge times
of the battery to extend its lifetime.

This paper presents a hierarchical two-layer micro-grid
energy scheduling framework that combines an optimization
layer and a real-time control layer to deal with the differences
between an ideal scheme and a real operation. The micro-grid
is built with the following sorts of equipment: interruptible

load, must-run loads, PV, wind turbines, batteries, and super-
capacitors. The hierarchical micro-grid energy scheduling
framework minimizes micro-grid energy costs while also
considering the battery degradation costs, uncertainty, and
opportunity for load shifting. The hierarchical framework
consists of two main layers: (a) the upper layer (long-time
scheduling without uncertainty), and (b) the lower layer (real-
time controller layer). The upper layer optimizes micro-grid
energy usage by employing a mixed-integer nonlinear pro-
gramming (MINLP) optimization. The lower layer consists
of a real-time controller layer that controls the supercapacitor
while minimizing the generated cost by the upper layer. The
main contributions of the present work are summarized as
follows:

1) A two-layer energy scheduling system including a
hybrid battery and supercapacitor for micro-gird is created.
An effective energy scheduling is planned to minimize the
long-term costs of the upper layer; further, the prediction
uncertainty and energy fluctuations are eliminated in the
lower layer.

2) A non-convex MINLP model, which considers the bat-
tery lifetime and interruptible appliances, is built within the
upper layer. Additionally, an algorithm is proposed to seek a
near-optimal solution for the model’s problem.

3) A lower layer strategy is developed to accommodate
the imbalanced power mainly due to the uncertainty of the
renewable energy and loads, while extending the lifetime of
the battery.

Compared with other micro-grid energy system publica-
tions considering layered and multi-layer, this paper pro-
poses an active error eliminate method to evaluate the impact
of uncertainty timely and provides cost-effective real-time
optimal measures after occurring uncertainty. It is basically
different from the double-layer structure proposed in the
literature [12], [13]. In these studies, uncertainty was handled
by underlying real-time optimization. Although their method
could effectively deal with the uncertainty, they ignored the
impact of this operation on battery life. In contrast, superca-
pacitors are exploited to make up for this deficiency.

The approaches associated with the micro-grid energy sys-
tem [11] commonly propose a two-layer energy management
system for themicro-grid with hybrid battery-supercapacitors
considering degradation costs. The main novelty of the pro-
posed micro-grid energy system is that the structure contains
a large number of interruptible equipment, which is more in
line with the real situations. Additionally, the optimization
model has been modified from the original mixed-integer
linear program (MILP) to the MINLP.

Until now, derivative-based methodologies such as
nonlinear branch and bound approaches as well as outer
approximation methods [14] and derivative-free ones such
as evolutionary algorithms [15]–[18] have been established
for solving MINLP problems. A hybrid optimization method
integrating derivative-free and derivative-based (branch-and-
bound algorithm) is proposed to solve the problems asso-
ciated with the MINLP. The proposed hybrid optimization
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method makes full use of the flexibility of the derivative-free
in handling the non-convexity and the efficiency of the
interior-point algorithm for large NLP.

The remaining of the paper is organized as follows. The
second section presents the smart buildings that integrate
different production and consumption systems. In Section
three, mathematical formulas with all the constraints associ-
ated with each equipment are developed. The fourth section
discusses optimization procedures that can be utilized to
optimize the demand response programming, and a proposed
hybrid optimization algorithm that deals with the MINLP-
based problems. In section five, simulation results are dis-
cussed, and finally, the main obtained results are briefly
explained in the sixth section.

II. MODELS OF THE MICRO-GRID PROBLEM
A. SYSTEM ARCHITECTURE
The proposed micro-grid model has been depicted in
FIFURE 1.

FIGURE 1. Schematic representation of the system model of the
micro-grid.

The micro-grid system mainly consists of electrical inter-
ruptible loads, PV, wind turbine, battery storage system,
supercapacitor, electric grid, and must-run load. The lead-
ing purpose of energy scheduling is to control the load for
minimizing the financial costs by considering the physical
characteristics of appliances.

B. MODELS
1) MODELING OF THE BATTERY DEGRADATION COST
The battery is employed to avoid energy mismatch between
the demand and power generation; however, improper cycling
can drastically deteriorate the charging and discharging per-
formance of the battery [19]. The battery lifetime is mainly
affected by several cycling conditions, such as weather,
charging and discharging rates, and depth of discharge.

Actually, the depth of discharge essentially impacts the
battery lifetime compared to other cycling conditions. The
cost function of the battery can be formulated as [11], [19]:

Cbatt (t) =
Cbatt,c ap ∗ Pbatt (t) ∗1t

Ebatt,t ∗ Ic (DODbatt (t)) ∗ η2batt
(1)

Ic (DODbatt (t)) = a ∗ (DODbatt (t))−b (2)

DODbatt (t) = 1− SOCbatt (t) (3)

SOCbatt (t + 1) = SOCbatt (t)−
Pbatt,c h(t) ∗1t ∗ ηchbatt

Ebatt,t

−
Pbatt,d ch(t) ∗1t

Ebatt,t ∗ ηdchbatt

(4)

where a and b represent the curve-fitting coefficients,
DODbatt (depth of discharging) denotes the energy in
one charging or discharging event to the full capacity,
Ic (DODbatt) is defined as the lifetime of the battery, which
is relative with DODbatt .

2) MODELING OF THE SUPERCAPACITOR
DEGRADATION COST
In general, the life of supercapacitors is expected to last until
the estimated lifetime under normal operation conditions,
which is not limited by cycling stress [11], [20]. Despite
the DODbatt of each charge/discharge event, the degradation
cost of the supercapacitor is time-dependent. Therefore, the
supercapacitor degradation cost for any time interval can be
formulated as follows:

CSCDC (t) =
Csc1t
Lsc

(5)

As can be seen from Eq. (5), the supercapacitor cost is pro-
portionally related to the time interval.

3) CONSTRAINTS
a: CONSTRAINTS OF BATTERY
The battery charging and discharging energies can be formu-
lated by Eqs. (6)-(10)

0 ≤
pbatt,c h(t)
ηch

≤ pmax
ch (6)

0 ≤ pbatt,d ch(t) ∗ ηdch ≤ pmax
dch (7)

pbatt (t) =
pbatt,c h(t)
ηch

− pbatt,d ch(t) ∗ ηdch (8)

SOCbatt (t + 1) = SOCbatt (t)−
pbatt,c h(t) ∗1t ∗ ηch

Ebatt,t

−
pbat,d ch(t) ∗1t
Ebatt,t ∗ ηdch

(9)

SOCmin
≤ SOC(t) ≤ SOCmax (10)

where the maximum amount of power charged and dis-
charged by the battery storage during the time t are rep-
resented by pmax and pmin, respectively. The charging and
discharging rates of the battery are given by Eqs. (6)-(7)
while Eq. (8) is utilized to calculate the amount of energy
transferred to the battery. Based on Eq. (9), the SOC of the
battery at t + 1 is a function of the SOC at time t m, and the
inequality relation in Eq. (10) is exploited to limit the range
of the SOC.

b: INTERRUPTIBLE APPLIANCE CONSTRAINTS
Interruptible appliances were assumed to only operate with
either an ‘on’ or ‘off’ status at a fixed energy level, which
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was characterized as follows:

δa,t = 0 t /∈ [αa, βb] (11)
t0−1∑
t=αa

δa,t + δa,t0 +

βa∑
τ=t0+1

δa,τ = Ha (12)

βa∑
t=αa

δa,t = Ha (13)

Eq. (11) involves operation within a preferred time range
[αa, βb], while Eqs. (12) and (13) describe an interruptible
appliance that completes slots during a cycle.

c: CONSTRAINTS OF SUPERCAPACITOR
Supercapacitors can eliminate instantaneous power imbal-
ance through frequent charging/discharging. Eq. (14) intro-
duces that the power generated from the supercapacitor must
be limited by the upper and lower bounds. The given con-
straints in Eqs. (15) and (16) present the supercapacitor from
being overcharged and over-discharged.

Pmin
SC ≤ PSC (t) ≤ Pmax

SC (14)

SOCSC (t + 1) = SOCSC (t)−
PSC (t) ∗1t ∗ ηchSC

ESC

−
PSC (t) ∗1t

ESC ∗ ηdchSC

(15)

SOCmin
SC ≤ SOCSC (t) ≤ SOCmax

SC (16)

III. ENERGY SCHEDULING STRUCTURE
The proposed two-layer structure of the DR programming is
depicted in FIGURE. 2. The factors Tu and Tl in order denote
the length of the prediction horizon in the upper and lower
layers. The upper and lower layers are the predictive model
controller with the time interval 1Tu and 1Tl , respectively.
The upper layer obtains the optimal value at the current time t ,
and then the lower layer reuses the reference values provided
by the upper layer for its own optimization. After 1Tu time
1Tu, the upper layer starts for the next1Tu with the updated
state variables, which are sent back by the lower layer.

FIGURE 2. The structure of two-layer energy scheduling.

A. OPTIMIZATION STRUCTURE OF THE UPPER LAYER
The main objective of the upper layer is to minimize the
total operational cost by optimizing t decision variables[
Pgrid (tu) ,Pbatt (tu) ,Pdefe (tu)

]Tu
tu=1

. The optimization prob-
lem in the upper layer can be formulated as follows:

min F =
Tu∑
t=1

[
Telec(t) ∗ pgrid (t)+ Cbatt (t)

]
s.t. pgrid (t) = pinte(t)+ pbatt (t)+ ppv(t)

+ pwt (t)+ pload (t)

Eq.(1)− Eq.(13).

variables:
[
Pgrid (tu) ,Pbatt (tu) ,Pdefe (tu)

]Tu
tu=1

(17)

The electricity cost consists of grid cost and battery degra-
dation cost. As it can be seen, the upper layer represents an
MINLP. This is an NP-hard problem that can be solved by the
proposed hybrid algorithm.

B. OPTIMIZATION STRUCTURE OF THE LOWER LAYER
The objective of the lower layer is to eliminate fluctuations
induced by uncertainty in the EMS. The optimization of the
second layer can be formulated as:

min
Tl∑
t=1

[Cscdc(t)+ σb ∗ CB(t)]

s.t. pgrid (t) = pbatt (t)+ ppv(t)+ pwt (t)+ pSC (t)

Eq.(1)− Eq.(10).

Eq.(14)− Eq.(16).

variables: [Pbatt (tl) ,Psc (tl)]
Tl
tl=1

(18)

where σb denote weighting coefficients. The values Pbatt (tu),
optimized by the first layer are exploited as the reference
values of the second layer. In order to reduce the deviation
from the reference of the battery, the penalty term CB(t) is
formulated and added as a quadratic function:

C l
B (tl) =

(
Pubatt (tu)− P

l
batt (tl)

)2
(19)

IV. OPTIMIZATION ALGORITHMS
A. PROPOSED ALGORITHM FOR THE UPPER LAYER
The upper layer is a mixed-integer nonlinear problem with
constraints. Both gradient-free and gradient-based algorithms
are employed to solve such an optimization problem. The
gradient-based optimization method is more suitable for
examining the problems with smooth design space and con-
vex near the optimal value. Therefore, it is unsuitable for
the MINLP-based problems with non-convex design space
and integer variables. The gradient-free optimization method
does not require the design space to be continuous or smooth,
making it easier to solve the MINLP problem. However, due
to the lack of mathematical optimality conditions, the effi-
ciency of the gradient-free optimization method is relatively
low. For the upper layer here, we propose a hybrid algorithm
that takes advantage of both gradient and gradient-free. The
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gradient-free algorithm is carried out to determine the initial
variables. The obtained results from the gradients-based algo-
rithm can be used as the starting point of the gradient-based
algorithm. The gradient-free optimizer minimizes the chance
of finding a local minimum in the nonlinear design space, and
the gradient-based optimizer exactly pinpoints the optimum
location.

1) THE GRADIENT-FREE ALGORITHM
We choose the particle swarm optimization method as
the gradient-free algorithm. The particle swarm optimiza-
tion (PSO) algorithm has been successfully applied to various
fields of study to solve different optimization problems. The
population of the PSO is designated as the swarm, with each
particle in the swarm representing a solution to an opti-
mization problem. Each particle moves within the solution
space to solve an optimum solution, with the movement of
a particle affected by the exchange of information between
individual particles. The velocity of the ith particle is defined
by Eq. (20), where gbest ti is the global best of the swarm,
while pbest ti is the so-called personal best of the particle, w
is a weighting function that controls how much the velocity
of a particle vti affects the velocity of the next particle. The
acceleration constants c1 and c2, which are learning factors
and usually are set as c1 = c2 = 2 [23]. r1 and r2 represent
two diagonal matrices of random numbers generated from a
uniform distribution between 0 and 1. The position vector
x t+1i of each particle can then be updated using Eq. (21):

vt+1i = wvti + c1r1
(
pbest ti − x

t
i
)
+ c2r2

(
gbest ti −x

t
i
)
(20)

x t+1i = x ti + v
t
i (21)

Kennedy and Eberhart [25] proposed a discrete binary
version of the PSO to solve binary variables. The major
difference between the binary PSO with the continuous ver-
sion is that the speed of a particle coordinate is mapped
to a probability using a sigmoid function by the following
relation:

s
(
vt
)
=

1
1+ exp (−vt)

(22)

and the new position of the particle is obtained using the
equation below:

x(t + 1) =

{
1 if s

(
vt
)
> r

0 otherwise
(23)

where r is a uniform number within the range of 0 to 1.

2) THE GRADIENT-BASED ALGORITHM
The MINLP can be expressed as follows

min
x,y

F = f (x, y)

s.t. h(x, y) = 0

g(x, y) ≤ 0 (24)

where x = [xinte] represent the binary variables and y =[
ygrid , ybatt

]
denote the continuous variables.When the initial

values are specified by the PSO, then the function becomes a
typical constrained nonlinear program (NLP).

min
y′

F = f
(
y′
)

s.t. h
(
y′
)
= 0

g
(
y′
)
≤ 0 (25)

We choose the interior-point gradient-based algorithm.
This effective one can solve a sequence of nonlinear pro-
gramming, which restricts the constraints into the objective
function by creating a barrier function as follows:

B(y, µ) = f (y)− µ
m∑
i=1

log(g(y)) (26)

in which µ denotes a small positive scalar, the so-called
barrier factor. The interior-point algorithm is a gradient-based
type from Lagrange multipliers [25]. In this paper, the
interior-point algorithm is implemented by the fmincon func-
tion. In the process of implementation, relative parameters
such as the Hessian function, nonlinearly constrained toler-
ances, and minimum disturbances are involved.

3) THE PROPOSED ALGORITHM
1) The interior-point algorithm is a fast way to obtain the
optimal solution; however, its results rely on the chosen initial
value. The PSO algorithm is an evolutionary one, which can
generate a large number of individuals and can be analyzed
simultaneously. It improves the probability of obtaining the
global value. For optimization of the MINLP issue, the PSO
is utilized to provide both discrete variables ([xinte]) and con-
tinuous variables

([
ygrid , ybatt

])
, with a chart for the proposed

strategy presented in FIGURE. 3. Initialize parameters and
stopping criteria.

2) The PSO is initially applied to a set of continuous and
discrete variables within a feasible region, sending values[
xinte, ygrid , ybatt

]
to the interior-point algorithm as an initial

value for processing.
3) The interior-point algorithm then solves the continuous

variables to obtain a new value
[
xinte, y′grid , y

′
batt

]
that is sent

back to the PSO algorithm.
4) The PSO algorithm then deals with the discrete and

continuous values obtained by the interior-point algorithm.
5) The fitness of each particle individual is then calculated

to guarantee that the pbest and gbest particles are appropri-
ately identified.

6) The PSO updates the particles according to Eqs. (20)
and (21).

7) The iterative algorithm is continued until a satisfactory
stop condition is achieved.

B. PROPOSED ALGORITHM FOR THE LOWER LAYER
The mathematical model of the lower layer is a non-
linear programming problem, which is solved using the
solver IPOPT [22]. The IPOPT (interior-point optimizer, pro-
nounced eye-pea-opt) is a software package for large-scale
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FIGURE 3. Flowchart of the proposed algorithm.

nonlinear optimization. The IPOPT has been released as an
open-source code under the Eclipse public license (EPL).

V. SIMULATION RESULTS
In this section, different scenarios configured to analyze the
algorithms fitness for our purposes are examined. Firstly,
a micro-grid structure was constructed, integrating PV pan-
els, wind turbines, battery, supercapacitior, and interruptible
appliances. The day-ahead price of electricity is adopted by
weighting data from May 2013 to April 2014 in Energy
Market Company of Singapore [11], [21]. The exact power
of must run load, PV, and wind turbine is demonstrated in
FIGURE. 4 [11]. The used parameters in the case studies
are provided in TABLES 1 and 2. The parameters of the
controllable appliance are assumed to be rand generated and
shown in TABLE 1.

A. UPPER LAYER ALGORITHM ANALYSIS (SINGLE-LAYER
SCHEDULING SYSTEM WITHOUT FORECAST ERRORS)
Further experiments were carried out to evaluate the perfor-
mance of the proposed algorithm.

In order to analyze the influence of the initial value on the
non-convex MINLP problem, the initial particle number of
this experiment was tested from 1 to 30. The experimental
results are presented in TABLE 3.

It can be seen from TABLE 3 that the fitness values
decrease as the number of particles grows. The possibility

FIGURE 4. The time-history plots of power of the must-run load, PV, and
wind turbine.

TABLE 1. Data for residential appliances.

TABLE 2. The considered values for some crucial parameters.

TABLE 3. Comparison between different particle numbers.

of obtaining the optimal solution increases with the growth
of the number of particles. Therefore, the performance of the
interior-point algorithm problem is more dependent on the
initial value.

Further experiments are carried out to assess the per-
formance of the proposed strategy. The convergence char-
acteristics of the proposed strategy with five particles are
presented in TABLE 4. It can be observed that with the
development of the algorithm, its performance has been
improved, and the solution has become superior. Therefore,
the PSO-based algorithm can help the proposed algorithm
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FIGURE 5. Scheduling results for interruptible appliances.

TABLE 4. Convergence check of the proposed algorithm.

to realize convergence better. Further performance analysis
of the proposed algorithm with other algorithms has been
published in the previous study [26].

B. SCHEDULING RESULT OF TWO-LAYER
SCHEDULING STRUCTURE
The results of the scheduling schemes based on the time-of-
use pricing are presented in FIGURE. 5.

The plotted results show that the proposed program
lessens costs by planning interruptible appliances to oper-
ate avoid peak-price power periods (i.e., 17:00-18:00 and
37:00–38:00).

Additionally, the battery plays a critical role in saving
financial costs. Batteries can offer assistance to reduce costs
by charging at off-peak hours and discharging at peak hours.
It can be seen that the battery discharges quickly within
the peak hour periods of 17, 36, and 38. When the grid
price is relatively lower at hours 25-30, charge the battery to
guarantee that enough energy is discharged in the following
time. Further, excessive energy is sold back to the main grid
to reduce costs during peak price since the grid price is high.

C. PERFORMANCE ANALYSIS OF TWO-LAYER
SCHEDULING STRUCTURE FOR FORECAST ERRORS
Due to the uncertain nature of the PV and wind turbine,
a two-layer optimization model is proposed in the micro-
grid program. For this purpose, the upper layer minimizes the

FIGURE 6. The time-history plots of power associated with the main grid
and battery power.

financial cost, and the lower layer removes the forecast errors.
In order to decrease the computational costs, only an inter-
ruptible within the time interval (3:00-11:00) is considered in
the upper layer. The forecast horizons of the upper and lower
layers in order are 12 hours and 1 hour. The optimization
results with increasing forecast errors from 10% to 40% are
demonstrated in FIGURES. 7-9.

As shown in FIGURE. 8, the change of battery operation is
more stable with the increase of the prediction error, whereas
the output of the supercapacitor is enormously influenced by
the forecasted error, as displayed in FIGURE. 9. This may be
due to the forecast errors in the PV and wind turbines, which
lead to the dramatic fluctuation of the supercapacitor. Since
one of the main destinations of the lower layer is to smooth
the output of batteries, it can be reasonably explained that
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FIGURE 7. Scheduling results for interruptible appliances under forecast
errors.

FIGURE 8. The SOC of the battery under forecast errors.

FIGURE 9. The SOC of the supercapacitor under forecast errors.

increasing the power mismatch will result in more volatile
variations in the output of supercapacitors, which is consis-
tent with the obtained results in Ref. [11].

VI. CONCLUSION
A two-layer structure of the micro-grid energy scheduling
accounting for the cost of battery degradation is proposed to
eliminate the forecast errors. The primary duty of the upper
layer is to minimize the operating cost, while the lower layer
is exploited to eliminate the fluctuations caused by the predic-
tion errors. In order to solve the two-layer energy scheduling
structure for MINLP-based problems, an upper mixed integer
nonlinear programming, hybrid gradient-free and gradient-
based optimization algorithms are proposed. The analysis
results indicate that the proposed hybrid algorithm can opti-
mally solve the non-convex MINLP. Further research works
have successfully demonstrated the effectiveness of the pro-
posed two-layer structure in eliminating prediction errors.
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